summaryrefslogtreecommitdiffstats
path: root/src/backend/tsearch/ts_typanalyze.c
blob: 56eeb6fc427d011a9a5fedaf93bc2099306e5dcb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
/*-------------------------------------------------------------------------
 *
 * ts_typanalyze.c
 *	  functions for gathering statistics from tsvector columns
 *
 * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
 *
 *
 * IDENTIFICATION
 *	  src/backend/tsearch/ts_typanalyze.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "catalog/pg_collation.h"
#include "catalog/pg_operator.h"
#include "commands/vacuum.h"
#include "common/hashfn.h"
#include "tsearch/ts_type.h"
#include "utils/builtins.h"


/* A hash key for lexemes */
typedef struct
{
	char	   *lexeme;			/* lexeme (not NULL terminated!) */
	int			length;			/* its length in bytes */
} LexemeHashKey;

/* A hash table entry for the Lossy Counting algorithm */
typedef struct
{
	LexemeHashKey key;			/* This is 'e' from the LC algorithm. */
	int			frequency;		/* This is 'f'. */
	int			delta;			/* And this is 'delta'. */
} TrackItem;

static void compute_tsvector_stats(VacAttrStats *stats,
								   AnalyzeAttrFetchFunc fetchfunc,
								   int samplerows,
								   double totalrows);
static void prune_lexemes_hashtable(HTAB *lexemes_tab, int b_current);
static uint32 lexeme_hash(const void *key, Size keysize);
static int	lexeme_match(const void *key1, const void *key2, Size keysize);
static int	lexeme_compare(const void *key1, const void *key2);
static int	trackitem_compare_frequencies_desc(const void *e1, const void *e2,
											   void *arg);
static int	trackitem_compare_lexemes(const void *e1, const void *e2,
									  void *arg);


/*
 *	ts_typanalyze -- a custom typanalyze function for tsvector columns
 */
Datum
ts_typanalyze(PG_FUNCTION_ARGS)
{
	VacAttrStats *stats = (VacAttrStats *) PG_GETARG_POINTER(0);
	Form_pg_attribute attr = stats->attr;

	/* If the attstattarget column is negative, use the default value */
	/* NB: it is okay to scribble on stats->attr since it's a copy */
	if (attr->attstattarget < 0)
		attr->attstattarget = default_statistics_target;

	stats->compute_stats = compute_tsvector_stats;
	/* see comment about the choice of minrows in commands/analyze.c */
	stats->minrows = 300 * attr->attstattarget;

	PG_RETURN_BOOL(true);
}

/*
 *	compute_tsvector_stats() -- compute statistics for a tsvector column
 *
 *	This functions computes statistics that are useful for determining @@
 *	operations' selectivity, along with the fraction of non-null rows and
 *	average width.
 *
 *	Instead of finding the most common values, as we do for most datatypes,
 *	we're looking for the most common lexemes. This is more useful, because
 *	there most probably won't be any two rows with the same tsvector and thus
 *	the notion of a MCV is a bit bogus with this datatype. With a list of the
 *	most common lexemes we can do a better job at figuring out @@ selectivity.
 *
 *	For the same reasons we assume that tsvector columns are unique when
 *	determining the number of distinct values.
 *
 *	The algorithm used is Lossy Counting, as proposed in the paper "Approximate
 *	frequency counts over data streams" by G. S. Manku and R. Motwani, in
 *	Proceedings of the 28th International Conference on Very Large Data Bases,
 *	Hong Kong, China, August 2002, section 4.2. The paper is available at
 *	http://www.vldb.org/conf/2002/S10P03.pdf
 *
 *	The Lossy Counting (aka LC) algorithm goes like this:
 *	Let s be the threshold frequency for an item (the minimum frequency we
 *	are interested in) and epsilon the error margin for the frequency. Let D
 *	be a set of triples (e, f, delta), where e is an element value, f is that
 *	element's frequency (actually, its current occurrence count) and delta is
 *	the maximum error in f. We start with D empty and process the elements in
 *	batches of size w. (The batch size is also known as "bucket size" and is
 *	equal to 1/epsilon.) Let the current batch number be b_current, starting
 *	with 1. For each element e we either increment its f count, if it's
 *	already in D, or insert a new triple into D with values (e, 1, b_current
 *	- 1). After processing each batch we prune D, by removing from it all
 *	elements with f + delta <= b_current.  After the algorithm finishes we
 *	suppress all elements from D that do not satisfy f >= (s - epsilon) * N,
 *	where N is the total number of elements in the input.  We emit the
 *	remaining elements with estimated frequency f/N.  The LC paper proves
 *	that this algorithm finds all elements with true frequency at least s,
 *	and that no frequency is overestimated or is underestimated by more than
 *	epsilon.  Furthermore, given reasonable assumptions about the input
 *	distribution, the required table size is no more than about 7 times w.
 *
 *	We set s to be the estimated frequency of the K'th word in a natural
 *	language's frequency table, where K is the target number of entries in
 *	the MCELEM array plus an arbitrary constant, meant to reflect the fact
 *	that the most common words in any language would usually be stopwords
 *	so we will not actually see them in the input.  We assume that the
 *	distribution of word frequencies (including the stopwords) follows Zipf's
 *	law with an exponent of 1.
 *
 *	Assuming Zipfian distribution, the frequency of the K'th word is equal
 *	to 1/(K * H(W)) where H(n) is 1/2 + 1/3 + ... + 1/n and W is the number of
 *	words in the language.  Putting W as one million, we get roughly 0.07/K.
 *	Assuming top 10 words are stopwords gives s = 0.07/(K + 10).  We set
 *	epsilon = s/10, which gives bucket width w = (K + 10)/0.007 and
 *	maximum expected hashtable size of about 1000 * (K + 10).
 *
 *	Note: in the above discussion, s, epsilon, and f/N are in terms of a
 *	lexeme's frequency as a fraction of all lexemes seen in the input.
 *	However, what we actually want to store in the finished pg_statistic
 *	entry is each lexeme's frequency as a fraction of all rows that it occurs
 *	in.  Assuming that the input tsvectors are correctly constructed, no
 *	lexeme occurs more than once per tsvector, so the final count f is a
 *	correct estimate of the number of input tsvectors it occurs in, and we
 *	need only change the divisor from N to nonnull_cnt to get the number we
 *	want.
 */
static void
compute_tsvector_stats(VacAttrStats *stats,
					   AnalyzeAttrFetchFunc fetchfunc,
					   int samplerows,
					   double totalrows)
{
	int			num_mcelem;
	int			null_cnt = 0;
	double		total_width = 0;

	/* This is D from the LC algorithm. */
	HTAB	   *lexemes_tab;
	HASHCTL		hash_ctl;
	HASH_SEQ_STATUS scan_status;

	/* This is the current bucket number from the LC algorithm */
	int			b_current;

	/* This is 'w' from the LC algorithm */
	int			bucket_width;
	int			vector_no,
				lexeme_no;
	LexemeHashKey hash_key;
	TrackItem  *item;

	/*
	 * We want statistics_target * 10 lexemes in the MCELEM array.  This
	 * multiplier is pretty arbitrary, but is meant to reflect the fact that
	 * the number of individual lexeme values tracked in pg_statistic ought to
	 * be more than the number of values for a simple scalar column.
	 */
	num_mcelem = stats->attr->attstattarget * 10;

	/*
	 * We set bucket width equal to (num_mcelem + 10) / 0.007 as per the
	 * comment above.
	 */
	bucket_width = (num_mcelem + 10) * 1000 / 7;

	/*
	 * Create the hashtable. It will be in local memory, so we don't need to
	 * worry about overflowing the initial size. Also we don't need to pay any
	 * attention to locking and memory management.
	 */
	hash_ctl.keysize = sizeof(LexemeHashKey);
	hash_ctl.entrysize = sizeof(TrackItem);
	hash_ctl.hash = lexeme_hash;
	hash_ctl.match = lexeme_match;
	hash_ctl.hcxt = CurrentMemoryContext;
	lexemes_tab = hash_create("Analyzed lexemes table",
							  num_mcelem,
							  &hash_ctl,
							  HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT);

	/* Initialize counters. */
	b_current = 1;
	lexeme_no = 0;

	/* Loop over the tsvectors. */
	for (vector_no = 0; vector_no < samplerows; vector_no++)
	{
		Datum		value;
		bool		isnull;
		TSVector	vector;
		WordEntry  *curentryptr;
		char	   *lexemesptr;
		int			j;

		vacuum_delay_point();

		value = fetchfunc(stats, vector_no, &isnull);

		/*
		 * Check for null/nonnull.
		 */
		if (isnull)
		{
			null_cnt++;
			continue;
		}

		/*
		 * Add up widths for average-width calculation.  Since it's a
		 * tsvector, we know it's varlena.  As in the regular
		 * compute_minimal_stats function, we use the toasted width for this
		 * calculation.
		 */
		total_width += VARSIZE_ANY(DatumGetPointer(value));

		/*
		 * Now detoast the tsvector if needed.
		 */
		vector = DatumGetTSVector(value);

		/*
		 * We loop through the lexemes in the tsvector and add them to our
		 * tracking hashtable.
		 */
		lexemesptr = STRPTR(vector);
		curentryptr = ARRPTR(vector);
		for (j = 0; j < vector->size; j++)
		{
			bool		found;

			/*
			 * Construct a hash key.  The key points into the (detoasted)
			 * tsvector value at this point, but if a new entry is created, we
			 * make a copy of it.  This way we can free the tsvector value
			 * once we've processed all its lexemes.
			 */
			hash_key.lexeme = lexemesptr + curentryptr->pos;
			hash_key.length = curentryptr->len;

			/* Lookup current lexeme in hashtable, adding it if new */
			item = (TrackItem *) hash_search(lexemes_tab,
											 (const void *) &hash_key,
											 HASH_ENTER, &found);

			if (found)
			{
				/* The lexeme is already on the tracking list */
				item->frequency++;
			}
			else
			{
				/* Initialize new tracking list element */
				item->frequency = 1;
				item->delta = b_current - 1;

				item->key.lexeme = palloc(hash_key.length);
				memcpy(item->key.lexeme, hash_key.lexeme, hash_key.length);
			}

			/* lexeme_no is the number of elements processed (ie N) */
			lexeme_no++;

			/* We prune the D structure after processing each bucket */
			if (lexeme_no % bucket_width == 0)
			{
				prune_lexemes_hashtable(lexemes_tab, b_current);
				b_current++;
			}

			/* Advance to the next WordEntry in the tsvector */
			curentryptr++;
		}

		/* If the vector was toasted, free the detoasted copy. */
		if (TSVectorGetDatum(vector) != value)
			pfree(vector);
	}

	/* We can only compute real stats if we found some non-null values. */
	if (null_cnt < samplerows)
	{
		int			nonnull_cnt = samplerows - null_cnt;
		int			i;
		TrackItem **sort_table;
		int			track_len;
		int			cutoff_freq;
		int			minfreq,
					maxfreq;

		stats->stats_valid = true;
		/* Do the simple null-frac and average width stats */
		stats->stanullfrac = (double) null_cnt / (double) samplerows;
		stats->stawidth = total_width / (double) nonnull_cnt;

		/* Assume it's a unique column (see notes above) */
		stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);

		/*
		 * Construct an array of the interesting hashtable items, that is,
		 * those meeting the cutoff frequency (s - epsilon)*N.  Also identify
		 * the minimum and maximum frequencies among these items.
		 *
		 * Since epsilon = s/10 and bucket_width = 1/epsilon, the cutoff
		 * frequency is 9*N / bucket_width.
		 */
		cutoff_freq = 9 * lexeme_no / bucket_width;

		i = hash_get_num_entries(lexemes_tab);	/* surely enough space */
		sort_table = (TrackItem **) palloc(sizeof(TrackItem *) * i);

		hash_seq_init(&scan_status, lexemes_tab);
		track_len = 0;
		minfreq = lexeme_no;
		maxfreq = 0;
		while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL)
		{
			if (item->frequency > cutoff_freq)
			{
				sort_table[track_len++] = item;
				minfreq = Min(minfreq, item->frequency);
				maxfreq = Max(maxfreq, item->frequency);
			}
		}
		Assert(track_len <= i);

		/* emit some statistics for debug purposes */
		elog(DEBUG3, "tsvector_stats: target # mces = %d, bucket width = %d, "
			 "# lexemes = %d, hashtable size = %d, usable entries = %d",
			 num_mcelem, bucket_width, lexeme_no, i, track_len);

		/*
		 * If we obtained more lexemes than we really want, get rid of those
		 * with least frequencies.  The easiest way is to qsort the array into
		 * descending frequency order and truncate the array.
		 */
		if (num_mcelem < track_len)
		{
			qsort_interruptible(sort_table, track_len, sizeof(TrackItem *),
								trackitem_compare_frequencies_desc, NULL);
			/* reset minfreq to the smallest frequency we're keeping */
			minfreq = sort_table[num_mcelem - 1]->frequency;
		}
		else
			num_mcelem = track_len;

		/* Generate MCELEM slot entry */
		if (num_mcelem > 0)
		{
			MemoryContext old_context;
			Datum	   *mcelem_values;
			float4	   *mcelem_freqs;

			/*
			 * We want to store statistics sorted on the lexeme value using
			 * first length, then byte-for-byte comparison. The reason for
			 * doing length comparison first is that we don't care about the
			 * ordering so long as it's consistent, and comparing lengths
			 * first gives us a chance to avoid a strncmp() call.
			 *
			 * This is different from what we do with scalar statistics --
			 * they get sorted on frequencies. The rationale is that we
			 * usually search through most common elements looking for a
			 * specific value, so we can grab its frequency.  When values are
			 * presorted we can employ binary search for that.  See
			 * ts_selfuncs.c for a real usage scenario.
			 */
			qsort_interruptible(sort_table, num_mcelem, sizeof(TrackItem *),
								trackitem_compare_lexemes, NULL);

			/* Must copy the target values into anl_context */
			old_context = MemoryContextSwitchTo(stats->anl_context);

			/*
			 * We sorted statistics on the lexeme value, but we want to be
			 * able to find out the minimal and maximal frequency without
			 * going through all the values.  We keep those two extra
			 * frequencies in two extra cells in mcelem_freqs.
			 *
			 * (Note: the MCELEM statistics slot definition allows for a third
			 * extra number containing the frequency of nulls, but we don't
			 * create that for a tsvector column, since null elements aren't
			 * possible.)
			 */
			mcelem_values = (Datum *) palloc(num_mcelem * sizeof(Datum));
			mcelem_freqs = (float4 *) palloc((num_mcelem + 2) * sizeof(float4));

			/*
			 * See comments above about use of nonnull_cnt as the divisor for
			 * the final frequency estimates.
			 */
			for (i = 0; i < num_mcelem; i++)
			{
				TrackItem  *item = sort_table[i];

				mcelem_values[i] =
					PointerGetDatum(cstring_to_text_with_len(item->key.lexeme,
															 item->key.length));
				mcelem_freqs[i] = (double) item->frequency / (double) nonnull_cnt;
			}
			mcelem_freqs[i++] = (double) minfreq / (double) nonnull_cnt;
			mcelem_freqs[i] = (double) maxfreq / (double) nonnull_cnt;
			MemoryContextSwitchTo(old_context);

			stats->stakind[0] = STATISTIC_KIND_MCELEM;
			stats->staop[0] = TextEqualOperator;
			stats->stacoll[0] = DEFAULT_COLLATION_OID;
			stats->stanumbers[0] = mcelem_freqs;
			/* See above comment about two extra frequency fields */
			stats->numnumbers[0] = num_mcelem + 2;
			stats->stavalues[0] = mcelem_values;
			stats->numvalues[0] = num_mcelem;
			/* We are storing text values */
			stats->statypid[0] = TEXTOID;
			stats->statyplen[0] = -1;	/* typlen, -1 for varlena */
			stats->statypbyval[0] = false;
			stats->statypalign[0] = 'i';
		}
	}
	else
	{
		/* We found only nulls; assume the column is entirely null */
		stats->stats_valid = true;
		stats->stanullfrac = 1.0;
		stats->stawidth = 0;	/* "unknown" */
		stats->stadistinct = 0.0;	/* "unknown" */
	}

	/*
	 * We don't need to bother cleaning up any of our temporary palloc's. The
	 * hashtable should also go away, as it used a child memory context.
	 */
}

/*
 *	A function to prune the D structure from the Lossy Counting algorithm.
 *	Consult compute_tsvector_stats() for wider explanation.
 */
static void
prune_lexemes_hashtable(HTAB *lexemes_tab, int b_current)
{
	HASH_SEQ_STATUS scan_status;
	TrackItem  *item;

	hash_seq_init(&scan_status, lexemes_tab);
	while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL)
	{
		if (item->frequency + item->delta <= b_current)
		{
			char	   *lexeme = item->key.lexeme;

			if (hash_search(lexemes_tab, (const void *) &item->key,
							HASH_REMOVE, NULL) == NULL)
				elog(ERROR, "hash table corrupted");
			pfree(lexeme);
		}
	}
}

/*
 * Hash functions for lexemes. They are strings, but not NULL terminated,
 * so we need a special hash function.
 */
static uint32
lexeme_hash(const void *key, Size keysize)
{
	const LexemeHashKey *l = (const LexemeHashKey *) key;

	return DatumGetUInt32(hash_any((const unsigned char *) l->lexeme,
								   l->length));
}

/*
 *	Matching function for lexemes, to be used in hashtable lookups.
 */
static int
lexeme_match(const void *key1, const void *key2, Size keysize)
{
	/* The keysize parameter is superfluous, the keys store their lengths */
	return lexeme_compare(key1, key2);
}

/*
 *	Comparison function for lexemes.
 */
static int
lexeme_compare(const void *key1, const void *key2)
{
	const LexemeHashKey *d1 = (const LexemeHashKey *) key1;
	const LexemeHashKey *d2 = (const LexemeHashKey *) key2;

	/* First, compare by length */
	if (d1->length > d2->length)
		return 1;
	else if (d1->length < d2->length)
		return -1;
	/* Lengths are equal, do a byte-by-byte comparison */
	return strncmp(d1->lexeme, d2->lexeme, d1->length);
}

/*
 *	Comparator for sorting TrackItems on frequencies (descending sort)
 */
static int
trackitem_compare_frequencies_desc(const void *e1, const void *e2, void *arg)
{
	const TrackItem *const *t1 = (const TrackItem *const *) e1;
	const TrackItem *const *t2 = (const TrackItem *const *) e2;

	return (*t2)->frequency - (*t1)->frequency;
}

/*
 *	Comparator for sorting TrackItems on lexemes
 */
static int
trackitem_compare_lexemes(const void *e1, const void *e2, void *arg)
{
	const TrackItem *const *t1 = (const TrackItem *const *) e1;
	const TrackItem *const *t2 = (const TrackItem *const *) e2;

	return lexeme_compare(&(*t1)->key, &(*t2)->key);
}