diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
commit | 483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch) | |
tree | e5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/math/test/test_poisson.cpp | |
parent | Initial commit. (diff) | |
download | ceph-upstream.tar.xz ceph-upstream.zip |
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/math/test/test_poisson.cpp')
-rw-r--r-- | src/boost/libs/math/test/test_poisson.cpp | 650 |
1 files changed, 650 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/test_poisson.cpp b/src/boost/libs/math/test/test_poisson.cpp new file mode 100644 index 00000000..3d54e5a9 --- /dev/null +++ b/src/boost/libs/math/test/test_poisson.cpp @@ -0,0 +1,650 @@ +// test_poisson.cpp + +// Copyright Paul A. Bristow 2007. +// Copyright John Maddock 2006. + +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. +// (See accompanying file LICENSE_1_0.txt +// or copy at http://www.boost.org/LICENSE_1_0.txt) + +// Basic sanity test for Poisson Cumulative Distribution Function. + +#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real + +#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT) +# define TEST_FLOAT +# define TEST_DOUBLE +# define TEST_LDOUBLE +# define TEST_REAL_CONCEPT +#endif + +#ifdef _MSC_VER +# pragma warning(disable: 4127) // conditional expression is constant. +#endif + +#define BOOST_TEST_MAIN +#include <boost/test/unit_test.hpp> // Boost.Test +#include <boost/test/tools/floating_point_comparison.hpp> + +#include <boost/math/concepts/real_concept.hpp> // for real_concept +#include <boost/math/distributions/poisson.hpp> + using boost::math::poisson_distribution; +#include <boost/math/tools/test.hpp> // for real_concept + +#include <boost/math/special_functions/gamma.hpp> // for (incomplete) gamma. +// using boost::math::qamma_Q; +#include "table_type.hpp" +#include "test_out_of_range.hpp" + +#include <iostream> + using std::cout; + using std::endl; + using std::setprecision; + using std::showpoint; + using std::ios; +#include <limits> + using std::numeric_limits; + +template <class RealType> // Any floating-point type RealType. +void test_spots(RealType) +{ + // Basic sanity checks, tolerance is about numeric_limits<RealType>::digits10 decimal places, + // guaranteed for type RealType, eg 6 for float, 15 for double, + // expressed as a percentage (so -2) for BOOST_CHECK_CLOSE, + + int decdigits = numeric_limits<RealType>::digits10; + // May eb >15 for 80 and 128-bit FP typtes. + if (decdigits <= 0) + { // decdigits is not defined, for example real concept, + // so assume precision of most test data is double (for example, MathCAD). + decdigits = numeric_limits<double>::digits10; // == 15 for 64-bit + } + if (decdigits > 15 ) // numeric_limits<double>::digits10) + { // 15 is the accuracy of the MathCAD test data. + decdigits = 15; // numeric_limits<double>::digits10; + } + + decdigits -= 1; // Perhaps allow some decimal digit(s) margin of numerical error. + RealType tolerance = static_cast<RealType>(std::pow(10., static_cast<double>(2-decdigits))); // 1e-6 (-2 so as %) + tolerance *= 2; // Allow some bit(s) small margin (2 means + or - 1 bit) of numerical error. + // Typically 2e-13% = 2e-15 as fraction for double. + + // Sources of spot test values: + + // Many be some combinations for which the result is 'exact', + // or at least is good to 40 decimal digits. + // 40 decimal digits includes 128-bit significand User Defined Floating-Point types, + + // Best source of accurate values is: + // Mathworld online calculator (40 decimal digits precision, suitable for up to 128-bit significands) + // http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=GammaRegularized + // GammaRegularized is same as gamma incomplete, gamma or gamma_q(a, x) or Q(a, z). + + // http://documents.wolfram.com/calculationcenter/v2/Functions/ListsMatrices/Statistics/PoissonDistribution.html + + // MathCAD defines ppois(k, lambda== mean) as k integer, k >=0. + // ppois(0, 5) = 6.73794699908547e-3 + // ppois(1, 5) = 0.040427681994513; + // ppois(10, 10) = 5.830397501929850E-001 + // ppois(10, 1) = 9.999999899522340E-001 + // ppois(5,5) = 0.615960654833065 + + // qpois returns inverse Poission distribution, that is the smallest (floor) k so that ppois(k, lambda) >= p + // p is real number, real mean lambda > 0 + // k is approximately the integer for which probability(X <= k) = p + // when random variable X has the Poisson distribution with parameters lambda. + // Uses discrete bisection. + // qpois(6.73794699908547e-3, 5) = 1 + // qpois(0.040427681994513, 5) = + + // Test Poisson with spot values from MathCAD 'known good'. + + using boost::math::poisson_distribution; + using ::boost::math::poisson; + using ::boost::math::cdf; + using ::boost::math::pdf; + + // Check that bad arguments throw. + BOOST_MATH_CHECK_THROW( + cdf(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero is bad. + static_cast<RealType>(0)), // even for a good k. + std::domain_error); // Expected error to be thrown. + + BOOST_MATH_CHECK_THROW( + cdf(poisson_distribution<RealType>(static_cast<RealType>(-1)), // mean negative is bad. + static_cast<RealType>(0)), + std::domain_error); + + BOOST_MATH_CHECK_THROW( + cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unit OK, + static_cast<RealType>(-1)), // but negative events is bad. + std::domain_error); + + BOOST_MATH_CHECK_THROW( + cdf(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero is bad. + static_cast<RealType>(99999)), // for any k events. + std::domain_error); + + BOOST_MATH_CHECK_THROW( + cdf(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero is bad. + static_cast<RealType>(99999)), // for any k events. + std::domain_error); + + BOOST_MATH_CHECK_THROW( + quantile(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero. + static_cast<RealType>(0.5)), // probability OK. + std::domain_error); + + BOOST_MATH_CHECK_THROW( + quantile(poisson_distribution<RealType>(static_cast<RealType>(-1)), + static_cast<RealType>(-1)), // bad probability. + std::domain_error); + + BOOST_MATH_CHECK_THROW( + quantile(poisson_distribution<RealType>(static_cast<RealType>(1)), + static_cast<RealType>(-1)), // bad probability. + std::domain_error); + + BOOST_MATH_CHECK_THROW( + quantile(poisson_distribution<RealType>(static_cast<RealType>(1)), + static_cast<RealType>(1)), // bad probability. + std::overflow_error); + + BOOST_MATH_CHECK_THROW( + quantile(complement(poisson_distribution<RealType>(static_cast<RealType>(1)), + static_cast<RealType>(0))), // bad probability. + std::overflow_error); + + BOOST_CHECK_EQUAL( + quantile(poisson_distribution<RealType>(static_cast<RealType>(1)), + static_cast<RealType>(0)), // bad probability. + 0); + + BOOST_CHECK_EQUAL( + quantile(complement(poisson_distribution<RealType>(static_cast<RealType>(1)), + static_cast<RealType>(1))), // bad probability. + 0); + + // Check some test values. + + BOOST_CHECK_CLOSE( // mode + mode(poisson_distribution<RealType>(static_cast<RealType>(4))), // mode = mean = 4. + static_cast<RealType>(4), // mode. + tolerance); + + //BOOST_CHECK_CLOSE( // mode + // median(poisson_distribution<RealType>(static_cast<RealType>(4))), // mode = mean = 4. + // static_cast<RealType>(4), // mode. + // tolerance); + poisson_distribution<RealType> dist4(static_cast<RealType>(40)); + + BOOST_CHECK_CLOSE( // median + median(dist4), // mode = mean = 4. median = 40.328333333333333 + quantile(dist4, static_cast<RealType>(0.5)), // 39.332839138842637 + tolerance); + + // PDF + BOOST_CHECK_CLOSE( + pdf(poisson_distribution<RealType>(static_cast<RealType>(4)), // mean 4. + static_cast<RealType>(0)), + static_cast<RealType>(1.831563888873410E-002), // probability. + tolerance); + + BOOST_CHECK_CLOSE( + pdf(poisson_distribution<RealType>(static_cast<RealType>(4)), // mean 4. + static_cast<RealType>(2)), + static_cast<RealType>(1.465251111098740E-001), // probability. + tolerance); + + BOOST_CHECK_CLOSE( + pdf(poisson_distribution<RealType>(static_cast<RealType>(20)), // mean big. + static_cast<RealType>(1)), // k small + static_cast<RealType>(4.122307244877130E-008), // probability. + tolerance); + + BOOST_CHECK_CLOSE( + pdf(poisson_distribution<RealType>(static_cast<RealType>(4)), // mean 4. + static_cast<RealType>(20)), // K>> mean + static_cast<RealType>(8.277463646553730E-009), // probability. + tolerance); + + // CDF + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity. + static_cast<RealType>(0)), // zero k events. + static_cast<RealType>(3.678794411714420E-1), // probability. + tolerance); + + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity. + static_cast<RealType>(1)), // one k event. + static_cast<RealType>(7.357588823428830E-1), // probability. + tolerance); + + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity. + static_cast<RealType>(2)), // two k events. + static_cast<RealType>(9.196986029286060E-1), // probability. + tolerance); + + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity. + static_cast<RealType>(10)), // two k events. + static_cast<RealType>(9.999999899522340E-1), // probability. + tolerance); + + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity. + static_cast<RealType>(15)), // two k events. + static_cast<RealType>(9.999999999999810E-1), // probability. + tolerance); + + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity. + static_cast<RealType>(16)), // two k events. + static_cast<RealType>(9.999999999999990E-1), // probability. + tolerance); + + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity. + static_cast<RealType>(17)), // two k events. + static_cast<RealType>(1.), // probability unity for double. + tolerance); + + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity. + static_cast<RealType>(33)), // k events at limit for float unchecked_factorial table. + static_cast<RealType>(1.), // probability. + tolerance); + + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(100)), // mean 100. + static_cast<RealType>(33)), // k events at limit for float unchecked_factorial table. + static_cast<RealType>(6.328271240363390E-15), // probability is tiny. + tolerance * static_cast<RealType>(2e11)); // 6.3495253382825722e-015 MathCAD + // Note that there two tiny probability are much more different. + + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(100)), // mean 100. + static_cast<RealType>(34)), // k events at limit for float unchecked_factorial table. + static_cast<RealType>(1.898481372109020E-14), // probability is tiny. + tolerance*static_cast<RealType>(2e11)); // 1.8984813721090199e-014 MathCAD + + + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(33)), // mean = k + static_cast<RealType>(33)), // k events above limit for float unchecked_factorial table. + static_cast<RealType>(5.461191812386560E-1), // probability. + tolerance); + + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(33)), // mean = k-1 + static_cast<RealType>(34)), // k events above limit for float unchecked_factorial table. + static_cast<RealType>(6.133535681502950E-1), // probability. + tolerance); + + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity. + static_cast<RealType>(34)), // k events above limit for float unchecked_factorial table. + static_cast<RealType>(1.), // probability. + tolerance); + + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(5.)), // mean + static_cast<RealType>(5)), // k events. + static_cast<RealType>(0.615960654833065), // probability. + tolerance); + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(5.)), // mean + static_cast<RealType>(1)), // k events. + static_cast<RealType>(0.040427681994512805), // probability. + tolerance); + + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(5.)), // mean + static_cast<RealType>(0)), // k events (uses special case formula, not gamma). + static_cast<RealType>(0.006737946999085467), // probability. + tolerance); + + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(1.)), // mean + static_cast<RealType>(0)), // k events (uses special case formula, not gamma). + static_cast<RealType>(0.36787944117144233), // probability. + tolerance); + + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(10.)), // mean + static_cast<RealType>(10)), // k events. + static_cast<RealType>(0.5830397501929856), // probability. + tolerance); + + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean + static_cast<RealType>(5)), // k events. + static_cast<RealType>(0.785130387030406), // probability. + tolerance); + + // complement CDF + BOOST_CHECK_CLOSE( // Complement CDF + cdf(complement(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean + static_cast<RealType>(5))), // k events. + static_cast<RealType>(1 - 0.785130387030406), // probability. + tolerance); + + BOOST_CHECK_CLOSE( // Complement CDF + cdf(complement(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean + static_cast<RealType>(0))), // Zero k events (uses special case formula, not gamma). + static_cast<RealType>(0.98168436111126578), // probability. + tolerance); + BOOST_CHECK_CLOSE( // Complement CDF + cdf(complement(poisson_distribution<RealType>(static_cast<RealType>(1.)), // mean + static_cast<RealType>(0))), // Zero k events (uses special case formula, not gamma). + static_cast<RealType>(0.63212055882855767), // probability. + tolerance); + + // Example where k is bigger than max_factorial (>34 for float) + // (therefore using log gamma so perhaps less accurate). + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(40.)), // mean + static_cast<RealType>(40)), // k events. + static_cast<RealType>(0.5419181783625430), // probability. + tolerance); + + // Quantile & complement. + BOOST_CHECK_CLOSE( + boost::math::quantile( + poisson_distribution<RealType>(5), // mean. + static_cast<RealType>(0.615960654833065)), // probability. + static_cast<RealType>(5.), // Expect k = 5 + tolerance/5); // + + // EQUAL is too optimistic - fails [5.0000000000000124 != 5] + // BOOST_CHECK_EQUAL(boost::math::quantile( // + // poisson_distribution<RealType>(5.), // mean. + // static_cast<RealType>(0.615960654833065)), // probability. + // static_cast<RealType>(5.)); // Expect k = 5 events. + + BOOST_CHECK_CLOSE(boost::math::quantile( + poisson_distribution<RealType>(4), // mean. + static_cast<RealType>(0.785130387030406)), // probability. + static_cast<RealType>(5.), // Expect k = 5 events. + tolerance/5); + + // Check on quantile of other examples of inverse of cdf. + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(10.)), // mean + static_cast<RealType>(10)), // k events. + static_cast<RealType>(0.5830397501929856), // probability. + tolerance); + + BOOST_CHECK_CLOSE(boost::math::quantile( // inverse of cdf above. + poisson_distribution<RealType>(10.), // mean. + static_cast<RealType>(0.5830397501929856)), // probability. + static_cast<RealType>(10.), // Expect k = 10 events. + tolerance/5); + + + BOOST_CHECK_CLOSE( + cdf(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean + static_cast<RealType>(5)), // k events. + static_cast<RealType>(0.785130387030406), // probability. + tolerance); + + BOOST_CHECK_CLOSE(boost::math::quantile( // inverse of cdf above. + poisson_distribution<RealType>(4.), // mean. + static_cast<RealType>(0.785130387030406)), // probability. + static_cast<RealType>(5.), // Expect k = 10 events. + tolerance/5); + + + + //BOOST_CHECK_CLOSE(boost::math::quantile( + // poisson_distribution<RealType>(5), // mean. + // static_cast<RealType>(0.785130387030406)), // probability. + // // 6.1882832344329559 result but MathCAD givest smallest integer ppois(k, mean) >= prob + // static_cast<RealType>(6.), // Expect k = 6 events. + // tolerance/5); + + //BOOST_CHECK_CLOSE(boost::math::quantile( + // poisson_distribution<RealType>(5), // mean. + // static_cast<RealType>(0.77)), // probability. + // // 6.1882832344329559 result but MathCAD givest smallest integer ppois(k, mean) >= prob + // static_cast<RealType>(7.), // Expect k = 6 events. + // tolerance/5); + + //BOOST_CHECK_CLOSE(boost::math::quantile( + // poisson_distribution<RealType>(5), // mean. + // static_cast<RealType>(0.75)), // probability. + // // 6.1882832344329559 result but MathCAD givest smallest integer ppois(k, mean) >= prob + // static_cast<RealType>(6.), // Expect k = 6 events. + // tolerance/5); + + BOOST_CHECK_CLOSE( + boost::math::quantile( + complement( + poisson_distribution<RealType>(4), + static_cast<RealType>(1 - 0.785130387030406))), // complement. + static_cast<RealType>(5), // Expect k = 5 events. + tolerance/5); + + BOOST_CHECK_EQUAL(boost::math::quantile( // Check case when probability < cdf(0) (== pdf(0)) + poisson_distribution<RealType>(1), // mean is small, so cdf and pdf(0) are about 0.35. + static_cast<RealType>(0.0001)), // probability < cdf(0). + static_cast<RealType>(0)); // Expect k = 0 events exactly. + + BOOST_CHECK_EQUAL( + boost::math::quantile( + complement( + poisson_distribution<RealType>(1), + static_cast<RealType>(0.9999))), // complement, so 1-probability < cdf(0) + static_cast<RealType>(0)); // Expect k = 0 events exactly. + + // + // Test quantile policies against test data: + // +#define T RealType +#include "poisson_quantile.ipp" + + for(unsigned i = 0; i < poisson_quantile_data.size(); ++i) + { + using namespace boost::math::policies; + typedef policy<discrete_quantile<boost::math::policies::real> > P1; + typedef policy<discrete_quantile<integer_round_down> > P2; + typedef policy<discrete_quantile<integer_round_up> > P3; + typedef policy<discrete_quantile<integer_round_outwards> > P4; + typedef policy<discrete_quantile<integer_round_inwards> > P5; + typedef policy<discrete_quantile<integer_round_nearest> > P6; + RealType tol = boost::math::tools::epsilon<RealType>() * 20; + if(!boost::is_floating_point<RealType>::value) + tol *= 7; + // + // Check full real value first: + // + poisson_distribution<RealType, P1> p1(poisson_quantile_data[i][0]); + RealType x = quantile(p1, poisson_quantile_data[i][1]); + BOOST_CHECK_CLOSE_FRACTION(x, poisson_quantile_data[i][2], tol); + x = quantile(complement(p1, poisson_quantile_data[i][1])); + BOOST_CHECK_CLOSE_FRACTION(x, poisson_quantile_data[i][3], tol * 3); + // + // Now with round down to integer: + // + poisson_distribution<RealType, P2> p2(poisson_quantile_data[i][0]); + x = quantile(p2, poisson_quantile_data[i][1]); + BOOST_CHECK_EQUAL(x, floor(poisson_quantile_data[i][2])); + x = quantile(complement(p2, poisson_quantile_data[i][1])); + BOOST_CHECK_EQUAL(x, floor(poisson_quantile_data[i][3])); + // + // Now with round up to integer: + // + poisson_distribution<RealType, P3> p3(poisson_quantile_data[i][0]); + x = quantile(p3, poisson_quantile_data[i][1]); + BOOST_CHECK_EQUAL(x, ceil(poisson_quantile_data[i][2])); + x = quantile(complement(p3, poisson_quantile_data[i][1])); + BOOST_CHECK_EQUAL(x, ceil(poisson_quantile_data[i][3])); + // + // Now with round to integer "outside": + // + poisson_distribution<RealType, P4> p4(poisson_quantile_data[i][0]); + x = quantile(p4, poisson_quantile_data[i][1]); + BOOST_CHECK_EQUAL(x, poisson_quantile_data[i][1] < 0.5f ? floor(poisson_quantile_data[i][2]) : ceil(poisson_quantile_data[i][2])); + x = quantile(complement(p4, poisson_quantile_data[i][1])); + BOOST_CHECK_EQUAL(x, poisson_quantile_data[i][1] < 0.5f ? ceil(poisson_quantile_data[i][3]) : floor(poisson_quantile_data[i][3])); + // + // Now with round to integer "inside": + // + poisson_distribution<RealType, P5> p5(poisson_quantile_data[i][0]); + x = quantile(p5, poisson_quantile_data[i][1]); + BOOST_CHECK_EQUAL(x, poisson_quantile_data[i][1] < 0.5f ? ceil(poisson_quantile_data[i][2]) : floor(poisson_quantile_data[i][2])); + x = quantile(complement(p5, poisson_quantile_data[i][1])); + BOOST_CHECK_EQUAL(x, poisson_quantile_data[i][1] < 0.5f ? floor(poisson_quantile_data[i][3]) : ceil(poisson_quantile_data[i][3])); + // + // Now with round to nearest integer: + // + poisson_distribution<RealType, P6> p6(poisson_quantile_data[i][0]); + x = quantile(p6, poisson_quantile_data[i][1]); + BOOST_CHECK_EQUAL(x, floor(poisson_quantile_data[i][2] + 0.5f)); + x = quantile(complement(p6, poisson_quantile_data[i][1])); + BOOST_CHECK_EQUAL(x, floor(poisson_quantile_data[i][3] + 0.5f)); + } + check_out_of_range<poisson_distribution<RealType> >(1); +} // template <class RealType>void test_spots(RealType) + +// + +BOOST_AUTO_TEST_CASE( test_main ) +{ + // Check that can construct normal distribution using the two convenience methods: + using namespace boost::math; + poisson myp1(2); // Using typedef + poisson_distribution<> myp2(2); // Using default RealType double. + + // Basic sanity-check spot values. + + // Some plain double examples & tests: + cout.precision(17); // double max_digits10 + cout.setf(ios::showpoint); + + poisson mypoisson(4.); // // mean = 4, default FP type is double. + cout << "mean(mypoisson, 4.) == " << mean(mypoisson) << endl; + cout << "mean(mypoisson, 0.) == " << mean(mypoisson) << endl; + cout << "cdf(mypoisson, 2.) == " << cdf(mypoisson, 2.) << endl; + cout << "pdf(mypoisson, 2.) == " << pdf(mypoisson, 2.) << endl; + + // poisson mydudpoisson(0.); + // throws (if BOOST_MATH_DOMAIN_ERROR_POLICY == throw_on_error). + +#ifndef BOOST_NO_EXCEPTIONS + BOOST_MATH_CHECK_THROW(poisson mydudpoisson(-1), std::domain_error);// Mean must be > 0. + BOOST_MATH_CHECK_THROW(poisson mydudpoisson(-1), std::logic_error);// Mean must be > 0. +#else + BOOST_MATH_CHECK_THROW(poisson(-1), std::domain_error);// Mean must be > 0. + BOOST_MATH_CHECK_THROW(poisson(-1), std::logic_error);// Mean must be > 0. +#endif + // Passes the check because logic_error is a parent???? + // BOOST_MATH_CHECK_THROW(poisson mydudpoisson(-1), std::overflow_error); // fails the check + // because overflow_error is unrelated - except from std::exception + BOOST_MATH_CHECK_THROW(cdf(mypoisson, -1), std::domain_error); // k must be >= 0 + + BOOST_CHECK_EQUAL(mean(mypoisson), 4.); + BOOST_CHECK_CLOSE( + pdf(mypoisson, 2.), // k events = 2. + 1.465251111098740E-001, // probability. + 5e-13); + + BOOST_CHECK_CLOSE( + cdf(mypoisson, 2.), // k events = 2. + 0.238103305553545, // probability. + 5e-13); + + +#if 0 + // Compare cdf from finite sum of pdf and gamma_q. + using boost::math::cdf; + using boost::math::pdf; + + double mean = 4.; + cout.precision(17); // double max_digits10 + cout.setf(ios::showpoint); + cout << showpoint << endl; // Ensure trailing zeros are shown. + // This also helps show the expected precision max_digits10 + //cout.unsetf(ios::showpoint); // No trailing zeros are shown. + + cout << "k pdf sum cdf diff" << endl; + double sum = 0.; + for (int i = 0; i <= 50; i++) + { + cout << i << ' ' ; + double p = pdf(poisson_distribution<double>(mean), static_cast<double>(i)); + sum += p; + + cout << p << ' ' << sum << ' ' + << cdf(poisson_distribution<double>(mean), static_cast<double>(i)) << ' '; + { + cout << boost::math::gamma_q<double>(i+1, mean); // cdf + double diff = boost::math::gamma_q<double>(i+1, mean) - sum; // cdf -sum + cout << setprecision (2) << ' ' << diff; // 0 0 to 4, 1 eps 5 to 9, 10 to 20 2 eps, 21 upwards 3 eps + + } + BOOST_CHECK_CLOSE( + cdf(mypoisson, static_cast<double>(i)), + sum, // of pdfs. + 4e-14); // Fails at 2e-14 + // This call puts the precision etc back to default 6 !!! + cout << setprecision(17) << showpoint; + + + cout << endl; + } + + cout << cdf(poisson_distribution<double>(5), static_cast<double>(0)) << ' ' << endl; // 0.006737946999085467 + cout << cdf(poisson_distribution<double>(5), static_cast<double>(1)) << ' ' << endl; // 0.040427681994512805 + cout << cdf(poisson_distribution<double>(2), static_cast<double>(3)) << ' ' << endl; // 0.85712346049854715 + + { // Compare approximate formula in Wikipedia with quantile(half) + for (int i = 1; i < 100; i++) + { + poisson_distribution<double> distn(static_cast<double>(i)); + cout << i << ' ' << median(distn) << ' ' << quantile(distn, 0.5) << ' ' + << median(distn) - quantile(distn, 0.5) << endl; // formula appears to be out-by-one?? + } // so quantile(half) used via derived accressors. + } +#endif + + // (Parameter value, arbitrarily zero, only communicates the floating-point type). +#ifdef TEST_POISSON + test_spots(0.0F); // Test float. +#endif +#ifdef TEST_DOUBLE + test_spots(0.0); // Test double. +#endif +#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS + if (numeric_limits<long double>::digits10 > numeric_limits<double>::digits10) + { // long double is better than double (so not MSVC where they are same). +#ifdef TEST_LDOUBLE + test_spots(0.0L); // Test long double. +#endif + } + +#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS +#ifdef TEST_REAL_CONCEPT + test_spots(boost::math::concepts::real_concept(0.)); // Test real concept. +#endif +#endif +#endif + +} // BOOST_AUTO_TEST_CASE( test_main ) + +/* + +Output: + +Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_poisson.exe" +Running 1 test case... +mean(mypoisson, 4.) == 4.0000000000000000 +mean(mypoisson, 0.) == 4.0000000000000000 +cdf(mypoisson, 2.) == 0.23810330555354431 +pdf(mypoisson, 2.) == 0.14652511110987343 +*** No errors detected + +*/ |