summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/test/test_poisson.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
commit483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch)
treee5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/math/test/test_poisson.cpp
parentInitial commit. (diff)
downloadceph-upstream.tar.xz
ceph-upstream.zip
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/math/test/test_poisson.cpp')
-rw-r--r--src/boost/libs/math/test/test_poisson.cpp650
1 files changed, 650 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/test_poisson.cpp b/src/boost/libs/math/test/test_poisson.cpp
new file mode 100644
index 00000000..3d54e5a9
--- /dev/null
+++ b/src/boost/libs/math/test/test_poisson.cpp
@@ -0,0 +1,650 @@
+// test_poisson.cpp
+
+// Copyright Paul A. Bristow 2007.
+// Copyright John Maddock 2006.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+// Basic sanity test for Poisson Cumulative Distribution Function.
+
+#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
+
+#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
+# define TEST_FLOAT
+# define TEST_DOUBLE
+# define TEST_LDOUBLE
+# define TEST_REAL_CONCEPT
+#endif
+
+#ifdef _MSC_VER
+# pragma warning(disable: 4127) // conditional expression is constant.
+#endif
+
+#define BOOST_TEST_MAIN
+#include <boost/test/unit_test.hpp> // Boost.Test
+#include <boost/test/tools/floating_point_comparison.hpp>
+
+#include <boost/math/concepts/real_concept.hpp> // for real_concept
+#include <boost/math/distributions/poisson.hpp>
+ using boost::math::poisson_distribution;
+#include <boost/math/tools/test.hpp> // for real_concept
+
+#include <boost/math/special_functions/gamma.hpp> // for (incomplete) gamma.
+// using boost::math::qamma_Q;
+#include "table_type.hpp"
+#include "test_out_of_range.hpp"
+
+#include <iostream>
+ using std::cout;
+ using std::endl;
+ using std::setprecision;
+ using std::showpoint;
+ using std::ios;
+#include <limits>
+ using std::numeric_limits;
+
+template <class RealType> // Any floating-point type RealType.
+void test_spots(RealType)
+{
+ // Basic sanity checks, tolerance is about numeric_limits<RealType>::digits10 decimal places,
+ // guaranteed for type RealType, eg 6 for float, 15 for double,
+ // expressed as a percentage (so -2) for BOOST_CHECK_CLOSE,
+
+ int decdigits = numeric_limits<RealType>::digits10;
+ // May eb >15 for 80 and 128-bit FP typtes.
+ if (decdigits <= 0)
+ { // decdigits is not defined, for example real concept,
+ // so assume precision of most test data is double (for example, MathCAD).
+ decdigits = numeric_limits<double>::digits10; // == 15 for 64-bit
+ }
+ if (decdigits > 15 ) // numeric_limits<double>::digits10)
+ { // 15 is the accuracy of the MathCAD test data.
+ decdigits = 15; // numeric_limits<double>::digits10;
+ }
+
+ decdigits -= 1; // Perhaps allow some decimal digit(s) margin of numerical error.
+ RealType tolerance = static_cast<RealType>(std::pow(10., static_cast<double>(2-decdigits))); // 1e-6 (-2 so as %)
+ tolerance *= 2; // Allow some bit(s) small margin (2 means + or - 1 bit) of numerical error.
+ // Typically 2e-13% = 2e-15 as fraction for double.
+
+ // Sources of spot test values:
+
+ // Many be some combinations for which the result is 'exact',
+ // or at least is good to 40 decimal digits.
+ // 40 decimal digits includes 128-bit significand User Defined Floating-Point types,
+
+ // Best source of accurate values is:
+ // Mathworld online calculator (40 decimal digits precision, suitable for up to 128-bit significands)
+ // http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=GammaRegularized
+ // GammaRegularized is same as gamma incomplete, gamma or gamma_q(a, x) or Q(a, z).
+
+ // http://documents.wolfram.com/calculationcenter/v2/Functions/ListsMatrices/Statistics/PoissonDistribution.html
+
+ // MathCAD defines ppois(k, lambda== mean) as k integer, k >=0.
+ // ppois(0, 5) = 6.73794699908547e-3
+ // ppois(1, 5) = 0.040427681994513;
+ // ppois(10, 10) = 5.830397501929850E-001
+ // ppois(10, 1) = 9.999999899522340E-001
+ // ppois(5,5) = 0.615960654833065
+
+ // qpois returns inverse Poission distribution, that is the smallest (floor) k so that ppois(k, lambda) >= p
+ // p is real number, real mean lambda > 0
+ // k is approximately the integer for which probability(X <= k) = p
+ // when random variable X has the Poisson distribution with parameters lambda.
+ // Uses discrete bisection.
+ // qpois(6.73794699908547e-3, 5) = 1
+ // qpois(0.040427681994513, 5) =
+
+ // Test Poisson with spot values from MathCAD 'known good'.
+
+ using boost::math::poisson_distribution;
+ using ::boost::math::poisson;
+ using ::boost::math::cdf;
+ using ::boost::math::pdf;
+
+ // Check that bad arguments throw.
+ BOOST_MATH_CHECK_THROW(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero is bad.
+ static_cast<RealType>(0)), // even for a good k.
+ std::domain_error); // Expected error to be thrown.
+
+ BOOST_MATH_CHECK_THROW(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(-1)), // mean negative is bad.
+ static_cast<RealType>(0)),
+ std::domain_error);
+
+ BOOST_MATH_CHECK_THROW(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unit OK,
+ static_cast<RealType>(-1)), // but negative events is bad.
+ std::domain_error);
+
+ BOOST_MATH_CHECK_THROW(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero is bad.
+ static_cast<RealType>(99999)), // for any k events.
+ std::domain_error);
+
+ BOOST_MATH_CHECK_THROW(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero is bad.
+ static_cast<RealType>(99999)), // for any k events.
+ std::domain_error);
+
+ BOOST_MATH_CHECK_THROW(
+ quantile(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero.
+ static_cast<RealType>(0.5)), // probability OK.
+ std::domain_error);
+
+ BOOST_MATH_CHECK_THROW(
+ quantile(poisson_distribution<RealType>(static_cast<RealType>(-1)),
+ static_cast<RealType>(-1)), // bad probability.
+ std::domain_error);
+
+ BOOST_MATH_CHECK_THROW(
+ quantile(poisson_distribution<RealType>(static_cast<RealType>(1)),
+ static_cast<RealType>(-1)), // bad probability.
+ std::domain_error);
+
+ BOOST_MATH_CHECK_THROW(
+ quantile(poisson_distribution<RealType>(static_cast<RealType>(1)),
+ static_cast<RealType>(1)), // bad probability.
+ std::overflow_error);
+
+ BOOST_MATH_CHECK_THROW(
+ quantile(complement(poisson_distribution<RealType>(static_cast<RealType>(1)),
+ static_cast<RealType>(0))), // bad probability.
+ std::overflow_error);
+
+ BOOST_CHECK_EQUAL(
+ quantile(poisson_distribution<RealType>(static_cast<RealType>(1)),
+ static_cast<RealType>(0)), // bad probability.
+ 0);
+
+ BOOST_CHECK_EQUAL(
+ quantile(complement(poisson_distribution<RealType>(static_cast<RealType>(1)),
+ static_cast<RealType>(1))), // bad probability.
+ 0);
+
+ // Check some test values.
+
+ BOOST_CHECK_CLOSE( // mode
+ mode(poisson_distribution<RealType>(static_cast<RealType>(4))), // mode = mean = 4.
+ static_cast<RealType>(4), // mode.
+ tolerance);
+
+ //BOOST_CHECK_CLOSE( // mode
+ // median(poisson_distribution<RealType>(static_cast<RealType>(4))), // mode = mean = 4.
+ // static_cast<RealType>(4), // mode.
+ // tolerance);
+ poisson_distribution<RealType> dist4(static_cast<RealType>(40));
+
+ BOOST_CHECK_CLOSE( // median
+ median(dist4), // mode = mean = 4. median = 40.328333333333333
+ quantile(dist4, static_cast<RealType>(0.5)), // 39.332839138842637
+ tolerance);
+
+ // PDF
+ BOOST_CHECK_CLOSE(
+ pdf(poisson_distribution<RealType>(static_cast<RealType>(4)), // mean 4.
+ static_cast<RealType>(0)),
+ static_cast<RealType>(1.831563888873410E-002), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(
+ pdf(poisson_distribution<RealType>(static_cast<RealType>(4)), // mean 4.
+ static_cast<RealType>(2)),
+ static_cast<RealType>(1.465251111098740E-001), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(
+ pdf(poisson_distribution<RealType>(static_cast<RealType>(20)), // mean big.
+ static_cast<RealType>(1)), // k small
+ static_cast<RealType>(4.122307244877130E-008), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(
+ pdf(poisson_distribution<RealType>(static_cast<RealType>(4)), // mean 4.
+ static_cast<RealType>(20)), // K>> mean
+ static_cast<RealType>(8.277463646553730E-009), // probability.
+ tolerance);
+
+ // CDF
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
+ static_cast<RealType>(0)), // zero k events.
+ static_cast<RealType>(3.678794411714420E-1), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
+ static_cast<RealType>(1)), // one k event.
+ static_cast<RealType>(7.357588823428830E-1), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
+ static_cast<RealType>(2)), // two k events.
+ static_cast<RealType>(9.196986029286060E-1), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
+ static_cast<RealType>(10)), // two k events.
+ static_cast<RealType>(9.999999899522340E-1), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
+ static_cast<RealType>(15)), // two k events.
+ static_cast<RealType>(9.999999999999810E-1), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
+ static_cast<RealType>(16)), // two k events.
+ static_cast<RealType>(9.999999999999990E-1), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
+ static_cast<RealType>(17)), // two k events.
+ static_cast<RealType>(1.), // probability unity for double.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
+ static_cast<RealType>(33)), // k events at limit for float unchecked_factorial table.
+ static_cast<RealType>(1.), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(100)), // mean 100.
+ static_cast<RealType>(33)), // k events at limit for float unchecked_factorial table.
+ static_cast<RealType>(6.328271240363390E-15), // probability is tiny.
+ tolerance * static_cast<RealType>(2e11)); // 6.3495253382825722e-015 MathCAD
+ // Note that there two tiny probability are much more different.
+
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(100)), // mean 100.
+ static_cast<RealType>(34)), // k events at limit for float unchecked_factorial table.
+ static_cast<RealType>(1.898481372109020E-14), // probability is tiny.
+ tolerance*static_cast<RealType>(2e11)); // 1.8984813721090199e-014 MathCAD
+
+
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(33)), // mean = k
+ static_cast<RealType>(33)), // k events above limit for float unchecked_factorial table.
+ static_cast<RealType>(5.461191812386560E-1), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(33)), // mean = k-1
+ static_cast<RealType>(34)), // k events above limit for float unchecked_factorial table.
+ static_cast<RealType>(6.133535681502950E-1), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
+ static_cast<RealType>(34)), // k events above limit for float unchecked_factorial table.
+ static_cast<RealType>(1.), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(5.)), // mean
+ static_cast<RealType>(5)), // k events.
+ static_cast<RealType>(0.615960654833065), // probability.
+ tolerance);
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(5.)), // mean
+ static_cast<RealType>(1)), // k events.
+ static_cast<RealType>(0.040427681994512805), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(5.)), // mean
+ static_cast<RealType>(0)), // k events (uses special case formula, not gamma).
+ static_cast<RealType>(0.006737946999085467), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(1.)), // mean
+ static_cast<RealType>(0)), // k events (uses special case formula, not gamma).
+ static_cast<RealType>(0.36787944117144233), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(10.)), // mean
+ static_cast<RealType>(10)), // k events.
+ static_cast<RealType>(0.5830397501929856), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean
+ static_cast<RealType>(5)), // k events.
+ static_cast<RealType>(0.785130387030406), // probability.
+ tolerance);
+
+ // complement CDF
+ BOOST_CHECK_CLOSE( // Complement CDF
+ cdf(complement(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean
+ static_cast<RealType>(5))), // k events.
+ static_cast<RealType>(1 - 0.785130387030406), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE( // Complement CDF
+ cdf(complement(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean
+ static_cast<RealType>(0))), // Zero k events (uses special case formula, not gamma).
+ static_cast<RealType>(0.98168436111126578), // probability.
+ tolerance);
+ BOOST_CHECK_CLOSE( // Complement CDF
+ cdf(complement(poisson_distribution<RealType>(static_cast<RealType>(1.)), // mean
+ static_cast<RealType>(0))), // Zero k events (uses special case formula, not gamma).
+ static_cast<RealType>(0.63212055882855767), // probability.
+ tolerance);
+
+ // Example where k is bigger than max_factorial (>34 for float)
+ // (therefore using log gamma so perhaps less accurate).
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(40.)), // mean
+ static_cast<RealType>(40)), // k events.
+ static_cast<RealType>(0.5419181783625430), // probability.
+ tolerance);
+
+ // Quantile & complement.
+ BOOST_CHECK_CLOSE(
+ boost::math::quantile(
+ poisson_distribution<RealType>(5), // mean.
+ static_cast<RealType>(0.615960654833065)), // probability.
+ static_cast<RealType>(5.), // Expect k = 5
+ tolerance/5); //
+
+ // EQUAL is too optimistic - fails [5.0000000000000124 != 5]
+ // BOOST_CHECK_EQUAL(boost::math::quantile( //
+ // poisson_distribution<RealType>(5.), // mean.
+ // static_cast<RealType>(0.615960654833065)), // probability.
+ // static_cast<RealType>(5.)); // Expect k = 5 events.
+
+ BOOST_CHECK_CLOSE(boost::math::quantile(
+ poisson_distribution<RealType>(4), // mean.
+ static_cast<RealType>(0.785130387030406)), // probability.
+ static_cast<RealType>(5.), // Expect k = 5 events.
+ tolerance/5);
+
+ // Check on quantile of other examples of inverse of cdf.
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(10.)), // mean
+ static_cast<RealType>(10)), // k events.
+ static_cast<RealType>(0.5830397501929856), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(boost::math::quantile( // inverse of cdf above.
+ poisson_distribution<RealType>(10.), // mean.
+ static_cast<RealType>(0.5830397501929856)), // probability.
+ static_cast<RealType>(10.), // Expect k = 10 events.
+ tolerance/5);
+
+
+ BOOST_CHECK_CLOSE(
+ cdf(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean
+ static_cast<RealType>(5)), // k events.
+ static_cast<RealType>(0.785130387030406), // probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE(boost::math::quantile( // inverse of cdf above.
+ poisson_distribution<RealType>(4.), // mean.
+ static_cast<RealType>(0.785130387030406)), // probability.
+ static_cast<RealType>(5.), // Expect k = 10 events.
+ tolerance/5);
+
+
+
+ //BOOST_CHECK_CLOSE(boost::math::quantile(
+ // poisson_distribution<RealType>(5), // mean.
+ // static_cast<RealType>(0.785130387030406)), // probability.
+ // // 6.1882832344329559 result but MathCAD givest smallest integer ppois(k, mean) >= prob
+ // static_cast<RealType>(6.), // Expect k = 6 events.
+ // tolerance/5);
+
+ //BOOST_CHECK_CLOSE(boost::math::quantile(
+ // poisson_distribution<RealType>(5), // mean.
+ // static_cast<RealType>(0.77)), // probability.
+ // // 6.1882832344329559 result but MathCAD givest smallest integer ppois(k, mean) >= prob
+ // static_cast<RealType>(7.), // Expect k = 6 events.
+ // tolerance/5);
+
+ //BOOST_CHECK_CLOSE(boost::math::quantile(
+ // poisson_distribution<RealType>(5), // mean.
+ // static_cast<RealType>(0.75)), // probability.
+ // // 6.1882832344329559 result but MathCAD givest smallest integer ppois(k, mean) >= prob
+ // static_cast<RealType>(6.), // Expect k = 6 events.
+ // tolerance/5);
+
+ BOOST_CHECK_CLOSE(
+ boost::math::quantile(
+ complement(
+ poisson_distribution<RealType>(4),
+ static_cast<RealType>(1 - 0.785130387030406))), // complement.
+ static_cast<RealType>(5), // Expect k = 5 events.
+ tolerance/5);
+
+ BOOST_CHECK_EQUAL(boost::math::quantile( // Check case when probability < cdf(0) (== pdf(0))
+ poisson_distribution<RealType>(1), // mean is small, so cdf and pdf(0) are about 0.35.
+ static_cast<RealType>(0.0001)), // probability < cdf(0).
+ static_cast<RealType>(0)); // Expect k = 0 events exactly.
+
+ BOOST_CHECK_EQUAL(
+ boost::math::quantile(
+ complement(
+ poisson_distribution<RealType>(1),
+ static_cast<RealType>(0.9999))), // complement, so 1-probability < cdf(0)
+ static_cast<RealType>(0)); // Expect k = 0 events exactly.
+
+ //
+ // Test quantile policies against test data:
+ //
+#define T RealType
+#include "poisson_quantile.ipp"
+
+ for(unsigned i = 0; i < poisson_quantile_data.size(); ++i)
+ {
+ using namespace boost::math::policies;
+ typedef policy<discrete_quantile<boost::math::policies::real> > P1;
+ typedef policy<discrete_quantile<integer_round_down> > P2;
+ typedef policy<discrete_quantile<integer_round_up> > P3;
+ typedef policy<discrete_quantile<integer_round_outwards> > P4;
+ typedef policy<discrete_quantile<integer_round_inwards> > P5;
+ typedef policy<discrete_quantile<integer_round_nearest> > P6;
+ RealType tol = boost::math::tools::epsilon<RealType>() * 20;
+ if(!boost::is_floating_point<RealType>::value)
+ tol *= 7;
+ //
+ // Check full real value first:
+ //
+ poisson_distribution<RealType, P1> p1(poisson_quantile_data[i][0]);
+ RealType x = quantile(p1, poisson_quantile_data[i][1]);
+ BOOST_CHECK_CLOSE_FRACTION(x, poisson_quantile_data[i][2], tol);
+ x = quantile(complement(p1, poisson_quantile_data[i][1]));
+ BOOST_CHECK_CLOSE_FRACTION(x, poisson_quantile_data[i][3], tol * 3);
+ //
+ // Now with round down to integer:
+ //
+ poisson_distribution<RealType, P2> p2(poisson_quantile_data[i][0]);
+ x = quantile(p2, poisson_quantile_data[i][1]);
+ BOOST_CHECK_EQUAL(x, floor(poisson_quantile_data[i][2]));
+ x = quantile(complement(p2, poisson_quantile_data[i][1]));
+ BOOST_CHECK_EQUAL(x, floor(poisson_quantile_data[i][3]));
+ //
+ // Now with round up to integer:
+ //
+ poisson_distribution<RealType, P3> p3(poisson_quantile_data[i][0]);
+ x = quantile(p3, poisson_quantile_data[i][1]);
+ BOOST_CHECK_EQUAL(x, ceil(poisson_quantile_data[i][2]));
+ x = quantile(complement(p3, poisson_quantile_data[i][1]));
+ BOOST_CHECK_EQUAL(x, ceil(poisson_quantile_data[i][3]));
+ //
+ // Now with round to integer "outside":
+ //
+ poisson_distribution<RealType, P4> p4(poisson_quantile_data[i][0]);
+ x = quantile(p4, poisson_quantile_data[i][1]);
+ BOOST_CHECK_EQUAL(x, poisson_quantile_data[i][1] < 0.5f ? floor(poisson_quantile_data[i][2]) : ceil(poisson_quantile_data[i][2]));
+ x = quantile(complement(p4, poisson_quantile_data[i][1]));
+ BOOST_CHECK_EQUAL(x, poisson_quantile_data[i][1] < 0.5f ? ceil(poisson_quantile_data[i][3]) : floor(poisson_quantile_data[i][3]));
+ //
+ // Now with round to integer "inside":
+ //
+ poisson_distribution<RealType, P5> p5(poisson_quantile_data[i][0]);
+ x = quantile(p5, poisson_quantile_data[i][1]);
+ BOOST_CHECK_EQUAL(x, poisson_quantile_data[i][1] < 0.5f ? ceil(poisson_quantile_data[i][2]) : floor(poisson_quantile_data[i][2]));
+ x = quantile(complement(p5, poisson_quantile_data[i][1]));
+ BOOST_CHECK_EQUAL(x, poisson_quantile_data[i][1] < 0.5f ? floor(poisson_quantile_data[i][3]) : ceil(poisson_quantile_data[i][3]));
+ //
+ // Now with round to nearest integer:
+ //
+ poisson_distribution<RealType, P6> p6(poisson_quantile_data[i][0]);
+ x = quantile(p6, poisson_quantile_data[i][1]);
+ BOOST_CHECK_EQUAL(x, floor(poisson_quantile_data[i][2] + 0.5f));
+ x = quantile(complement(p6, poisson_quantile_data[i][1]));
+ BOOST_CHECK_EQUAL(x, floor(poisson_quantile_data[i][3] + 0.5f));
+ }
+ check_out_of_range<poisson_distribution<RealType> >(1);
+} // template <class RealType>void test_spots(RealType)
+
+//
+
+BOOST_AUTO_TEST_CASE( test_main )
+{
+ // Check that can construct normal distribution using the two convenience methods:
+ using namespace boost::math;
+ poisson myp1(2); // Using typedef
+ poisson_distribution<> myp2(2); // Using default RealType double.
+
+ // Basic sanity-check spot values.
+
+ // Some plain double examples & tests:
+ cout.precision(17); // double max_digits10
+ cout.setf(ios::showpoint);
+
+ poisson mypoisson(4.); // // mean = 4, default FP type is double.
+ cout << "mean(mypoisson, 4.) == " << mean(mypoisson) << endl;
+ cout << "mean(mypoisson, 0.) == " << mean(mypoisson) << endl;
+ cout << "cdf(mypoisson, 2.) == " << cdf(mypoisson, 2.) << endl;
+ cout << "pdf(mypoisson, 2.) == " << pdf(mypoisson, 2.) << endl;
+
+ // poisson mydudpoisson(0.);
+ // throws (if BOOST_MATH_DOMAIN_ERROR_POLICY == throw_on_error).
+
+#ifndef BOOST_NO_EXCEPTIONS
+ BOOST_MATH_CHECK_THROW(poisson mydudpoisson(-1), std::domain_error);// Mean must be > 0.
+ BOOST_MATH_CHECK_THROW(poisson mydudpoisson(-1), std::logic_error);// Mean must be > 0.
+#else
+ BOOST_MATH_CHECK_THROW(poisson(-1), std::domain_error);// Mean must be > 0.
+ BOOST_MATH_CHECK_THROW(poisson(-1), std::logic_error);// Mean must be > 0.
+#endif
+ // Passes the check because logic_error is a parent????
+ // BOOST_MATH_CHECK_THROW(poisson mydudpoisson(-1), std::overflow_error); // fails the check
+ // because overflow_error is unrelated - except from std::exception
+ BOOST_MATH_CHECK_THROW(cdf(mypoisson, -1), std::domain_error); // k must be >= 0
+
+ BOOST_CHECK_EQUAL(mean(mypoisson), 4.);
+ BOOST_CHECK_CLOSE(
+ pdf(mypoisson, 2.), // k events = 2.
+ 1.465251111098740E-001, // probability.
+ 5e-13);
+
+ BOOST_CHECK_CLOSE(
+ cdf(mypoisson, 2.), // k events = 2.
+ 0.238103305553545, // probability.
+ 5e-13);
+
+
+#if 0
+ // Compare cdf from finite sum of pdf and gamma_q.
+ using boost::math::cdf;
+ using boost::math::pdf;
+
+ double mean = 4.;
+ cout.precision(17); // double max_digits10
+ cout.setf(ios::showpoint);
+ cout << showpoint << endl; // Ensure trailing zeros are shown.
+ // This also helps show the expected precision max_digits10
+ //cout.unsetf(ios::showpoint); // No trailing zeros are shown.
+
+ cout << "k pdf sum cdf diff" << endl;
+ double sum = 0.;
+ for (int i = 0; i <= 50; i++)
+ {
+ cout << i << ' ' ;
+ double p = pdf(poisson_distribution<double>(mean), static_cast<double>(i));
+ sum += p;
+
+ cout << p << ' ' << sum << ' '
+ << cdf(poisson_distribution<double>(mean), static_cast<double>(i)) << ' ';
+ {
+ cout << boost::math::gamma_q<double>(i+1, mean); // cdf
+ double diff = boost::math::gamma_q<double>(i+1, mean) - sum; // cdf -sum
+ cout << setprecision (2) << ' ' << diff; // 0 0 to 4, 1 eps 5 to 9, 10 to 20 2 eps, 21 upwards 3 eps
+
+ }
+ BOOST_CHECK_CLOSE(
+ cdf(mypoisson, static_cast<double>(i)),
+ sum, // of pdfs.
+ 4e-14); // Fails at 2e-14
+ // This call puts the precision etc back to default 6 !!!
+ cout << setprecision(17) << showpoint;
+
+
+ cout << endl;
+ }
+
+ cout << cdf(poisson_distribution<double>(5), static_cast<double>(0)) << ' ' << endl; // 0.006737946999085467
+ cout << cdf(poisson_distribution<double>(5), static_cast<double>(1)) << ' ' << endl; // 0.040427681994512805
+ cout << cdf(poisson_distribution<double>(2), static_cast<double>(3)) << ' ' << endl; // 0.85712346049854715
+
+ { // Compare approximate formula in Wikipedia with quantile(half)
+ for (int i = 1; i < 100; i++)
+ {
+ poisson_distribution<double> distn(static_cast<double>(i));
+ cout << i << ' ' << median(distn) << ' ' << quantile(distn, 0.5) << ' '
+ << median(distn) - quantile(distn, 0.5) << endl; // formula appears to be out-by-one??
+ } // so quantile(half) used via derived accressors.
+ }
+#endif
+
+ // (Parameter value, arbitrarily zero, only communicates the floating-point type).
+#ifdef TEST_POISSON
+ test_spots(0.0F); // Test float.
+#endif
+#ifdef TEST_DOUBLE
+ test_spots(0.0); // Test double.
+#endif
+#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+ if (numeric_limits<long double>::digits10 > numeric_limits<double>::digits10)
+ { // long double is better than double (so not MSVC where they are same).
+#ifdef TEST_LDOUBLE
+ test_spots(0.0L); // Test long double.
+#endif
+ }
+
+#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
+#ifdef TEST_REAL_CONCEPT
+ test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
+#endif
+#endif
+#endif
+
+} // BOOST_AUTO_TEST_CASE( test_main )
+
+/*
+
+Output:
+
+Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_poisson.exe"
+Running 1 test case...
+mean(mypoisson, 4.) == 4.0000000000000000
+mean(mypoisson, 0.) == 4.0000000000000000
+cdf(mypoisson, 2.) == 0.23810330555354431
+pdf(mypoisson, 2.) == 0.14652511110987343
+*** No errors detected
+
+*/