1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
|
// test_poisson.cpp
// Copyright Paul A. Bristow 2007.
// Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// Basic sanity test for Poisson Cumulative Distribution Function.
#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
# define TEST_FLOAT
# define TEST_DOUBLE
# define TEST_LDOUBLE
# define TEST_REAL_CONCEPT
#endif
#ifdef _MSC_VER
# pragma warning(disable: 4127) // conditional expression is constant.
#endif
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp> // Boost.Test
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#include <boost/math/distributions/poisson.hpp>
using boost::math::poisson_distribution;
#include <boost/math/tools/test.hpp> // for real_concept
#include <boost/math/special_functions/gamma.hpp> // for (incomplete) gamma.
// using boost::math::qamma_Q;
#include "table_type.hpp"
#include "test_out_of_range.hpp"
#include <iostream>
using std::cout;
using std::endl;
using std::setprecision;
using std::showpoint;
using std::ios;
#include <limits>
using std::numeric_limits;
template <class RealType> // Any floating-point type RealType.
void test_spots(RealType)
{
// Basic sanity checks, tolerance is about numeric_limits<RealType>::digits10 decimal places,
// guaranteed for type RealType, eg 6 for float, 15 for double,
// expressed as a percentage (so -2) for BOOST_CHECK_CLOSE,
int decdigits = numeric_limits<RealType>::digits10;
// May eb >15 for 80 and 128-bit FP typtes.
if (decdigits <= 0)
{ // decdigits is not defined, for example real concept,
// so assume precision of most test data is double (for example, MathCAD).
decdigits = numeric_limits<double>::digits10; // == 15 for 64-bit
}
if (decdigits > 15 ) // numeric_limits<double>::digits10)
{ // 15 is the accuracy of the MathCAD test data.
decdigits = 15; // numeric_limits<double>::digits10;
}
decdigits -= 1; // Perhaps allow some decimal digit(s) margin of numerical error.
RealType tolerance = static_cast<RealType>(std::pow(10., static_cast<double>(2-decdigits))); // 1e-6 (-2 so as %)
tolerance *= 2; // Allow some bit(s) small margin (2 means + or - 1 bit) of numerical error.
// Typically 2e-13% = 2e-15 as fraction for double.
// Sources of spot test values:
// Many be some combinations for which the result is 'exact',
// or at least is good to 40 decimal digits.
// 40 decimal digits includes 128-bit significand User Defined Floating-Point types,
// Best source of accurate values is:
// Mathworld online calculator (40 decimal digits precision, suitable for up to 128-bit significands)
// http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=GammaRegularized
// GammaRegularized is same as gamma incomplete, gamma or gamma_q(a, x) or Q(a, z).
// http://documents.wolfram.com/calculationcenter/v2/Functions/ListsMatrices/Statistics/PoissonDistribution.html
// MathCAD defines ppois(k, lambda== mean) as k integer, k >=0.
// ppois(0, 5) = 6.73794699908547e-3
// ppois(1, 5) = 0.040427681994513;
// ppois(10, 10) = 5.830397501929850E-001
// ppois(10, 1) = 9.999999899522340E-001
// ppois(5,5) = 0.615960654833065
// qpois returns inverse Poission distribution, that is the smallest (floor) k so that ppois(k, lambda) >= p
// p is real number, real mean lambda > 0
// k is approximately the integer for which probability(X <= k) = p
// when random variable X has the Poisson distribution with parameters lambda.
// Uses discrete bisection.
// qpois(6.73794699908547e-3, 5) = 1
// qpois(0.040427681994513, 5) =
// Test Poisson with spot values from MathCAD 'known good'.
using boost::math::poisson_distribution;
using ::boost::math::poisson;
using ::boost::math::cdf;
using ::boost::math::pdf;
// Check that bad arguments throw.
BOOST_MATH_CHECK_THROW(
cdf(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero is bad.
static_cast<RealType>(0)), // even for a good k.
std::domain_error); // Expected error to be thrown.
BOOST_MATH_CHECK_THROW(
cdf(poisson_distribution<RealType>(static_cast<RealType>(-1)), // mean negative is bad.
static_cast<RealType>(0)),
std::domain_error);
BOOST_MATH_CHECK_THROW(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unit OK,
static_cast<RealType>(-1)), // but negative events is bad.
std::domain_error);
BOOST_MATH_CHECK_THROW(
cdf(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero is bad.
static_cast<RealType>(99999)), // for any k events.
std::domain_error);
BOOST_MATH_CHECK_THROW(
cdf(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero is bad.
static_cast<RealType>(99999)), // for any k events.
std::domain_error);
BOOST_MATH_CHECK_THROW(
quantile(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero.
static_cast<RealType>(0.5)), // probability OK.
std::domain_error);
BOOST_MATH_CHECK_THROW(
quantile(poisson_distribution<RealType>(static_cast<RealType>(-1)),
static_cast<RealType>(-1)), // bad probability.
std::domain_error);
BOOST_MATH_CHECK_THROW(
quantile(poisson_distribution<RealType>(static_cast<RealType>(1)),
static_cast<RealType>(-1)), // bad probability.
std::domain_error);
BOOST_MATH_CHECK_THROW(
quantile(poisson_distribution<RealType>(static_cast<RealType>(1)),
static_cast<RealType>(1)), // bad probability.
std::overflow_error);
BOOST_MATH_CHECK_THROW(
quantile(complement(poisson_distribution<RealType>(static_cast<RealType>(1)),
static_cast<RealType>(0))), // bad probability.
std::overflow_error);
BOOST_CHECK_EQUAL(
quantile(poisson_distribution<RealType>(static_cast<RealType>(1)),
static_cast<RealType>(0)), // bad probability.
0);
BOOST_CHECK_EQUAL(
quantile(complement(poisson_distribution<RealType>(static_cast<RealType>(1)),
static_cast<RealType>(1))), // bad probability.
0);
// Check some test values.
BOOST_CHECK_CLOSE( // mode
mode(poisson_distribution<RealType>(static_cast<RealType>(4))), // mode = mean = 4.
static_cast<RealType>(4), // mode.
tolerance);
//BOOST_CHECK_CLOSE( // mode
// median(poisson_distribution<RealType>(static_cast<RealType>(4))), // mode = mean = 4.
// static_cast<RealType>(4), // mode.
// tolerance);
poisson_distribution<RealType> dist4(static_cast<RealType>(40));
BOOST_CHECK_CLOSE( // median
median(dist4), // mode = mean = 4. median = 40.328333333333333
quantile(dist4, static_cast<RealType>(0.5)), // 39.332839138842637
tolerance);
// PDF
BOOST_CHECK_CLOSE(
pdf(poisson_distribution<RealType>(static_cast<RealType>(4)), // mean 4.
static_cast<RealType>(0)),
static_cast<RealType>(1.831563888873410E-002), // probability.
tolerance);
BOOST_CHECK_CLOSE(
pdf(poisson_distribution<RealType>(static_cast<RealType>(4)), // mean 4.
static_cast<RealType>(2)),
static_cast<RealType>(1.465251111098740E-001), // probability.
tolerance);
BOOST_CHECK_CLOSE(
pdf(poisson_distribution<RealType>(static_cast<RealType>(20)), // mean big.
static_cast<RealType>(1)), // k small
static_cast<RealType>(4.122307244877130E-008), // probability.
tolerance);
BOOST_CHECK_CLOSE(
pdf(poisson_distribution<RealType>(static_cast<RealType>(4)), // mean 4.
static_cast<RealType>(20)), // K>> mean
static_cast<RealType>(8.277463646553730E-009), // probability.
tolerance);
// CDF
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
static_cast<RealType>(0)), // zero k events.
static_cast<RealType>(3.678794411714420E-1), // probability.
tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
static_cast<RealType>(1)), // one k event.
static_cast<RealType>(7.357588823428830E-1), // probability.
tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
static_cast<RealType>(2)), // two k events.
static_cast<RealType>(9.196986029286060E-1), // probability.
tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
static_cast<RealType>(10)), // two k events.
static_cast<RealType>(9.999999899522340E-1), // probability.
tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
static_cast<RealType>(15)), // two k events.
static_cast<RealType>(9.999999999999810E-1), // probability.
tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
static_cast<RealType>(16)), // two k events.
static_cast<RealType>(9.999999999999990E-1), // probability.
tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
static_cast<RealType>(17)), // two k events.
static_cast<RealType>(1.), // probability unity for double.
tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
static_cast<RealType>(33)), // k events at limit for float unchecked_factorial table.
static_cast<RealType>(1.), // probability.
tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(100)), // mean 100.
static_cast<RealType>(33)), // k events at limit for float unchecked_factorial table.
static_cast<RealType>(6.328271240363390E-15), // probability is tiny.
tolerance * static_cast<RealType>(2e11)); // 6.3495253382825722e-015 MathCAD
// Note that there two tiny probability are much more different.
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(100)), // mean 100.
static_cast<RealType>(34)), // k events at limit for float unchecked_factorial table.
static_cast<RealType>(1.898481372109020E-14), // probability is tiny.
tolerance*static_cast<RealType>(2e11)); // 1.8984813721090199e-014 MathCAD
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(33)), // mean = k
static_cast<RealType>(33)), // k events above limit for float unchecked_factorial table.
static_cast<RealType>(5.461191812386560E-1), // probability.
tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(33)), // mean = k-1
static_cast<RealType>(34)), // k events above limit for float unchecked_factorial table.
static_cast<RealType>(6.133535681502950E-1), // probability.
tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
static_cast<RealType>(34)), // k events above limit for float unchecked_factorial table.
static_cast<RealType>(1.), // probability.
tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(5.)), // mean
static_cast<RealType>(5)), // k events.
static_cast<RealType>(0.615960654833065), // probability.
tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(5.)), // mean
static_cast<RealType>(1)), // k events.
static_cast<RealType>(0.040427681994512805), // probability.
tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(5.)), // mean
static_cast<RealType>(0)), // k events (uses special case formula, not gamma).
static_cast<RealType>(0.006737946999085467), // probability.
tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1.)), // mean
static_cast<RealType>(0)), // k events (uses special case formula, not gamma).
static_cast<RealType>(0.36787944117144233), // probability.
tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(10.)), // mean
static_cast<RealType>(10)), // k events.
static_cast<RealType>(0.5830397501929856), // probability.
tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean
static_cast<RealType>(5)), // k events.
static_cast<RealType>(0.785130387030406), // probability.
tolerance);
// complement CDF
BOOST_CHECK_CLOSE( // Complement CDF
cdf(complement(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean
static_cast<RealType>(5))), // k events.
static_cast<RealType>(1 - 0.785130387030406), // probability.
tolerance);
BOOST_CHECK_CLOSE( // Complement CDF
cdf(complement(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean
static_cast<RealType>(0))), // Zero k events (uses special case formula, not gamma).
static_cast<RealType>(0.98168436111126578), // probability.
tolerance);
BOOST_CHECK_CLOSE( // Complement CDF
cdf(complement(poisson_distribution<RealType>(static_cast<RealType>(1.)), // mean
static_cast<RealType>(0))), // Zero k events (uses special case formula, not gamma).
static_cast<RealType>(0.63212055882855767), // probability.
tolerance);
// Example where k is bigger than max_factorial (>34 for float)
// (therefore using log gamma so perhaps less accurate).
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(40.)), // mean
static_cast<RealType>(40)), // k events.
static_cast<RealType>(0.5419181783625430), // probability.
tolerance);
// Quantile & complement.
BOOST_CHECK_CLOSE(
boost::math::quantile(
poisson_distribution<RealType>(5), // mean.
static_cast<RealType>(0.615960654833065)), // probability.
static_cast<RealType>(5.), // Expect k = 5
tolerance/5); //
// EQUAL is too optimistic - fails [5.0000000000000124 != 5]
// BOOST_CHECK_EQUAL(boost::math::quantile( //
// poisson_distribution<RealType>(5.), // mean.
// static_cast<RealType>(0.615960654833065)), // probability.
// static_cast<RealType>(5.)); // Expect k = 5 events.
BOOST_CHECK_CLOSE(boost::math::quantile(
poisson_distribution<RealType>(4), // mean.
static_cast<RealType>(0.785130387030406)), // probability.
static_cast<RealType>(5.), // Expect k = 5 events.
tolerance/5);
// Check on quantile of other examples of inverse of cdf.
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(10.)), // mean
static_cast<RealType>(10)), // k events.
static_cast<RealType>(0.5830397501929856), // probability.
tolerance);
BOOST_CHECK_CLOSE(boost::math::quantile( // inverse of cdf above.
poisson_distribution<RealType>(10.), // mean.
static_cast<RealType>(0.5830397501929856)), // probability.
static_cast<RealType>(10.), // Expect k = 10 events.
tolerance/5);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean
static_cast<RealType>(5)), // k events.
static_cast<RealType>(0.785130387030406), // probability.
tolerance);
BOOST_CHECK_CLOSE(boost::math::quantile( // inverse of cdf above.
poisson_distribution<RealType>(4.), // mean.
static_cast<RealType>(0.785130387030406)), // probability.
static_cast<RealType>(5.), // Expect k = 10 events.
tolerance/5);
//BOOST_CHECK_CLOSE(boost::math::quantile(
// poisson_distribution<RealType>(5), // mean.
// static_cast<RealType>(0.785130387030406)), // probability.
// // 6.1882832344329559 result but MathCAD givest smallest integer ppois(k, mean) >= prob
// static_cast<RealType>(6.), // Expect k = 6 events.
// tolerance/5);
//BOOST_CHECK_CLOSE(boost::math::quantile(
// poisson_distribution<RealType>(5), // mean.
// static_cast<RealType>(0.77)), // probability.
// // 6.1882832344329559 result but MathCAD givest smallest integer ppois(k, mean) >= prob
// static_cast<RealType>(7.), // Expect k = 6 events.
// tolerance/5);
//BOOST_CHECK_CLOSE(boost::math::quantile(
// poisson_distribution<RealType>(5), // mean.
// static_cast<RealType>(0.75)), // probability.
// // 6.1882832344329559 result but MathCAD givest smallest integer ppois(k, mean) >= prob
// static_cast<RealType>(6.), // Expect k = 6 events.
// tolerance/5);
BOOST_CHECK_CLOSE(
boost::math::quantile(
complement(
poisson_distribution<RealType>(4),
static_cast<RealType>(1 - 0.785130387030406))), // complement.
static_cast<RealType>(5), // Expect k = 5 events.
tolerance/5);
BOOST_CHECK_EQUAL(boost::math::quantile( // Check case when probability < cdf(0) (== pdf(0))
poisson_distribution<RealType>(1), // mean is small, so cdf and pdf(0) are about 0.35.
static_cast<RealType>(0.0001)), // probability < cdf(0).
static_cast<RealType>(0)); // Expect k = 0 events exactly.
BOOST_CHECK_EQUAL(
boost::math::quantile(
complement(
poisson_distribution<RealType>(1),
static_cast<RealType>(0.9999))), // complement, so 1-probability < cdf(0)
static_cast<RealType>(0)); // Expect k = 0 events exactly.
//
// Test quantile policies against test data:
//
#define T RealType
#include "poisson_quantile.ipp"
for(unsigned i = 0; i < poisson_quantile_data.size(); ++i)
{
using namespace boost::math::policies;
typedef policy<discrete_quantile<boost::math::policies::real> > P1;
typedef policy<discrete_quantile<integer_round_down> > P2;
typedef policy<discrete_quantile<integer_round_up> > P3;
typedef policy<discrete_quantile<integer_round_outwards> > P4;
typedef policy<discrete_quantile<integer_round_inwards> > P5;
typedef policy<discrete_quantile<integer_round_nearest> > P6;
RealType tol = boost::math::tools::epsilon<RealType>() * 20;
if(!boost::is_floating_point<RealType>::value)
tol *= 7;
//
// Check full real value first:
//
poisson_distribution<RealType, P1> p1(poisson_quantile_data[i][0]);
RealType x = quantile(p1, poisson_quantile_data[i][1]);
BOOST_CHECK_CLOSE_FRACTION(x, poisson_quantile_data[i][2], tol);
x = quantile(complement(p1, poisson_quantile_data[i][1]));
BOOST_CHECK_CLOSE_FRACTION(x, poisson_quantile_data[i][3], tol * 3);
//
// Now with round down to integer:
//
poisson_distribution<RealType, P2> p2(poisson_quantile_data[i][0]);
x = quantile(p2, poisson_quantile_data[i][1]);
BOOST_CHECK_EQUAL(x, floor(poisson_quantile_data[i][2]));
x = quantile(complement(p2, poisson_quantile_data[i][1]));
BOOST_CHECK_EQUAL(x, floor(poisson_quantile_data[i][3]));
//
// Now with round up to integer:
//
poisson_distribution<RealType, P3> p3(poisson_quantile_data[i][0]);
x = quantile(p3, poisson_quantile_data[i][1]);
BOOST_CHECK_EQUAL(x, ceil(poisson_quantile_data[i][2]));
x = quantile(complement(p3, poisson_quantile_data[i][1]));
BOOST_CHECK_EQUAL(x, ceil(poisson_quantile_data[i][3]));
//
// Now with round to integer "outside":
//
poisson_distribution<RealType, P4> p4(poisson_quantile_data[i][0]);
x = quantile(p4, poisson_quantile_data[i][1]);
BOOST_CHECK_EQUAL(x, poisson_quantile_data[i][1] < 0.5f ? floor(poisson_quantile_data[i][2]) : ceil(poisson_quantile_data[i][2]));
x = quantile(complement(p4, poisson_quantile_data[i][1]));
BOOST_CHECK_EQUAL(x, poisson_quantile_data[i][1] < 0.5f ? ceil(poisson_quantile_data[i][3]) : floor(poisson_quantile_data[i][3]));
//
// Now with round to integer "inside":
//
poisson_distribution<RealType, P5> p5(poisson_quantile_data[i][0]);
x = quantile(p5, poisson_quantile_data[i][1]);
BOOST_CHECK_EQUAL(x, poisson_quantile_data[i][1] < 0.5f ? ceil(poisson_quantile_data[i][2]) : floor(poisson_quantile_data[i][2]));
x = quantile(complement(p5, poisson_quantile_data[i][1]));
BOOST_CHECK_EQUAL(x, poisson_quantile_data[i][1] < 0.5f ? floor(poisson_quantile_data[i][3]) : ceil(poisson_quantile_data[i][3]));
//
// Now with round to nearest integer:
//
poisson_distribution<RealType, P6> p6(poisson_quantile_data[i][0]);
x = quantile(p6, poisson_quantile_data[i][1]);
BOOST_CHECK_EQUAL(x, floor(poisson_quantile_data[i][2] + 0.5f));
x = quantile(complement(p6, poisson_quantile_data[i][1]));
BOOST_CHECK_EQUAL(x, floor(poisson_quantile_data[i][3] + 0.5f));
}
check_out_of_range<poisson_distribution<RealType> >(1);
} // template <class RealType>void test_spots(RealType)
//
BOOST_AUTO_TEST_CASE( test_main )
{
// Check that can construct normal distribution using the two convenience methods:
using namespace boost::math;
poisson myp1(2); // Using typedef
poisson_distribution<> myp2(2); // Using default RealType double.
// Basic sanity-check spot values.
// Some plain double examples & tests:
cout.precision(17); // double max_digits10
cout.setf(ios::showpoint);
poisson mypoisson(4.); // // mean = 4, default FP type is double.
cout << "mean(mypoisson, 4.) == " << mean(mypoisson) << endl;
cout << "mean(mypoisson, 0.) == " << mean(mypoisson) << endl;
cout << "cdf(mypoisson, 2.) == " << cdf(mypoisson, 2.) << endl;
cout << "pdf(mypoisson, 2.) == " << pdf(mypoisson, 2.) << endl;
// poisson mydudpoisson(0.);
// throws (if BOOST_MATH_DOMAIN_ERROR_POLICY == throw_on_error).
#ifndef BOOST_NO_EXCEPTIONS
BOOST_MATH_CHECK_THROW(poisson mydudpoisson(-1), std::domain_error);// Mean must be > 0.
BOOST_MATH_CHECK_THROW(poisson mydudpoisson(-1), std::logic_error);// Mean must be > 0.
#else
BOOST_MATH_CHECK_THROW(poisson(-1), std::domain_error);// Mean must be > 0.
BOOST_MATH_CHECK_THROW(poisson(-1), std::logic_error);// Mean must be > 0.
#endif
// Passes the check because logic_error is a parent????
// BOOST_MATH_CHECK_THROW(poisson mydudpoisson(-1), std::overflow_error); // fails the check
// because overflow_error is unrelated - except from std::exception
BOOST_MATH_CHECK_THROW(cdf(mypoisson, -1), std::domain_error); // k must be >= 0
BOOST_CHECK_EQUAL(mean(mypoisson), 4.);
BOOST_CHECK_CLOSE(
pdf(mypoisson, 2.), // k events = 2.
1.465251111098740E-001, // probability.
5e-13);
BOOST_CHECK_CLOSE(
cdf(mypoisson, 2.), // k events = 2.
0.238103305553545, // probability.
5e-13);
#if 0
// Compare cdf from finite sum of pdf and gamma_q.
using boost::math::cdf;
using boost::math::pdf;
double mean = 4.;
cout.precision(17); // double max_digits10
cout.setf(ios::showpoint);
cout << showpoint << endl; // Ensure trailing zeros are shown.
// This also helps show the expected precision max_digits10
//cout.unsetf(ios::showpoint); // No trailing zeros are shown.
cout << "k pdf sum cdf diff" << endl;
double sum = 0.;
for (int i = 0; i <= 50; i++)
{
cout << i << ' ' ;
double p = pdf(poisson_distribution<double>(mean), static_cast<double>(i));
sum += p;
cout << p << ' ' << sum << ' '
<< cdf(poisson_distribution<double>(mean), static_cast<double>(i)) << ' ';
{
cout << boost::math::gamma_q<double>(i+1, mean); // cdf
double diff = boost::math::gamma_q<double>(i+1, mean) - sum; // cdf -sum
cout << setprecision (2) << ' ' << diff; // 0 0 to 4, 1 eps 5 to 9, 10 to 20 2 eps, 21 upwards 3 eps
}
BOOST_CHECK_CLOSE(
cdf(mypoisson, static_cast<double>(i)),
sum, // of pdfs.
4e-14); // Fails at 2e-14
// This call puts the precision etc back to default 6 !!!
cout << setprecision(17) << showpoint;
cout << endl;
}
cout << cdf(poisson_distribution<double>(5), static_cast<double>(0)) << ' ' << endl; // 0.006737946999085467
cout << cdf(poisson_distribution<double>(5), static_cast<double>(1)) << ' ' << endl; // 0.040427681994512805
cout << cdf(poisson_distribution<double>(2), static_cast<double>(3)) << ' ' << endl; // 0.85712346049854715
{ // Compare approximate formula in Wikipedia with quantile(half)
for (int i = 1; i < 100; i++)
{
poisson_distribution<double> distn(static_cast<double>(i));
cout << i << ' ' << median(distn) << ' ' << quantile(distn, 0.5) << ' '
<< median(distn) - quantile(distn, 0.5) << endl; // formula appears to be out-by-one??
} // so quantile(half) used via derived accressors.
}
#endif
// (Parameter value, arbitrarily zero, only communicates the floating-point type).
#ifdef TEST_POISSON
test_spots(0.0F); // Test float.
#endif
#ifdef TEST_DOUBLE
test_spots(0.0); // Test double.
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
if (numeric_limits<long double>::digits10 > numeric_limits<double>::digits10)
{ // long double is better than double (so not MSVC where they are same).
#ifdef TEST_LDOUBLE
test_spots(0.0L); // Test long double.
#endif
}
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
#ifdef TEST_REAL_CONCEPT
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
#endif
#endif
} // BOOST_AUTO_TEST_CASE( test_main )
/*
Output:
Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_poisson.exe"
Running 1 test case...
mean(mypoisson, 4.) == 4.0000000000000000
mean(mypoisson, 0.) == 4.0000000000000000
cdf(mypoisson, 2.) == 0.23810330555354431
pdf(mypoisson, 2.) == 0.14652511110987343
*** No errors detected
*/
|