summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/test/test_polynomial.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
commit483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch)
treee5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/math/test/test_polynomial.cpp
parentInitial commit. (diff)
downloadceph-upstream.tar.xz
ceph-upstream.zip
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/math/test/test_polynomial.cpp')
-rw-r--r--src/boost/libs/math/test/test_polynomial.cpp614
1 files changed, 614 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/test_polynomial.cpp b/src/boost/libs/math/test/test_polynomial.cpp
new file mode 100644
index 00000000..503d0e2a
--- /dev/null
+++ b/src/boost/libs/math/test/test_polynomial.cpp
@@ -0,0 +1,614 @@
+// (C) Copyright Jeremy Murphy 2015.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#include <boost/config.hpp>
+#define BOOST_TEST_MAIN
+#include <boost/array.hpp>
+#include <boost/math/tools/polynomial.hpp>
+#include <boost/integer/common_factor_rt.hpp>
+#include <boost/mpl/list.hpp>
+#include <boost/mpl/joint_view.hpp>
+#include <boost/test/test_case_template.hpp>
+#include <boost/test/unit_test.hpp>
+#include <boost/multiprecision/cpp_int.hpp>
+#include <boost/multiprecision/cpp_bin_float.hpp>
+#include <boost/multiprecision/cpp_dec_float.hpp>
+#include <utility>
+
+#if !defined(TEST1) && !defined(TEST2) && !defined(TEST3)
+# define TEST1
+# define TEST2
+# define TEST3
+#endif
+
+using namespace boost::math;
+using boost::integer::gcd;
+using namespace boost::math::tools;
+using namespace std;
+using boost::integer::gcd_detail::Euclid_gcd;
+using boost::math::tools::subresultant_gcd;
+
+template <typename T>
+struct answer
+{
+ answer(std::pair< polynomial<T>, polynomial<T> > const &x) :
+ quotient(x.first), remainder(x.second) {}
+
+ polynomial<T> quotient;
+ polynomial<T> remainder;
+};
+
+boost::array<double, 4> const d3a = {{10, -6, -4, 3}};
+boost::array<double, 4> const d3b = {{-7, 5, 6, 1}};
+
+boost::array<double, 2> const d1a = {{-2, 1}};
+boost::array<double, 1> const d0a = {{6}};
+boost::array<double, 2> const d0a1 = {{0, 6}};
+boost::array<double, 6> const d0a5 = {{0, 0, 0, 0, 0, 6}};
+
+
+boost::array<int, 9> const d8 = {{-5, 2, 8, -3, -3, 0, 1, 0, 1}};
+boost::array<int, 9> const d8b = {{0, 2, 8, -3, -3, 0, 1, 0, 1}};
+
+
+
+BOOST_AUTO_TEST_CASE(trivial)
+{
+ /* We have one empty test case here, so that there is always something for Boost.Test to do even if the tests below are #if'ed out */
+}
+
+
+#ifdef TEST1
+
+boost::array<double, 4> const d3c = {{10.0/3.0, -2.0, -4.0/3.0, 1.0}};
+boost::array<double, 3> const d2a = {{-2, 2, 3}};
+boost::array<double, 3> const d2b = {{-7, 5, 6}};
+boost::array<double, 3> const d2c = {{31, -21, -22}};
+boost::array<double, 1> const d0b = {{3}};
+boost::array<int, 7> const d6 = {{21, -9, -4, 0, 5, 0, 3}};
+boost::array<int, 3> const d2 = {{-6, 0, 9}};
+boost::array<int, 6> const d5 = {{-9, 0, 3, 0, -15}};
+
+
+BOOST_AUTO_TEST_CASE( test_construction )
+{
+ polynomial<double> const a(d3a.begin(), d3a.end());
+ polynomial<double> const b(d3a.begin(), 3);
+ BOOST_CHECK_EQUAL(a, b);
+}
+
+#ifdef BOOST_MATH_HAS_IS_CONST_ITERABLE
+
+#include <list>
+#include <array>
+
+BOOST_AUTO_TEST_CASE(test_range_construction)
+{
+ std::list<double> l{ 1, 2, 3, 4 };
+ std::array<double, 4> a{ 3, 4, 5, 6 };
+ polynomial<double> p1{ 1, 2, 3, 4 };
+ polynomial<double> p2{ 3, 4, 5, 6 };
+
+ polynomial<double> p3(l);
+ polynomial<double> p4(a);
+
+ BOOST_CHECK_EQUAL(p1, p3);
+ BOOST_CHECK_EQUAL(p2, p4);
+}
+#endif
+
+#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) && !BOOST_WORKAROUND(BOOST_GCC_VERSION, < 40500)
+BOOST_AUTO_TEST_CASE( test_initializer_list_construction )
+{
+ polynomial<double> a(begin(d3a), end(d3a));
+ polynomial<double> b = {10, -6, -4, 3};
+ polynomial<double> c{10, -6, -4, 3};
+ polynomial<double> d{10, -6, -4, 3, 0, 0};
+ BOOST_CHECK_EQUAL(a, b);
+ BOOST_CHECK_EQUAL(b, c);
+ BOOST_CHECK_EQUAL(d.degree(), 3u);
+}
+
+BOOST_AUTO_TEST_CASE( test_initializer_list_assignment )
+{
+ polynomial<double> a(begin(d3a), end(d3a));
+ polynomial<double> b;
+ b = {10, -6, -4, 3, 0, 0};
+ BOOST_CHECK_EQUAL(b.degree(), 3u);
+ BOOST_CHECK_EQUAL(a, b);
+}
+#endif
+
+
+BOOST_AUTO_TEST_CASE( test_degree )
+{
+ polynomial<double> const zero;
+ polynomial<double> const a(d3a.begin(), d3a.end());
+ BOOST_CHECK_THROW(zero.degree(), std::logic_error);
+ BOOST_CHECK_EQUAL(a.degree(), 3u);
+}
+
+
+BOOST_AUTO_TEST_CASE( test_division_over_field )
+{
+ polynomial<double> const a(d3a.begin(), d3a.end());
+ polynomial<double> const b(d1a.begin(), d1a.end());
+ polynomial<double> const q(d2a.begin(), d2a.end());
+ polynomial<double> const r(d0a.begin(), d0a.end());
+ polynomial<double> const c(d3b.begin(), d3b.end());
+ polynomial<double> const d(d2b.begin(), d2b.end());
+ polynomial<double> const e(d2c.begin(), d2c.end());
+ polynomial<double> const f(d0b.begin(), d0b.end());
+ polynomial<double> const g(d3c.begin(), d3c.end());
+ polynomial<double> const zero;
+ polynomial<double> const one(1.0);
+
+ answer<double> result = quotient_remainder(a, b);
+ BOOST_CHECK_EQUAL(result.quotient, q);
+ BOOST_CHECK_EQUAL(result.remainder, r);
+ BOOST_CHECK_EQUAL(a, q * b + r); // Sanity check.
+
+ result = quotient_remainder(a, c);
+ BOOST_CHECK_EQUAL(result.quotient, f);
+ BOOST_CHECK_EQUAL(result.remainder, e);
+ BOOST_CHECK_EQUAL(a, f * c + e); // Sanity check.
+
+ result = quotient_remainder(a, f);
+ BOOST_CHECK_EQUAL(result.quotient, g);
+ BOOST_CHECK_EQUAL(result.remainder, zero);
+ BOOST_CHECK_EQUAL(a, g * f + zero); // Sanity check.
+ // Check that division by a regular number gives the same result.
+ BOOST_CHECK_EQUAL(a / 3.0, g);
+ BOOST_CHECK_EQUAL(a % 3.0, zero);
+
+ // Sanity checks.
+ BOOST_CHECK_EQUAL(a / a, one);
+ BOOST_CHECK_EQUAL(a % a, zero);
+ // BOOST_CHECK_EQUAL(zero / zero, zero); // TODO
+}
+
+BOOST_AUTO_TEST_CASE( test_division_over_ufd )
+{
+ polynomial<int> const zero;
+ polynomial<int> const one(1);
+ polynomial<int> const aa(d8.begin(), d8.end());
+ polynomial<int> const bb(d6.begin(), d6.end());
+ polynomial<int> const q(d2.begin(), d2.end());
+ polynomial<int> const r(d5.begin(), d5.end());
+
+ answer<int> result = quotient_remainder(aa, bb);
+ BOOST_CHECK_EQUAL(result.quotient, q);
+ BOOST_CHECK_EQUAL(result.remainder, r);
+
+ // Sanity checks.
+ BOOST_CHECK_EQUAL(aa / aa, one);
+ BOOST_CHECK_EQUAL(aa % aa, zero);
+}
+
+#endif
+
+template <typename T>
+struct FM2GP_Ex_8_3__1
+{
+ polynomial<T> x;
+ polynomial<T> y;
+ polynomial<T> z;
+
+ FM2GP_Ex_8_3__1()
+ {
+ boost::array<T, 5> const x_data = {{105, 278, -88, -56, 16}};
+ boost::array<T, 5> const y_data = {{70, 232, -44, -64, 16}};
+ boost::array<T, 3> const z_data = {{35, -24, 4}};
+ x = polynomial<T>(x_data.begin(), x_data.end());
+ y = polynomial<T>(y_data.begin(), y_data.end());
+ z = polynomial<T>(z_data.begin(), z_data.end());
+ }
+};
+
+template <typename T>
+struct FM2GP_Ex_8_3__2
+{
+ polynomial<T> x;
+ polynomial<T> y;
+ polynomial<T> z;
+
+ FM2GP_Ex_8_3__2()
+ {
+ boost::array<T, 5> const x_data = {{1, -6, -8, 6, 7}};
+ boost::array<T, 5> const y_data = {{1, -5, -2, 15, 11}};
+ boost::array<T, 3> const z_data = {{1, 2, 1}};
+ x = polynomial<T>(x_data.begin(), x_data.end());
+ y = polynomial<T>(y_data.begin(), y_data.end());
+ z = polynomial<T>(z_data.begin(), z_data.end());
+ }
+};
+
+
+template <typename T>
+struct FM2GP_mixed
+{
+ polynomial<T> x;
+ polynomial<T> y;
+ polynomial<T> z;
+
+ FM2GP_mixed()
+ {
+ boost::array<T, 4> const x_data = {{-2.2, -3.3, 0, 1}};
+ boost::array<T, 3> const y_data = {{-4.4, 0, 1}};
+ boost::array<T, 2> const z_data= {{-2, 1}};
+ x = polynomial<T>(x_data.begin(), x_data.end());
+ y = polynomial<T>(y_data.begin(), y_data.end());
+ z = polynomial<T>(z_data.begin(), z_data.end());
+ }
+};
+
+
+template <typename T>
+struct FM2GP_trivial
+{
+ polynomial<T> x;
+ polynomial<T> y;
+ polynomial<T> z;
+
+ FM2GP_trivial()
+ {
+ boost::array<T, 4> const x_data = {{-2, -3, 0, 1}};
+ boost::array<T, 3> const y_data = {{-4, 0, 1}};
+ boost::array<T, 2> const z_data= {{-2, 1}};
+ x = polynomial<T>(x_data.begin(), x_data.end());
+ y = polynomial<T>(y_data.begin(), y_data.end());
+ z = polynomial<T>(z_data.begin(), z_data.end());
+ }
+};
+
+// Sanity checks to make sure I didn't break it.
+#ifdef TEST1
+typedef boost::mpl::list<char, short, int, long> integral_test_types;
+typedef boost::mpl::list<int, long> large_integral_test_types;
+typedef boost::mpl::list<> mp_integral_test_types;
+#elif defined(TEST2)
+typedef boost::mpl::list<
+#if !BOOST_WORKAROUND(BOOST_MSVC, <= 1500)
+ boost::multiprecision::cpp_int
+#endif
+> integral_test_types;
+typedef integral_test_types large_integral_test_types;
+typedef large_integral_test_types mp_integral_test_types;
+#elif defined(TEST3)
+typedef boost::mpl::list<> large_integral_test_types;
+typedef boost::mpl::list<> integral_test_types;
+typedef large_integral_test_types mp_integral_test_types;
+#endif
+
+#ifdef TEST1
+typedef boost::mpl::list<double, long double> non_integral_test_types;
+#elif defined(TEST2)
+typedef boost::mpl::list<
+#if !BOOST_WORKAROUND(BOOST_MSVC, <= 1500)
+ boost::multiprecision::cpp_rational
+#endif
+> non_integral_test_types;
+#elif defined(TEST3)
+typedef boost::mpl::list<
+#if !BOOST_WORKAROUND(BOOST_MSVC, <= 1500)
+ boost::multiprecision::cpp_bin_float_single, boost::multiprecision::cpp_dec_float_50
+#endif
+> non_integral_test_types;
+#endif
+
+typedef boost::mpl::joint_view<integral_test_types, non_integral_test_types> all_test_types;
+
+
+template <typename T>
+void normalize(polynomial<T> &p)
+{
+ if (leading_coefficient(p) < T(0))
+ std::transform(p.data().begin(), p.data().end(), p.data().begin(), std::negate<T>());
+}
+
+/**
+ * Note that we do not expect 'pure' gcd algorithms to normalize the result.
+ * However, the usual public interface function gcd() will do that.
+ */
+
+BOOST_AUTO_TEST_SUITE(test_subresultant_gcd)
+
+// This test is just to show that gcd<polynomial<T>>(u, v) is defined (and works) when T is integral and multiprecision.
+BOOST_FIXTURE_TEST_CASE_TEMPLATE( gcd_interface, T, mp_integral_test_types, FM2GP_Ex_8_3__1<T> )
+{
+ typedef FM2GP_Ex_8_3__1<T> fixture_type;
+ polynomial<T> w;
+ w = gcd(fixture_type::x, fixture_type::y);
+ normalize(w);
+ BOOST_CHECK_EQUAL(w, fixture_type::z);
+ w = gcd(fixture_type::y, fixture_type::x);
+ normalize(w);
+ BOOST_CHECK_EQUAL(w, fixture_type::z);
+}
+
+// This test is just to show that gcd<polynomial<T>>(u, v) is defined (and works) when T is floating point.
+BOOST_FIXTURE_TEST_CASE_TEMPLATE( gcd_float_interface, T, non_integral_test_types, FM2GP_Ex_8_3__1<T> )
+{
+ typedef FM2GP_Ex_8_3__1<T> fixture_type;
+ polynomial<T> w;
+ w = gcd(fixture_type::x, fixture_type::y);
+ normalize(w);
+ BOOST_CHECK_EQUAL(w, fixture_type::z);
+ w = gcd(fixture_type::y, fixture_type::x);
+ normalize(w);
+ BOOST_CHECK_EQUAL(w, fixture_type::z);
+}
+
+// The following tests call subresultant_gcd explicitly to remove any ambiguity
+// and to permit testing on single-precision integral types.
+BOOST_FIXTURE_TEST_CASE_TEMPLATE( Ex_8_3__1, T, large_integral_test_types, FM2GP_Ex_8_3__1<T> )
+{
+ typedef FM2GP_Ex_8_3__1<T> fixture_type;
+ polynomial<T> w;
+ w = subresultant_gcd(fixture_type::x, fixture_type::y);
+ normalize(w);
+ BOOST_CHECK_EQUAL(w, fixture_type::z);
+ w = subresultant_gcd(fixture_type::y, fixture_type::x);
+ normalize(w);
+ BOOST_CHECK_EQUAL(w, fixture_type::z);
+}
+
+BOOST_FIXTURE_TEST_CASE_TEMPLATE( Ex_8_3__2, T, large_integral_test_types, FM2GP_Ex_8_3__2<T> )
+{
+ typedef FM2GP_Ex_8_3__2<T> fixture_type;
+ polynomial<T> w;
+ w = subresultant_gcd(fixture_type::x, fixture_type::y);
+ normalize(w);
+ BOOST_CHECK_EQUAL(w, fixture_type::z);
+ w = subresultant_gcd(fixture_type::y, fixture_type::x);
+ normalize(w);
+ BOOST_CHECK_EQUAL(w, fixture_type::z);
+}
+
+BOOST_FIXTURE_TEST_CASE_TEMPLATE( trivial_int, T, large_integral_test_types, FM2GP_trivial<T> )
+{
+ typedef FM2GP_trivial<T> fixture_type;
+ polynomial<T> w;
+ w = subresultant_gcd(fixture_type::x, fixture_type::y);
+ normalize(w);
+ BOOST_CHECK_EQUAL(w, fixture_type::z);
+ w = subresultant_gcd(fixture_type::y, fixture_type::x);
+ normalize(w);
+ BOOST_CHECK_EQUAL(w, fixture_type::z);
+}
+
+BOOST_AUTO_TEST_SUITE_END()
+
+
+BOOST_AUTO_TEST_CASE_TEMPLATE( test_addition, T, all_test_types )
+{
+ polynomial<T> const a(d3a.begin(), d3a.end());
+ polynomial<T> const b(d1a.begin(), d1a.end());
+ polynomial<T> const zero;
+
+ polynomial<T> result = a + b; // different degree
+ boost::array<T, 4> tmp = {{8, -5, -4, 3}};
+ polynomial<T> expected(tmp.begin(), tmp.end());
+ BOOST_CHECK_EQUAL(result, expected);
+ BOOST_CHECK_EQUAL(a + zero, a);
+ BOOST_CHECK_EQUAL(a + b, b + a);
+}
+
+BOOST_AUTO_TEST_CASE_TEMPLATE( test_subtraction, T, all_test_types )
+{
+ polynomial<T> const a(d3a.begin(), d3a.end());
+ polynomial<T> const zero;
+
+ BOOST_CHECK_EQUAL(a - T(0), a);
+ BOOST_CHECK_EQUAL(T(0) - a, -a);
+ BOOST_CHECK_EQUAL(a - zero, a);
+ BOOST_CHECK_EQUAL(zero - a, -a);
+ BOOST_CHECK_EQUAL(a - a, zero);
+}
+
+BOOST_AUTO_TEST_CASE_TEMPLATE( test_multiplication, T, all_test_types )
+{
+ polynomial<T> const a(d3a.begin(), d3a.end());
+ polynomial<T> const b(d1a.begin(), d1a.end());
+ polynomial<T> const zero;
+ boost::array<T, 7> const d3a_sq = {{100, -120, -44, 108, -20, -24, 9}};
+ polynomial<T> const a_sq(d3a_sq.begin(), d3a_sq.end());
+
+ BOOST_CHECK_EQUAL(a * T(0), zero);
+ BOOST_CHECK_EQUAL(a * zero, zero);
+ BOOST_CHECK_EQUAL(zero * T(0), zero);
+ BOOST_CHECK_EQUAL(zero * zero, zero);
+ BOOST_CHECK_EQUAL(a * b, b * a);
+ polynomial<T> aa(a);
+ aa *= aa;
+ BOOST_CHECK_EQUAL(aa, a_sq);
+ BOOST_CHECK_EQUAL(aa, a * a);
+}
+
+BOOST_AUTO_TEST_CASE_TEMPLATE( test_arithmetic_relations, T, all_test_types )
+{
+ polynomial<T> const a(d8b.begin(), d8b.end());
+ polynomial<T> const b(d1a.begin(), d1a.end());
+
+ BOOST_CHECK_EQUAL(a * T(2), a + a);
+ BOOST_CHECK_EQUAL(a - b, -b + a);
+ BOOST_CHECK_EQUAL(a, (a * a) / a);
+ BOOST_CHECK_EQUAL(a, (a / a) * a);
+}
+
+
+BOOST_AUTO_TEST_CASE_TEMPLATE(test_non_integral_arithmetic_relations, T, non_integral_test_types )
+{
+ polynomial<T> const a(d8b.begin(), d8b.end());
+ polynomial<T> const b(d1a.begin(), d1a.end());
+
+ BOOST_CHECK_EQUAL(a * T(0.5), a / T(2));
+}
+
+BOOST_AUTO_TEST_CASE_TEMPLATE(test_cont_and_pp, T, integral_test_types)
+{
+ boost::array<polynomial<T>, 4> const q={{
+ polynomial<T>(d8.begin(), d8.end()),
+ polynomial<T>(d8b.begin(), d8b.end()),
+ polynomial<T>(d3a.begin(), d3a.end()),
+ polynomial<T>(d3b.begin(), d3b.end())
+ }};
+ for (std::size_t i = 0; i < q.size(); i++)
+ {
+ BOOST_CHECK_EQUAL(q[i], content(q[i]) * primitive_part(q[i]));
+ BOOST_CHECK_EQUAL(primitive_part(q[i]), primitive_part(q[i], content(q[i])));
+ }
+
+ polynomial<T> const zero;
+ BOOST_CHECK_EQUAL(primitive_part(zero), zero);
+ BOOST_CHECK_EQUAL(content(zero), T(0));
+}
+
+BOOST_AUTO_TEST_CASE_TEMPLATE( test_self_multiply_assign, T, all_test_types )
+{
+ polynomial<T> a(d3a.begin(), d3a.end());
+ polynomial<T> const b(a);
+ boost::array<double, 7> const d3a_sq = {{100, -120, -44, 108, -20, -24, 9}};
+ polynomial<T> const asq(d3a_sq.begin(), d3a_sq.end());
+
+ a *= a;
+
+ BOOST_CHECK_EQUAL(a, b*b);
+ BOOST_CHECK_EQUAL(a, asq);
+
+ a *= a;
+
+ BOOST_CHECK_EQUAL(a, b*b*b*b);
+}
+
+
+BOOST_AUTO_TEST_CASE_TEMPLATE(test_right_shift, T, all_test_types )
+{
+ polynomial<T> a(d8b.begin(), d8b.end());
+ polynomial<T> const aa(a);
+ polynomial<T> const b(d8b.begin() + 1, d8b.end());
+ polynomial<T> const c(d8b.begin() + 5, d8b.end());
+ a >>= 0u;
+ BOOST_CHECK_EQUAL(a, aa);
+ a >>= 1u;
+ BOOST_CHECK_EQUAL(a, b);
+ a = a >> 4u;
+ BOOST_CHECK_EQUAL(a, c);
+}
+
+
+BOOST_AUTO_TEST_CASE_TEMPLATE(test_left_shift, T, all_test_types )
+{
+ polynomial<T> a(d0a.begin(), d0a.end());
+ polynomial<T> const aa(a);
+ polynomial<T> const b(d0a1.begin(), d0a1.end());
+ polynomial<T> const c(d0a5.begin(), d0a5.end());
+ a <<= 0u;
+ BOOST_CHECK_EQUAL(a, aa);
+ a <<= 1u;
+ BOOST_CHECK_EQUAL(a, b);
+ a = a << 4u;
+ BOOST_CHECK_EQUAL(a, c);
+ polynomial<T> zero;
+ // Multiplying zero by x should still be zero.
+ zero <<= 1u;
+ BOOST_CHECK_EQUAL(zero, zero_element(multiplies< polynomial<T> >()));
+}
+
+
+BOOST_AUTO_TEST_CASE_TEMPLATE(test_odd_even, T, all_test_types)
+{
+ polynomial<T> const zero;
+ BOOST_CHECK_EQUAL(odd(zero), false);
+ BOOST_CHECK_EQUAL(even(zero), true);
+ polynomial<T> const a(d0a.begin(), d0a.end());
+ BOOST_CHECK_EQUAL(odd(a), true);
+ BOOST_CHECK_EQUAL(even(a), false);
+ polynomial<T> const b(d0a1.begin(), d0a1.end());
+ BOOST_CHECK_EQUAL(odd(b), false);
+ BOOST_CHECK_EQUAL(even(b), true);
+}
+
+// NOTE: Slightly unexpected: this unit test passes even when T = char.
+BOOST_AUTO_TEST_CASE_TEMPLATE( test_pow, T, all_test_types )
+{
+ if (std::numeric_limits<T>::digits < 32)
+ return; // Invokes undefined behaviour
+ polynomial<T> a(d3a.begin(), d3a.end());
+ polynomial<T> const one(T(1));
+ boost::array<double, 7> const d3a_sqr = {{100, -120, -44, 108, -20, -24, 9}};
+ boost::array<double, 10> const d3a_cub =
+ {{1000, -1800, -120, 2124, -1032, -684, 638, -18, -108, 27}};
+ polynomial<T> const asqr(d3a_sqr.begin(), d3a_sqr.end());
+ polynomial<T> const acub(d3a_cub.begin(), d3a_cub.end());
+
+ BOOST_CHECK_EQUAL(pow(a, 0), one);
+ BOOST_CHECK_EQUAL(pow(a, 1), a);
+ BOOST_CHECK_EQUAL(pow(a, 2), asqr);
+ BOOST_CHECK_EQUAL(pow(a, 3), acub);
+ BOOST_CHECK_EQUAL(pow(a, 4), pow(asqr, 2));
+ BOOST_CHECK_EQUAL(pow(a, 5), asqr * acub);
+ BOOST_CHECK_EQUAL(pow(a, 6), pow(acub, 2));
+ BOOST_CHECK_EQUAL(pow(a, 7), acub * acub * a);
+
+ BOOST_CHECK_THROW(pow(a, -1), std::domain_error);
+ BOOST_CHECK_EQUAL(pow(one, 137), one);
+}
+
+
+BOOST_AUTO_TEST_CASE_TEMPLATE(test_bool, T, all_test_types)
+{
+ polynomial<T> const zero;
+ polynomial<T> const a(d0a.begin(), d0a.end());
+ BOOST_CHECK_EQUAL(bool(zero), false);
+ BOOST_CHECK_EQUAL(bool(a), true);
+}
+
+
+BOOST_AUTO_TEST_CASE_TEMPLATE(test_set_zero, T, all_test_types)
+{
+ polynomial<T> const zero;
+ polynomial<T> a(d0a.begin(), d0a.end());
+ a.set_zero();
+ BOOST_CHECK_EQUAL(a, zero);
+ a.set_zero(); // Ensure that setting zero to zero is a no-op.
+ BOOST_CHECK_EQUAL(a, zero);
+}
+
+
+BOOST_AUTO_TEST_CASE_TEMPLATE(test_leading_coefficient, T, all_test_types)
+{
+ polynomial<T> const zero;
+ BOOST_CHECK_EQUAL(leading_coefficient(zero), T(0));
+ polynomial<T> a(d0a.begin(), d0a.end());
+ BOOST_CHECK_EQUAL(leading_coefficient(a), T(d0a.back()));
+}
+
+#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) && !defined(BOOST_NO_CXX11_UNIFIED_INITIALIZATION_SYNTAX)
+BOOST_AUTO_TEST_CASE_TEMPLATE(test_prime, T, all_test_types)
+{
+ std::vector<T> d{1,1,1,1,1};
+ polynomial<T> p(std::move(d));
+ polynomial<T> q = p.prime();
+ BOOST_CHECK_EQUAL(q(0), T(1));
+
+ for (size_t i = 0; i < q.size(); ++i)
+ {
+ BOOST_CHECK_EQUAL(q[i], i+1);
+ }
+
+ polynomial<T> P = p.integrate();
+ BOOST_CHECK_EQUAL(P(0), T(0));
+ for (size_t i = 1; i < P.size(); ++i)
+ {
+ BOOST_CHECK_EQUAL(P[i], 1/static_cast<T>(i));
+ }
+
+ polynomial<T> empty;
+ q = empty.prime();
+ BOOST_CHECK_EQUAL(q.size(), 0);
+
+}
+#endif