1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
|
// (C) Copyright Jeremy Murphy 2015.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/config.hpp>
#define BOOST_TEST_MAIN
#include <boost/array.hpp>
#include <boost/math/tools/polynomial.hpp>
#include <boost/integer/common_factor_rt.hpp>
#include <boost/mpl/list.hpp>
#include <boost/mpl/joint_view.hpp>
#include <boost/test/test_case_template.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <utility>
#if !defined(TEST1) && !defined(TEST2) && !defined(TEST3)
# define TEST1
# define TEST2
# define TEST3
#endif
using namespace boost::math;
using boost::integer::gcd;
using namespace boost::math::tools;
using namespace std;
using boost::integer::gcd_detail::Euclid_gcd;
using boost::math::tools::subresultant_gcd;
template <typename T>
struct answer
{
answer(std::pair< polynomial<T>, polynomial<T> > const &x) :
quotient(x.first), remainder(x.second) {}
polynomial<T> quotient;
polynomial<T> remainder;
};
boost::array<double, 4> const d3a = {{10, -6, -4, 3}};
boost::array<double, 4> const d3b = {{-7, 5, 6, 1}};
boost::array<double, 2> const d1a = {{-2, 1}};
boost::array<double, 1> const d0a = {{6}};
boost::array<double, 2> const d0a1 = {{0, 6}};
boost::array<double, 6> const d0a5 = {{0, 0, 0, 0, 0, 6}};
boost::array<int, 9> const d8 = {{-5, 2, 8, -3, -3, 0, 1, 0, 1}};
boost::array<int, 9> const d8b = {{0, 2, 8, -3, -3, 0, 1, 0, 1}};
BOOST_AUTO_TEST_CASE(trivial)
{
/* We have one empty test case here, so that there is always something for Boost.Test to do even if the tests below are #if'ed out */
}
#ifdef TEST1
boost::array<double, 4> const d3c = {{10.0/3.0, -2.0, -4.0/3.0, 1.0}};
boost::array<double, 3> const d2a = {{-2, 2, 3}};
boost::array<double, 3> const d2b = {{-7, 5, 6}};
boost::array<double, 3> const d2c = {{31, -21, -22}};
boost::array<double, 1> const d0b = {{3}};
boost::array<int, 7> const d6 = {{21, -9, -4, 0, 5, 0, 3}};
boost::array<int, 3> const d2 = {{-6, 0, 9}};
boost::array<int, 6> const d5 = {{-9, 0, 3, 0, -15}};
BOOST_AUTO_TEST_CASE( test_construction )
{
polynomial<double> const a(d3a.begin(), d3a.end());
polynomial<double> const b(d3a.begin(), 3);
BOOST_CHECK_EQUAL(a, b);
}
#ifdef BOOST_MATH_HAS_IS_CONST_ITERABLE
#include <list>
#include <array>
BOOST_AUTO_TEST_CASE(test_range_construction)
{
std::list<double> l{ 1, 2, 3, 4 };
std::array<double, 4> a{ 3, 4, 5, 6 };
polynomial<double> p1{ 1, 2, 3, 4 };
polynomial<double> p2{ 3, 4, 5, 6 };
polynomial<double> p3(l);
polynomial<double> p4(a);
BOOST_CHECK_EQUAL(p1, p3);
BOOST_CHECK_EQUAL(p2, p4);
}
#endif
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) && !BOOST_WORKAROUND(BOOST_GCC_VERSION, < 40500)
BOOST_AUTO_TEST_CASE( test_initializer_list_construction )
{
polynomial<double> a(begin(d3a), end(d3a));
polynomial<double> b = {10, -6, -4, 3};
polynomial<double> c{10, -6, -4, 3};
polynomial<double> d{10, -6, -4, 3, 0, 0};
BOOST_CHECK_EQUAL(a, b);
BOOST_CHECK_EQUAL(b, c);
BOOST_CHECK_EQUAL(d.degree(), 3u);
}
BOOST_AUTO_TEST_CASE( test_initializer_list_assignment )
{
polynomial<double> a(begin(d3a), end(d3a));
polynomial<double> b;
b = {10, -6, -4, 3, 0, 0};
BOOST_CHECK_EQUAL(b.degree(), 3u);
BOOST_CHECK_EQUAL(a, b);
}
#endif
BOOST_AUTO_TEST_CASE( test_degree )
{
polynomial<double> const zero;
polynomial<double> const a(d3a.begin(), d3a.end());
BOOST_CHECK_THROW(zero.degree(), std::logic_error);
BOOST_CHECK_EQUAL(a.degree(), 3u);
}
BOOST_AUTO_TEST_CASE( test_division_over_field )
{
polynomial<double> const a(d3a.begin(), d3a.end());
polynomial<double> const b(d1a.begin(), d1a.end());
polynomial<double> const q(d2a.begin(), d2a.end());
polynomial<double> const r(d0a.begin(), d0a.end());
polynomial<double> const c(d3b.begin(), d3b.end());
polynomial<double> const d(d2b.begin(), d2b.end());
polynomial<double> const e(d2c.begin(), d2c.end());
polynomial<double> const f(d0b.begin(), d0b.end());
polynomial<double> const g(d3c.begin(), d3c.end());
polynomial<double> const zero;
polynomial<double> const one(1.0);
answer<double> result = quotient_remainder(a, b);
BOOST_CHECK_EQUAL(result.quotient, q);
BOOST_CHECK_EQUAL(result.remainder, r);
BOOST_CHECK_EQUAL(a, q * b + r); // Sanity check.
result = quotient_remainder(a, c);
BOOST_CHECK_EQUAL(result.quotient, f);
BOOST_CHECK_EQUAL(result.remainder, e);
BOOST_CHECK_EQUAL(a, f * c + e); // Sanity check.
result = quotient_remainder(a, f);
BOOST_CHECK_EQUAL(result.quotient, g);
BOOST_CHECK_EQUAL(result.remainder, zero);
BOOST_CHECK_EQUAL(a, g * f + zero); // Sanity check.
// Check that division by a regular number gives the same result.
BOOST_CHECK_EQUAL(a / 3.0, g);
BOOST_CHECK_EQUAL(a % 3.0, zero);
// Sanity checks.
BOOST_CHECK_EQUAL(a / a, one);
BOOST_CHECK_EQUAL(a % a, zero);
// BOOST_CHECK_EQUAL(zero / zero, zero); // TODO
}
BOOST_AUTO_TEST_CASE( test_division_over_ufd )
{
polynomial<int> const zero;
polynomial<int> const one(1);
polynomial<int> const aa(d8.begin(), d8.end());
polynomial<int> const bb(d6.begin(), d6.end());
polynomial<int> const q(d2.begin(), d2.end());
polynomial<int> const r(d5.begin(), d5.end());
answer<int> result = quotient_remainder(aa, bb);
BOOST_CHECK_EQUAL(result.quotient, q);
BOOST_CHECK_EQUAL(result.remainder, r);
// Sanity checks.
BOOST_CHECK_EQUAL(aa / aa, one);
BOOST_CHECK_EQUAL(aa % aa, zero);
}
#endif
template <typename T>
struct FM2GP_Ex_8_3__1
{
polynomial<T> x;
polynomial<T> y;
polynomial<T> z;
FM2GP_Ex_8_3__1()
{
boost::array<T, 5> const x_data = {{105, 278, -88, -56, 16}};
boost::array<T, 5> const y_data = {{70, 232, -44, -64, 16}};
boost::array<T, 3> const z_data = {{35, -24, 4}};
x = polynomial<T>(x_data.begin(), x_data.end());
y = polynomial<T>(y_data.begin(), y_data.end());
z = polynomial<T>(z_data.begin(), z_data.end());
}
};
template <typename T>
struct FM2GP_Ex_8_3__2
{
polynomial<T> x;
polynomial<T> y;
polynomial<T> z;
FM2GP_Ex_8_3__2()
{
boost::array<T, 5> const x_data = {{1, -6, -8, 6, 7}};
boost::array<T, 5> const y_data = {{1, -5, -2, 15, 11}};
boost::array<T, 3> const z_data = {{1, 2, 1}};
x = polynomial<T>(x_data.begin(), x_data.end());
y = polynomial<T>(y_data.begin(), y_data.end());
z = polynomial<T>(z_data.begin(), z_data.end());
}
};
template <typename T>
struct FM2GP_mixed
{
polynomial<T> x;
polynomial<T> y;
polynomial<T> z;
FM2GP_mixed()
{
boost::array<T, 4> const x_data = {{-2.2, -3.3, 0, 1}};
boost::array<T, 3> const y_data = {{-4.4, 0, 1}};
boost::array<T, 2> const z_data= {{-2, 1}};
x = polynomial<T>(x_data.begin(), x_data.end());
y = polynomial<T>(y_data.begin(), y_data.end());
z = polynomial<T>(z_data.begin(), z_data.end());
}
};
template <typename T>
struct FM2GP_trivial
{
polynomial<T> x;
polynomial<T> y;
polynomial<T> z;
FM2GP_trivial()
{
boost::array<T, 4> const x_data = {{-2, -3, 0, 1}};
boost::array<T, 3> const y_data = {{-4, 0, 1}};
boost::array<T, 2> const z_data= {{-2, 1}};
x = polynomial<T>(x_data.begin(), x_data.end());
y = polynomial<T>(y_data.begin(), y_data.end());
z = polynomial<T>(z_data.begin(), z_data.end());
}
};
// Sanity checks to make sure I didn't break it.
#ifdef TEST1
typedef boost::mpl::list<char, short, int, long> integral_test_types;
typedef boost::mpl::list<int, long> large_integral_test_types;
typedef boost::mpl::list<> mp_integral_test_types;
#elif defined(TEST2)
typedef boost::mpl::list<
#if !BOOST_WORKAROUND(BOOST_MSVC, <= 1500)
boost::multiprecision::cpp_int
#endif
> integral_test_types;
typedef integral_test_types large_integral_test_types;
typedef large_integral_test_types mp_integral_test_types;
#elif defined(TEST3)
typedef boost::mpl::list<> large_integral_test_types;
typedef boost::mpl::list<> integral_test_types;
typedef large_integral_test_types mp_integral_test_types;
#endif
#ifdef TEST1
typedef boost::mpl::list<double, long double> non_integral_test_types;
#elif defined(TEST2)
typedef boost::mpl::list<
#if !BOOST_WORKAROUND(BOOST_MSVC, <= 1500)
boost::multiprecision::cpp_rational
#endif
> non_integral_test_types;
#elif defined(TEST3)
typedef boost::mpl::list<
#if !BOOST_WORKAROUND(BOOST_MSVC, <= 1500)
boost::multiprecision::cpp_bin_float_single, boost::multiprecision::cpp_dec_float_50
#endif
> non_integral_test_types;
#endif
typedef boost::mpl::joint_view<integral_test_types, non_integral_test_types> all_test_types;
template <typename T>
void normalize(polynomial<T> &p)
{
if (leading_coefficient(p) < T(0))
std::transform(p.data().begin(), p.data().end(), p.data().begin(), std::negate<T>());
}
/**
* Note that we do not expect 'pure' gcd algorithms to normalize the result.
* However, the usual public interface function gcd() will do that.
*/
BOOST_AUTO_TEST_SUITE(test_subresultant_gcd)
// This test is just to show that gcd<polynomial<T>>(u, v) is defined (and works) when T is integral and multiprecision.
BOOST_FIXTURE_TEST_CASE_TEMPLATE( gcd_interface, T, mp_integral_test_types, FM2GP_Ex_8_3__1<T> )
{
typedef FM2GP_Ex_8_3__1<T> fixture_type;
polynomial<T> w;
w = gcd(fixture_type::x, fixture_type::y);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
w = gcd(fixture_type::y, fixture_type::x);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
}
// This test is just to show that gcd<polynomial<T>>(u, v) is defined (and works) when T is floating point.
BOOST_FIXTURE_TEST_CASE_TEMPLATE( gcd_float_interface, T, non_integral_test_types, FM2GP_Ex_8_3__1<T> )
{
typedef FM2GP_Ex_8_3__1<T> fixture_type;
polynomial<T> w;
w = gcd(fixture_type::x, fixture_type::y);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
w = gcd(fixture_type::y, fixture_type::x);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
}
// The following tests call subresultant_gcd explicitly to remove any ambiguity
// and to permit testing on single-precision integral types.
BOOST_FIXTURE_TEST_CASE_TEMPLATE( Ex_8_3__1, T, large_integral_test_types, FM2GP_Ex_8_3__1<T> )
{
typedef FM2GP_Ex_8_3__1<T> fixture_type;
polynomial<T> w;
w = subresultant_gcd(fixture_type::x, fixture_type::y);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
w = subresultant_gcd(fixture_type::y, fixture_type::x);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
}
BOOST_FIXTURE_TEST_CASE_TEMPLATE( Ex_8_3__2, T, large_integral_test_types, FM2GP_Ex_8_3__2<T> )
{
typedef FM2GP_Ex_8_3__2<T> fixture_type;
polynomial<T> w;
w = subresultant_gcd(fixture_type::x, fixture_type::y);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
w = subresultant_gcd(fixture_type::y, fixture_type::x);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
}
BOOST_FIXTURE_TEST_CASE_TEMPLATE( trivial_int, T, large_integral_test_types, FM2GP_trivial<T> )
{
typedef FM2GP_trivial<T> fixture_type;
polynomial<T> w;
w = subresultant_gcd(fixture_type::x, fixture_type::y);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
w = subresultant_gcd(fixture_type::y, fixture_type::x);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_CASE_TEMPLATE( test_addition, T, all_test_types )
{
polynomial<T> const a(d3a.begin(), d3a.end());
polynomial<T> const b(d1a.begin(), d1a.end());
polynomial<T> const zero;
polynomial<T> result = a + b; // different degree
boost::array<T, 4> tmp = {{8, -5, -4, 3}};
polynomial<T> expected(tmp.begin(), tmp.end());
BOOST_CHECK_EQUAL(result, expected);
BOOST_CHECK_EQUAL(a + zero, a);
BOOST_CHECK_EQUAL(a + b, b + a);
}
BOOST_AUTO_TEST_CASE_TEMPLATE( test_subtraction, T, all_test_types )
{
polynomial<T> const a(d3a.begin(), d3a.end());
polynomial<T> const zero;
BOOST_CHECK_EQUAL(a - T(0), a);
BOOST_CHECK_EQUAL(T(0) - a, -a);
BOOST_CHECK_EQUAL(a - zero, a);
BOOST_CHECK_EQUAL(zero - a, -a);
BOOST_CHECK_EQUAL(a - a, zero);
}
BOOST_AUTO_TEST_CASE_TEMPLATE( test_multiplication, T, all_test_types )
{
polynomial<T> const a(d3a.begin(), d3a.end());
polynomial<T> const b(d1a.begin(), d1a.end());
polynomial<T> const zero;
boost::array<T, 7> const d3a_sq = {{100, -120, -44, 108, -20, -24, 9}};
polynomial<T> const a_sq(d3a_sq.begin(), d3a_sq.end());
BOOST_CHECK_EQUAL(a * T(0), zero);
BOOST_CHECK_EQUAL(a * zero, zero);
BOOST_CHECK_EQUAL(zero * T(0), zero);
BOOST_CHECK_EQUAL(zero * zero, zero);
BOOST_CHECK_EQUAL(a * b, b * a);
polynomial<T> aa(a);
aa *= aa;
BOOST_CHECK_EQUAL(aa, a_sq);
BOOST_CHECK_EQUAL(aa, a * a);
}
BOOST_AUTO_TEST_CASE_TEMPLATE( test_arithmetic_relations, T, all_test_types )
{
polynomial<T> const a(d8b.begin(), d8b.end());
polynomial<T> const b(d1a.begin(), d1a.end());
BOOST_CHECK_EQUAL(a * T(2), a + a);
BOOST_CHECK_EQUAL(a - b, -b + a);
BOOST_CHECK_EQUAL(a, (a * a) / a);
BOOST_CHECK_EQUAL(a, (a / a) * a);
}
BOOST_AUTO_TEST_CASE_TEMPLATE(test_non_integral_arithmetic_relations, T, non_integral_test_types )
{
polynomial<T> const a(d8b.begin(), d8b.end());
polynomial<T> const b(d1a.begin(), d1a.end());
BOOST_CHECK_EQUAL(a * T(0.5), a / T(2));
}
BOOST_AUTO_TEST_CASE_TEMPLATE(test_cont_and_pp, T, integral_test_types)
{
boost::array<polynomial<T>, 4> const q={{
polynomial<T>(d8.begin(), d8.end()),
polynomial<T>(d8b.begin(), d8b.end()),
polynomial<T>(d3a.begin(), d3a.end()),
polynomial<T>(d3b.begin(), d3b.end())
}};
for (std::size_t i = 0; i < q.size(); i++)
{
BOOST_CHECK_EQUAL(q[i], content(q[i]) * primitive_part(q[i]));
BOOST_CHECK_EQUAL(primitive_part(q[i]), primitive_part(q[i], content(q[i])));
}
polynomial<T> const zero;
BOOST_CHECK_EQUAL(primitive_part(zero), zero);
BOOST_CHECK_EQUAL(content(zero), T(0));
}
BOOST_AUTO_TEST_CASE_TEMPLATE( test_self_multiply_assign, T, all_test_types )
{
polynomial<T> a(d3a.begin(), d3a.end());
polynomial<T> const b(a);
boost::array<double, 7> const d3a_sq = {{100, -120, -44, 108, -20, -24, 9}};
polynomial<T> const asq(d3a_sq.begin(), d3a_sq.end());
a *= a;
BOOST_CHECK_EQUAL(a, b*b);
BOOST_CHECK_EQUAL(a, asq);
a *= a;
BOOST_CHECK_EQUAL(a, b*b*b*b);
}
BOOST_AUTO_TEST_CASE_TEMPLATE(test_right_shift, T, all_test_types )
{
polynomial<T> a(d8b.begin(), d8b.end());
polynomial<T> const aa(a);
polynomial<T> const b(d8b.begin() + 1, d8b.end());
polynomial<T> const c(d8b.begin() + 5, d8b.end());
a >>= 0u;
BOOST_CHECK_EQUAL(a, aa);
a >>= 1u;
BOOST_CHECK_EQUAL(a, b);
a = a >> 4u;
BOOST_CHECK_EQUAL(a, c);
}
BOOST_AUTO_TEST_CASE_TEMPLATE(test_left_shift, T, all_test_types )
{
polynomial<T> a(d0a.begin(), d0a.end());
polynomial<T> const aa(a);
polynomial<T> const b(d0a1.begin(), d0a1.end());
polynomial<T> const c(d0a5.begin(), d0a5.end());
a <<= 0u;
BOOST_CHECK_EQUAL(a, aa);
a <<= 1u;
BOOST_CHECK_EQUAL(a, b);
a = a << 4u;
BOOST_CHECK_EQUAL(a, c);
polynomial<T> zero;
// Multiplying zero by x should still be zero.
zero <<= 1u;
BOOST_CHECK_EQUAL(zero, zero_element(multiplies< polynomial<T> >()));
}
BOOST_AUTO_TEST_CASE_TEMPLATE(test_odd_even, T, all_test_types)
{
polynomial<T> const zero;
BOOST_CHECK_EQUAL(odd(zero), false);
BOOST_CHECK_EQUAL(even(zero), true);
polynomial<T> const a(d0a.begin(), d0a.end());
BOOST_CHECK_EQUAL(odd(a), true);
BOOST_CHECK_EQUAL(even(a), false);
polynomial<T> const b(d0a1.begin(), d0a1.end());
BOOST_CHECK_EQUAL(odd(b), false);
BOOST_CHECK_EQUAL(even(b), true);
}
// NOTE: Slightly unexpected: this unit test passes even when T = char.
BOOST_AUTO_TEST_CASE_TEMPLATE( test_pow, T, all_test_types )
{
if (std::numeric_limits<T>::digits < 32)
return; // Invokes undefined behaviour
polynomial<T> a(d3a.begin(), d3a.end());
polynomial<T> const one(T(1));
boost::array<double, 7> const d3a_sqr = {{100, -120, -44, 108, -20, -24, 9}};
boost::array<double, 10> const d3a_cub =
{{1000, -1800, -120, 2124, -1032, -684, 638, -18, -108, 27}};
polynomial<T> const asqr(d3a_sqr.begin(), d3a_sqr.end());
polynomial<T> const acub(d3a_cub.begin(), d3a_cub.end());
BOOST_CHECK_EQUAL(pow(a, 0), one);
BOOST_CHECK_EQUAL(pow(a, 1), a);
BOOST_CHECK_EQUAL(pow(a, 2), asqr);
BOOST_CHECK_EQUAL(pow(a, 3), acub);
BOOST_CHECK_EQUAL(pow(a, 4), pow(asqr, 2));
BOOST_CHECK_EQUAL(pow(a, 5), asqr * acub);
BOOST_CHECK_EQUAL(pow(a, 6), pow(acub, 2));
BOOST_CHECK_EQUAL(pow(a, 7), acub * acub * a);
BOOST_CHECK_THROW(pow(a, -1), std::domain_error);
BOOST_CHECK_EQUAL(pow(one, 137), one);
}
BOOST_AUTO_TEST_CASE_TEMPLATE(test_bool, T, all_test_types)
{
polynomial<T> const zero;
polynomial<T> const a(d0a.begin(), d0a.end());
BOOST_CHECK_EQUAL(bool(zero), false);
BOOST_CHECK_EQUAL(bool(a), true);
}
BOOST_AUTO_TEST_CASE_TEMPLATE(test_set_zero, T, all_test_types)
{
polynomial<T> const zero;
polynomial<T> a(d0a.begin(), d0a.end());
a.set_zero();
BOOST_CHECK_EQUAL(a, zero);
a.set_zero(); // Ensure that setting zero to zero is a no-op.
BOOST_CHECK_EQUAL(a, zero);
}
BOOST_AUTO_TEST_CASE_TEMPLATE(test_leading_coefficient, T, all_test_types)
{
polynomial<T> const zero;
BOOST_CHECK_EQUAL(leading_coefficient(zero), T(0));
polynomial<T> a(d0a.begin(), d0a.end());
BOOST_CHECK_EQUAL(leading_coefficient(a), T(d0a.back()));
}
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) && !defined(BOOST_NO_CXX11_UNIFIED_INITIALIZATION_SYNTAX)
BOOST_AUTO_TEST_CASE_TEMPLATE(test_prime, T, all_test_types)
{
std::vector<T> d{1,1,1,1,1};
polynomial<T> p(std::move(d));
polynomial<T> q = p.prime();
BOOST_CHECK_EQUAL(q(0), T(1));
for (size_t i = 0; i < q.size(); ++i)
{
BOOST_CHECK_EQUAL(q[i], i+1);
}
polynomial<T> P = p.integrate();
BOOST_CHECK_EQUAL(P(0), T(0));
for (size_t i = 1; i < P.size(); ++i)
{
BOOST_CHECK_EQUAL(P[i], 1/static_cast<T>(i));
}
polynomial<T> empty;
q = empty.prime();
BOOST_CHECK_EQUAL(q.size(), 0);
}
#endif
|