summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/test/univariate_statistics_test.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
commit483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch)
treee5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/math/test/univariate_statistics_test.cpp
parentInitial commit. (diff)
downloadceph-upstream.tar.xz
ceph-upstream.zip
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/math/test/univariate_statistics_test.cpp')
-rw-r--r--src/boost/libs/math/test/univariate_statistics_test.cpp794
1 files changed, 794 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/univariate_statistics_test.cpp b/src/boost/libs/math/test/univariate_statistics_test.cpp
new file mode 100644
index 00000000..5cee9888
--- /dev/null
+++ b/src/boost/libs/math/test/univariate_statistics_test.cpp
@@ -0,0 +1,794 @@
+/*
+ * (C) Copyright Nick Thompson 2018.
+ * Use, modification and distribution are subject to the
+ * Boost Software License, Version 1.0. (See accompanying file
+ * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+ */
+
+#include <vector>
+#include <array>
+#include <forward_list>
+#include <algorithm>
+#include <random>
+#include <boost/core/lightweight_test.hpp>
+#include <boost/numeric/ublas/vector.hpp>
+#include <boost/math/constants/constants.hpp>
+#include <boost/math/statistics/univariate_statistics.hpp>
+#include <boost/multiprecision/cpp_bin_float.hpp>
+#include <boost/multiprecision/cpp_complex.hpp>
+
+using boost::multiprecision::cpp_bin_float_50;
+using boost::multiprecision::cpp_complex_50;
+
+/*
+ * Test checklist:
+ * 1) Does it work with multiprecision?
+ * 2) Does it work with .cbegin()/.cend() if the data is not altered?
+ * 3) Does it work with ublas and std::array? (Checking Eigen and Armadillo will make the CI system really unhappy.)
+ * 4) Does it work with std::forward_list if a forward iterator is all that is required?
+ * 5) Does it work with complex data if complex data is sensible?
+ */
+
+ // To stress test, set global_seed = 0, global_size = huge.
+ static const constexpr size_t global_seed = 0;
+ static const constexpr size_t global_size = 128;
+
+template<class T>
+std::vector<T> generate_random_vector(size_t size, size_t seed)
+{
+ if (seed == 0)
+ {
+ std::random_device rd;
+ seed = rd();
+ }
+ std::vector<T> v(size);
+
+ std::mt19937 gen(seed);
+
+ if constexpr (std::is_floating_point<T>::value)
+ {
+ std::normal_distribution<T> dis(0, 1);
+ for (size_t i = 0; i < v.size(); ++i)
+ {
+ v[i] = dis(gen);
+ }
+ return v;
+ }
+ else if constexpr (std::is_integral<T>::value)
+ {
+ // Rescaling by larger than 2 is UB!
+ std::uniform_int_distribution<T> dis(std::numeric_limits<T>::lowest()/2, (std::numeric_limits<T>::max)()/2);
+ for (size_t i = 0; i < v.size(); ++i)
+ {
+ v[i] = dis(gen);
+ }
+ return v;
+ }
+ else if constexpr (boost::is_complex<T>::value)
+ {
+ std::normal_distribution<typename T::value_type> dis(0, 1);
+ for (size_t i = 0; i < v.size(); ++i)
+ {
+ v[i] = {dis(gen), dis(gen)};
+ }
+ return v;
+ }
+ else if constexpr (boost::multiprecision::number_category<T>::value == boost::multiprecision::number_kind_complex)
+ {
+ std::normal_distribution<long double> dis(0, 1);
+ for (size_t i = 0; i < v.size(); ++i)
+ {
+ v[i] = {dis(gen), dis(gen)};
+ }
+ return v;
+ }
+ else if constexpr (boost::multiprecision::number_category<T>::value == boost::multiprecision::number_kind_floating_point)
+ {
+ std::normal_distribution<long double> dis(0, 1);
+ for (size_t i = 0; i < v.size(); ++i)
+ {
+ v[i] = dis(gen);
+ }
+ return v;
+ }
+ else
+ {
+ BOOST_ASSERT_MSG(false, "Could not identify type for random vector generation.");
+ return v;
+ }
+}
+
+
+template<class Z>
+void test_integer_mean()
+{
+ double tol = 100*std::numeric_limits<double>::epsilon();
+ std::vector<Z> v{1,2,3,4,5};
+ double mu = boost::math::statistics::mean(v);
+ BOOST_TEST(abs(mu - 3) < tol);
+
+ // Work with std::array?
+ std::array<Z, 5> w{1,2,3,4,5};
+ mu = boost::math::statistics::mean(w);
+ BOOST_TEST(abs(mu - 3) < tol);
+
+ v = generate_random_vector<Z>(global_size, global_seed);
+ Z scale = 2;
+
+ double m1 = scale*boost::math::statistics::mean(v);
+ for (auto & x : v)
+ {
+ x *= scale;
+ }
+ double m2 = boost::math::statistics::mean(v);
+ BOOST_TEST(abs(m1 - m2) < tol*abs(m1));
+}
+
+template<class RandomAccessContainer>
+auto naive_mean(RandomAccessContainer const & v)
+{
+ typename RandomAccessContainer::value_type sum = 0;
+ for (auto & x : v)
+ {
+ sum += x;
+ }
+ return sum/v.size();
+}
+
+template<class Real>
+void test_mean()
+{
+ Real tol = std::numeric_limits<Real>::epsilon();
+ std::vector<Real> v{1,2,3,4,5};
+ Real mu = boost::math::statistics::mean(v.begin(), v.end());
+ BOOST_TEST(abs(mu - 3) < tol);
+
+ // Does range call work?
+ mu = boost::math::statistics::mean(v);
+ BOOST_TEST(abs(mu - 3) < tol);
+
+ // Can we successfully average only part of the vector?
+ mu = boost::math::statistics::mean(v.begin(), v.begin() + 3);
+ BOOST_TEST(abs(mu - 2) < tol);
+
+ // Does it work when we const qualify?
+ mu = boost::math::statistics::mean(v.cbegin(), v.cend());
+ BOOST_TEST(abs(mu - 3) < tol);
+
+ // Does it work for std::array?
+ std::array<Real, 7> u{1,2,3,4,5,6,7};
+ mu = boost::math::statistics::mean(u.begin(), u.end());
+ BOOST_TEST(abs(mu - 4) < tol);
+
+ // Does it work for a forward iterator?
+ std::forward_list<Real> l{1,2,3,4,5,6,7};
+ mu = boost::math::statistics::mean(l.begin(), l.end());
+ BOOST_TEST(abs(mu - 4) < tol);
+
+ // Does it work with ublas vectors?
+ boost::numeric::ublas::vector<Real> w(7);
+ for (size_t i = 0; i < w.size(); ++i)
+ {
+ w[i] = i+1;
+ }
+ mu = boost::math::statistics::mean(w.cbegin(), w.cend());
+ BOOST_TEST(abs(mu - 4) < tol);
+
+ v = generate_random_vector<Real>(global_size, global_seed);
+ Real scale = 2;
+ Real m1 = scale*boost::math::statistics::mean(v);
+ for (auto & x : v)
+ {
+ x *= scale;
+ }
+ Real m2 = boost::math::statistics::mean(v);
+ BOOST_TEST(abs(m1 - m2) < tol*abs(m1));
+
+ // Stress test:
+ for (size_t i = 1; i < 30; ++i)
+ {
+ v = generate_random_vector<Real>(i, 12803);
+ auto naive_ = naive_mean(v);
+ auto higham_ = boost::math::statistics::mean(v);
+ if (abs(higham_ - naive_) >= 100*tol*abs(naive_))
+ {
+ std::cout << std::hexfloat;
+ std::cout << "Terms = " << v.size() << "\n";
+ std::cout << "higham = " << higham_ << "\n";
+ std::cout << "naive_ = " << naive_ << "\n";
+ }
+ BOOST_TEST(abs(higham_ - naive_) < 100*tol*abs(naive_));
+ }
+
+}
+
+template<class Complex>
+void test_complex_mean()
+{
+ typedef typename Complex::value_type Real;
+ Real tol = std::numeric_limits<Real>::epsilon();
+ std::vector<Complex> v{{0,1},{0,2},{0,3},{0,4},{0,5}};
+ auto mu = boost::math::statistics::mean(v.begin(), v.end());
+ BOOST_TEST(abs(mu.imag() - 3) < tol);
+ BOOST_TEST(abs(mu.real()) < tol);
+
+ // Does range work?
+ mu = boost::math::statistics::mean(v);
+ BOOST_TEST(abs(mu.imag() - 3) < tol);
+ BOOST_TEST(abs(mu.real()) < tol);
+}
+
+template<class Real>
+void test_variance()
+{
+ Real tol = std::numeric_limits<Real>::epsilon();
+ std::vector<Real> v{1,1,1,1,1,1};
+ Real sigma_sq = boost::math::statistics::variance(v.begin(), v.end());
+ BOOST_TEST(abs(sigma_sq) < tol);
+
+ sigma_sq = boost::math::statistics::variance(v);
+ BOOST_TEST(abs(sigma_sq) < tol);
+
+ Real s_sq = boost::math::statistics::sample_variance(v);
+ BOOST_TEST(abs(s_sq) < tol);
+
+ std::vector<Real> u{1};
+ sigma_sq = boost::math::statistics::variance(u.cbegin(), u.cend());
+ BOOST_TEST(abs(sigma_sq) < tol);
+
+ std::array<Real, 8> w{0,1,0,1,0,1,0,1};
+ sigma_sq = boost::math::statistics::variance(w.begin(), w.end());
+ BOOST_TEST(abs(sigma_sq - 1.0/4.0) < tol);
+
+ sigma_sq = boost::math::statistics::variance(w);
+ BOOST_TEST(abs(sigma_sq - 1.0/4.0) < tol);
+
+ std::forward_list<Real> l{0,1,0,1,0,1,0,1};
+ sigma_sq = boost::math::statistics::variance(l.begin(), l.end());
+ BOOST_TEST(abs(sigma_sq - 1.0/4.0) < tol);
+
+ v = generate_random_vector<Real>(global_size, global_seed);
+ Real scale = 2;
+ Real m1 = scale*scale*boost::math::statistics::variance(v);
+ for (auto & x : v)
+ {
+ x *= scale;
+ }
+ Real m2 = boost::math::statistics::variance(v);
+ BOOST_TEST(abs(m1 - m2) < tol*abs(m1));
+
+ // Wikipedia example for a variance of N sided die:
+ // https://en.wikipedia.org/wiki/Variance
+ for (size_t j = 16; j < 2048; j *= 2)
+ {
+ v.resize(1024);
+ Real n = v.size();
+ for (size_t i = 0; i < v.size(); ++i)
+ {
+ v[i] = i + 1;
+ }
+
+ sigma_sq = boost::math::statistics::variance(v);
+
+ BOOST_TEST(abs(sigma_sq - (n*n-1)/Real(12)) <= tol*sigma_sq);
+ }
+
+}
+
+template<class Z>
+void test_integer_variance()
+{
+ double tol = std::numeric_limits<double>::epsilon();
+ std::vector<Z> v{1,1,1,1,1,1};
+ double sigma_sq = boost::math::statistics::variance(v);
+ BOOST_TEST(abs(sigma_sq) < tol);
+
+ std::forward_list<Z> l{0,1,0,1,0,1,0,1};
+ sigma_sq = boost::math::statistics::variance(l.begin(), l.end());
+ BOOST_TEST(abs(sigma_sq - 1.0/4.0) < tol);
+
+ v = generate_random_vector<Z>(global_size, global_seed);
+ Z scale = 2;
+ double m1 = scale*scale*boost::math::statistics::variance(v);
+ for (auto & x : v)
+ {
+ x *= scale;
+ }
+ double m2 = boost::math::statistics::variance(v);
+ BOOST_TEST(abs(m1 - m2) < tol*abs(m1));
+}
+
+template<class Z>
+void test_integer_skewness()
+{
+ double tol = std::numeric_limits<double>::epsilon();
+ std::vector<Z> v{1,1,1};
+ double skew = boost::math::statistics::skewness(v);
+ BOOST_TEST(abs(skew) < tol);
+
+ // Dataset is symmetric about the mean:
+ v = {1,2,3,4,5};
+ skew = boost::math::statistics::skewness(v);
+ BOOST_TEST(abs(skew) < tol);
+
+ v = {0,0,0,0,5};
+ // mu = 1, sigma^2 = 4, sigma = 2, skew = 3/2
+ skew = boost::math::statistics::skewness(v);
+ BOOST_TEST(abs(skew - 3.0/2.0) < tol);
+
+ std::forward_list<Z> v2{0,0,0,0,5};
+ skew = boost::math::statistics::skewness(v);
+ BOOST_TEST(abs(skew - 3.0/2.0) < tol);
+
+
+ v = generate_random_vector<Z>(global_size, global_seed);
+ Z scale = 2;
+ double m1 = boost::math::statistics::skewness(v);
+ for (auto & x : v)
+ {
+ x *= scale;
+ }
+ double m2 = boost::math::statistics::skewness(v);
+ BOOST_TEST(abs(m1 - m2) < tol*abs(m1));
+
+}
+
+template<class Real>
+void test_skewness()
+{
+ Real tol = std::numeric_limits<Real>::epsilon();
+ std::vector<Real> v{1,1,1};
+ Real skew = boost::math::statistics::skewness(v);
+ BOOST_TEST(abs(skew) < tol);
+
+ // Dataset is symmetric about the mean:
+ v = {1,2,3,4,5};
+ skew = boost::math::statistics::skewness(v);
+ BOOST_TEST(abs(skew) < tol);
+
+ v = {0,0,0,0,5};
+ // mu = 1, sigma^2 = 4, sigma = 2, skew = 3/2
+ skew = boost::math::statistics::skewness(v);
+ BOOST_TEST(abs(skew - Real(3)/Real(2)) < tol);
+
+ std::array<Real, 5> w1{0,0,0,0,5};
+ skew = boost::math::statistics::skewness(w1);
+ BOOST_TEST(abs(skew - Real(3)/Real(2)) < tol);
+
+ std::forward_list<Real> w2{0,0,0,0,5};
+ skew = boost::math::statistics::skewness(w2);
+ BOOST_TEST(abs(skew - Real(3)/Real(2)) < tol);
+
+ v = generate_random_vector<Real>(global_size, global_seed);
+ Real scale = 2;
+ Real m1 = boost::math::statistics::skewness(v);
+ for (auto & x : v)
+ {
+ x *= scale;
+ }
+ Real m2 = boost::math::statistics::skewness(v);
+ BOOST_TEST(abs(m1 - m2) < tol*abs(m1));
+}
+
+template<class Real>
+void test_kurtosis()
+{
+ Real tol = std::numeric_limits<Real>::epsilon();
+ std::vector<Real> v{1,1,1};
+ Real kurt = boost::math::statistics::kurtosis(v);
+ BOOST_TEST(abs(kurt) < tol);
+
+ v = {1,2,3,4,5};
+ // mu =1, sigma^2 = 2, kurtosis = 17/10
+ kurt = boost::math::statistics::kurtosis(v);
+ BOOST_TEST(abs(kurt - Real(17)/Real(10)) < tol);
+
+ v = {0,0,0,0,5};
+ // mu = 1, sigma^2 = 4, sigma = 2, skew = 3/2, kurtosis = 13/4
+ kurt = boost::math::statistics::kurtosis(v);
+ BOOST_TEST(abs(kurt - Real(13)/Real(4)) < tol);
+
+ std::array<Real, 5> v1{0,0,0,0,5};
+ kurt = boost::math::statistics::kurtosis(v1);
+ BOOST_TEST(abs(kurt - Real(13)/Real(4)) < tol);
+
+ std::forward_list<Real> v2{0,0,0,0,5};
+ kurt = boost::math::statistics::kurtosis(v2);
+ BOOST_TEST(abs(kurt - Real(13)/Real(4)) < tol);
+
+ std::vector<Real> v3(10000);
+ std::mt19937 gen(42);
+ std::normal_distribution<long double> dis(0, 1);
+ for (size_t i = 0; i < v3.size(); ++i) {
+ v3[i] = dis(gen);
+ }
+ kurt = boost::math::statistics::kurtosis(v3);
+ BOOST_TEST(abs(kurt - 3) < 0.1);
+
+ std::uniform_real_distribution<long double> udis(-1, 3);
+ for (size_t i = 0; i < v3.size(); ++i) {
+ v3[i] = udis(gen);
+ }
+ auto excess_kurtosis = boost::math::statistics::excess_kurtosis(v3);
+ BOOST_TEST(abs(excess_kurtosis + 6.0/5.0) < 0.2);
+
+ v = generate_random_vector<Real>(global_size, global_seed);
+ Real scale = 2;
+ Real m1 = boost::math::statistics::kurtosis(v);
+ for (auto & x : v)
+ {
+ x *= scale;
+ }
+ Real m2 = boost::math::statistics::kurtosis(v);
+ BOOST_TEST(abs(m1 - m2) < tol*abs(m1));
+
+ // This test only passes when there are a large number of samples.
+ // Otherwise, the distribution doesn't generate enough outliers to give,
+ // or generates too many, giving pretty wildly different values of kurtosis on different runs.
+ // However, by kicking up the samples to 1,000,000, I got very close to 6 for the excess kurtosis on every run.
+ // The CI system, however, would die on a million long doubles.
+ //v3.resize(1000000);
+ //std::exponential_distribution<long double> edis(0.1);
+ //for (size_t i = 0; i < v3.size(); ++i) {
+ // v3[i] = edis(gen);
+ //}
+ //excess_kurtosis = boost::math::statistics::kurtosis(v3) - 3;
+ //BOOST_TEST(abs(excess_kurtosis - 6.0) < 0.2);
+}
+
+template<class Z>
+void test_integer_kurtosis()
+{
+ double tol = std::numeric_limits<double>::epsilon();
+ std::vector<Z> v{1,1,1};
+ double kurt = boost::math::statistics::kurtosis(v);
+ BOOST_TEST(abs(kurt) < tol);
+
+ v = {1,2,3,4,5};
+ // mu =1, sigma^2 = 2, kurtosis = 17/10
+ kurt = boost::math::statistics::kurtosis(v);
+ BOOST_TEST(abs(kurt - 17.0/10.0) < tol);
+
+ v = {0,0,0,0,5};
+ // mu = 1, sigma^2 = 4, sigma = 2, skew = 3/2, kurtosis = 13/4
+ kurt = boost::math::statistics::kurtosis(v);
+ BOOST_TEST(abs(kurt - 13.0/4.0) < tol);
+
+ v = generate_random_vector<Z>(global_size, global_seed);
+ Z scale = 2;
+ double m1 = boost::math::statistics::kurtosis(v);
+ for (auto & x : v)
+ {
+ x *= scale;
+ }
+ double m2 = boost::math::statistics::kurtosis(v);
+ BOOST_TEST(abs(m1 - m2) < tol*abs(m1));
+}
+
+template<class Real>
+void test_first_four_moments()
+{
+ Real tol = 10*std::numeric_limits<Real>::epsilon();
+ std::vector<Real> v{1,1,1};
+ auto [M1_1, M2_1, M3_1, M4_1] = boost::math::statistics::first_four_moments(v);
+ BOOST_TEST(abs(M1_1 - 1) < tol);
+ BOOST_TEST(abs(M2_1) < tol);
+ BOOST_TEST(abs(M3_1) < tol);
+ BOOST_TEST(abs(M4_1) < tol);
+
+ v = {1, 2, 3, 4, 5};
+ auto [M1_2, M2_2, M3_2, M4_2] = boost::math::statistics::first_four_moments(v);
+ BOOST_TEST(abs(M1_2 - 3) < tol);
+ BOOST_TEST(abs(M2_2 - 2) < tol);
+ BOOST_TEST(abs(M3_2) < tol);
+ BOOST_TEST(abs(M4_2 - Real(34)/Real(5)) < tol);
+}
+
+template<class Real>
+void test_median()
+{
+ std::mt19937 g(12);
+ std::vector<Real> v{1,2,3,4,5,6,7};
+
+ Real m = boost::math::statistics::median(v.begin(), v.end());
+ BOOST_TEST_EQ(m, 4);
+
+ std::shuffle(v.begin(), v.end(), g);
+ // Does range call work?
+ m = boost::math::statistics::median(v);
+ BOOST_TEST_EQ(m, 4);
+
+ v = {1,2,3,3,4,5};
+ m = boost::math::statistics::median(v.begin(), v.end());
+ BOOST_TEST_EQ(m, 3);
+ std::shuffle(v.begin(), v.end(), g);
+ m = boost::math::statistics::median(v.begin(), v.end());
+ BOOST_TEST_EQ(m, 3);
+
+ v = {1};
+ m = boost::math::statistics::median(v.begin(), v.end());
+ BOOST_TEST_EQ(m, 1);
+
+ v = {1,1};
+ m = boost::math::statistics::median(v.begin(), v.end());
+ BOOST_TEST_EQ(m, 1);
+
+ v = {2,4};
+ m = boost::math::statistics::median(v.begin(), v.end());
+ BOOST_TEST_EQ(m, 3);
+
+ v = {1,1,1};
+ m = boost::math::statistics::median(v.begin(), v.end());
+ BOOST_TEST_EQ(m, 1);
+
+ v = {1,2,3};
+ m = boost::math::statistics::median(v.begin(), v.end());
+ BOOST_TEST_EQ(m, 2);
+ std::shuffle(v.begin(), v.end(), g);
+ m = boost::math::statistics::median(v.begin(), v.end());
+ BOOST_TEST_EQ(m, 2);
+
+ // Does it work with std::array?
+ std::array<Real, 3> w{1,2,3};
+ m = boost::math::statistics::median(w);
+ BOOST_TEST_EQ(m, 2);
+
+ // Does it work with ublas?
+ boost::numeric::ublas::vector<Real> w1(3);
+ w1[0] = 1;
+ w1[1] = 2;
+ w1[2] = 3;
+ m = boost::math::statistics::median(w);
+ BOOST_TEST_EQ(m, 2);
+}
+
+template<class Real>
+void test_median_absolute_deviation()
+{
+ std::vector<Real> v{-1, 2, -3, 4, -5, 6, -7};
+
+ Real m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0);
+ BOOST_TEST_EQ(m, 4);
+
+ std::mt19937 g(12);
+ std::shuffle(v.begin(), v.end(), g);
+ m = boost::math::statistics::median_absolute_deviation(v, 0);
+ BOOST_TEST_EQ(m, 4);
+
+ v = {1, -2, -3, 3, -4, -5};
+ m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0);
+ BOOST_TEST_EQ(m, 3);
+ std::shuffle(v.begin(), v.end(), g);
+ m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0);
+ BOOST_TEST_EQ(m, 3);
+
+ v = {-1};
+ m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0);
+ BOOST_TEST_EQ(m, 1);
+
+ v = {-1, 1};
+ m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0);
+ BOOST_TEST_EQ(m, 1);
+ // The median is zero, so coincides with the default:
+ m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end());
+ BOOST_TEST_EQ(m, 1);
+
+ m = boost::math::statistics::median_absolute_deviation(v);
+ BOOST_TEST_EQ(m, 1);
+
+
+ v = {2, -4};
+ m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0);
+ BOOST_TEST_EQ(m, 3);
+
+ v = {1, -1, 1};
+ m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0);
+ BOOST_TEST_EQ(m, 1);
+
+ v = {1, 2, -3};
+ m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0);
+ BOOST_TEST_EQ(m, 2);
+ std::shuffle(v.begin(), v.end(), g);
+ m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0);
+ BOOST_TEST_EQ(m, 2);
+
+ std::array<Real, 3> w{1, 2, -3};
+ m = boost::math::statistics::median_absolute_deviation(w, 0);
+ BOOST_TEST_EQ(m, 2);
+
+ // boost.ublas vector?
+ boost::numeric::ublas::vector<Real> u(6);
+ u[0] = 1;
+ u[1] = 2;
+ u[2] = -3;
+ u[3] = 1;
+ u[4] = 2;
+ u[5] = -3;
+ m = boost::math::statistics::median_absolute_deviation(u, 0);
+ BOOST_TEST_EQ(m, 2);
+}
+
+
+template<class Real>
+void test_sample_gini_coefficient()
+{
+ Real tol = std::numeric_limits<Real>::epsilon();
+ std::vector<Real> v{1,0,0};
+ Real gini = boost::math::statistics::sample_gini_coefficient(v.begin(), v.end());
+ BOOST_TEST(abs(gini - 1) < tol);
+
+ gini = boost::math::statistics::sample_gini_coefficient(v);
+ BOOST_TEST(abs(gini - 1) < tol);
+
+ v[0] = 1;
+ v[1] = 1;
+ v[2] = 1;
+ gini = boost::math::statistics::sample_gini_coefficient(v.begin(), v.end());
+ BOOST_TEST(abs(gini) < tol);
+
+ v[0] = 0;
+ v[1] = 0;
+ v[2] = 0;
+ gini = boost::math::statistics::sample_gini_coefficient(v.begin(), v.end());
+ BOOST_TEST(abs(gini) < tol);
+
+ std::array<Real, 3> w{0,0,0};
+ gini = boost::math::statistics::sample_gini_coefficient(w);
+ BOOST_TEST(abs(gini) < tol);
+}
+
+
+template<class Real>
+void test_gini_coefficient()
+{
+ Real tol = std::numeric_limits<Real>::epsilon();
+ std::vector<Real> v{1,0,0};
+ Real gini = boost::math::statistics::gini_coefficient(v.begin(), v.end());
+ Real expected = Real(2)/Real(3);
+ BOOST_TEST(abs(gini - expected) < tol);
+
+ gini = boost::math::statistics::gini_coefficient(v);
+ BOOST_TEST(abs(gini - expected) < tol);
+
+ v[0] = 1;
+ v[1] = 1;
+ v[2] = 1;
+ gini = boost::math::statistics::gini_coefficient(v.begin(), v.end());
+ BOOST_TEST(abs(gini) < tol);
+
+ v[0] = 0;
+ v[1] = 0;
+ v[2] = 0;
+ gini = boost::math::statistics::gini_coefficient(v.begin(), v.end());
+ BOOST_TEST(abs(gini) < tol);
+
+ std::array<Real, 3> w{0,0,0};
+ gini = boost::math::statistics::gini_coefficient(w);
+ BOOST_TEST(abs(gini) < tol);
+
+ boost::numeric::ublas::vector<Real> w1(3);
+ w1[0] = 1;
+ w1[1] = 1;
+ w1[2] = 1;
+ gini = boost::math::statistics::gini_coefficient(w1);
+ BOOST_TEST(abs(gini) < tol);
+
+ std::mt19937 gen(18);
+ // Gini coefficient for a uniform distribution is (b-a)/(3*(b+a));
+ std::uniform_real_distribution<long double> dis(0, 3);
+ expected = (dis.b() - dis.a())/(3*(dis.b()+ dis.a()));
+ v.resize(1024);
+ for(size_t i = 0; i < v.size(); ++i)
+ {
+ v[i] = dis(gen);
+ }
+ gini = boost::math::statistics::gini_coefficient(v);
+ BOOST_TEST(abs(gini - expected) < 0.01);
+
+}
+
+template<class Z>
+void test_integer_gini_coefficient()
+{
+ double tol = std::numeric_limits<double>::epsilon();
+ std::vector<Z> v{1,0,0};
+ double gini = boost::math::statistics::gini_coefficient(v.begin(), v.end());
+ double expected = 2.0/3.0;
+ BOOST_TEST(abs(gini - expected) < tol);
+
+ gini = boost::math::statistics::gini_coefficient(v);
+ BOOST_TEST(abs(gini - expected) < tol);
+
+ v[0] = 1;
+ v[1] = 1;
+ v[2] = 1;
+ gini = boost::math::statistics::gini_coefficient(v.begin(), v.end());
+ BOOST_TEST(abs(gini) < tol);
+
+ v[0] = 0;
+ v[1] = 0;
+ v[2] = 0;
+ gini = boost::math::statistics::gini_coefficient(v.begin(), v.end());
+ BOOST_TEST(abs(gini) < tol);
+
+ std::array<Z, 3> w{0,0,0};
+ gini = boost::math::statistics::gini_coefficient(w);
+ BOOST_TEST(abs(gini) < tol);
+
+ boost::numeric::ublas::vector<Z> w1(3);
+ w1[0] = 1;
+ w1[1] = 1;
+ w1[2] = 1;
+ gini = boost::math::statistics::gini_coefficient(w1);
+ BOOST_TEST(abs(gini) < tol);
+}
+
+int main()
+{
+ test_mean<float>();
+ test_mean<double>();
+ test_mean<long double>();
+ test_mean<cpp_bin_float_50>();
+
+ test_integer_mean<unsigned>();
+ test_integer_mean<int>();
+
+ test_complex_mean<std::complex<float>>();
+ test_complex_mean<cpp_complex_50>();
+
+ test_variance<float>();
+ test_variance<double>();
+ test_variance<long double>();
+ test_variance<cpp_bin_float_50>();
+
+ test_integer_variance<int>();
+ test_integer_variance<unsigned>();
+
+ test_skewness<float>();
+ test_skewness<double>();
+ test_skewness<long double>();
+ test_skewness<cpp_bin_float_50>();
+
+ test_integer_skewness<int>();
+ test_integer_skewness<unsigned>();
+
+ test_first_four_moments<float>();
+ test_first_four_moments<double>();
+ test_first_four_moments<long double>();
+ test_first_four_moments<cpp_bin_float_50>();
+
+ test_kurtosis<float>();
+ test_kurtosis<double>();
+ test_kurtosis<long double>();
+ // Kinda expensive:
+ //test_kurtosis<cpp_bin_float_50>();
+
+ test_integer_kurtosis<int>();
+ test_integer_kurtosis<unsigned>();
+
+ test_median<float>();
+ test_median<double>();
+ test_median<long double>();
+ test_median<cpp_bin_float_50>();
+ test_median<int>();
+
+ test_median_absolute_deviation<float>();
+ test_median_absolute_deviation<double>();
+ test_median_absolute_deviation<long double>();
+ test_median_absolute_deviation<cpp_bin_float_50>();
+
+ test_gini_coefficient<float>();
+ test_gini_coefficient<double>();
+ test_gini_coefficient<long double>();
+ test_gini_coefficient<cpp_bin_float_50>();
+
+ test_integer_gini_coefficient<unsigned>();
+ test_integer_gini_coefficient<int>();
+
+ test_sample_gini_coefficient<float>();
+ test_sample_gini_coefficient<double>();
+ test_sample_gini_coefficient<long double>();
+ test_sample_gini_coefficient<cpp_bin_float_50>();
+
+ return boost::report_errors();
+}