summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/multiprecision/example/gauss_laguerre_quadrature.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
commit483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch)
treee5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/multiprecision/example/gauss_laguerre_quadrature.cpp
parentInitial commit. (diff)
downloadceph-upstream.tar.xz
ceph-upstream.zip
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/multiprecision/example/gauss_laguerre_quadrature.cpp')
-rw-r--r--src/boost/libs/multiprecision/example/gauss_laguerre_quadrature.cpp521
1 files changed, 521 insertions, 0 deletions
diff --git a/src/boost/libs/multiprecision/example/gauss_laguerre_quadrature.cpp b/src/boost/libs/multiprecision/example/gauss_laguerre_quadrature.cpp
new file mode 100644
index 00000000..1ac329a4
--- /dev/null
+++ b/src/boost/libs/multiprecision/example/gauss_laguerre_quadrature.cpp
@@ -0,0 +1,521 @@
+// Copyright Nick Thompson, 2017
+// Copyright John Maddock 2017
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#include <cmath>
+#include <cstdint>
+#include <functional>
+#include <iomanip>
+#include <iostream>
+#include <numeric>
+#include <boost/math/constants/constants.hpp>
+#include <boost/math/special_functions/cbrt.hpp>
+#include <boost/math/special_functions/factorials.hpp>
+#include <boost/math/special_functions/gamma.hpp>
+#include <boost/math/tools/roots.hpp>
+#include <boost/noncopyable.hpp>
+
+#define CPP_BIN_FLOAT 1
+#define CPP_DEC_FLOAT 2
+#define CPP_MPFR_FLOAT 3
+
+//#define MP_TYPE CPP_BIN_FLOAT
+#define MP_TYPE CPP_DEC_FLOAT
+//#define MP_TYPE CPP_MPFR_FLOAT
+
+namespace
+{
+ struct digits_characteristics
+ {
+ static const int digits10 = 300;
+ static const int guard_digits = 6;
+ };
+}
+
+#if (MP_TYPE == CPP_BIN_FLOAT)
+ #include <boost/multiprecision/cpp_bin_float.hpp>
+ namespace mp = boost::multiprecision;
+ typedef mp::number<mp::cpp_bin_float<digits_characteristics::digits10 + digits_characteristics::guard_digits>, mp::et_off> mp_type;
+#elif (MP_TYPE == CPP_DEC_FLOAT)
+ #include <boost/multiprecision/cpp_dec_float.hpp>
+ namespace mp = boost::multiprecision;
+ typedef mp::number<mp::cpp_dec_float<digits_characteristics::digits10 + digits_characteristics::guard_digits>, mp::et_off> mp_type;
+#elif (MP_TYPE == CPP_MPFR_FLOAT)
+ #include <boost/multiprecision/mpfr.hpp>
+ namespace mp = boost::multiprecision;
+ typedef mp::number<mp::mpfr_float_backend<digits_characteristics::digits10 + digits_characteristics::guard_digits>, mp::et_off> mp_type;
+#else
+#error MP_TYPE is undefined
+#endif
+
+template<typename T>
+class laguerre_function_object
+{
+public:
+ laguerre_function_object(const int n, const T a) : order(n),
+ alpha(a),
+ p1 (0),
+ d2 (0) { }
+
+ laguerre_function_object(const laguerre_function_object& other) : order(other.order),
+ alpha(other.alpha),
+ p1 (other.p1),
+ d2 (other.d2) { }
+
+ ~laguerre_function_object() { }
+
+ T operator()(const T& x) const
+ {
+ // Calculate (via forward recursion):
+ // * the value of the Laguerre function L(n, alpha, x), called (p2),
+ // * the value of the derivative of the Laguerre function (d2),
+ // * and the value of the corresponding Laguerre function of
+ // previous order (p1).
+
+ // Return the value of the function (p2) in order to be used as a
+ // function object with Boost.Math root-finding. Store the values
+ // of the Laguerre function derivative (d2) and the Laguerre function
+ // of previous order (p1) in class members for later use.
+
+ p1 = T(0);
+ T p2 = T(1);
+ d2 = T(0);
+
+ T j_plus_alpha(alpha);
+ T two_j_plus_one_plus_alpha_minus_x(1 + alpha - x);
+
+ int j;
+
+ const T my_two(2);
+
+ for(j = 0; j < order; ++j)
+ {
+ const T p0(p1);
+
+ // Set the value of the previous Laguerre function.
+ p1 = p2;
+
+ // Use a recurrence relation to compute the value of the Laguerre function.
+ p2 = ((two_j_plus_one_plus_alpha_minus_x * p1) - (j_plus_alpha * p0)) / (j + 1);
+
+ ++j_plus_alpha;
+ two_j_plus_one_plus_alpha_minus_x += my_two;
+ }
+
+ // Set the value of the derivative of the Laguerre function.
+ d2 = ((p2 * j) - (j_plus_alpha * p1)) / x;
+
+ // Return the value of the Laguerre function.
+ return p2;
+ }
+
+ const T& previous () const { return p1; }
+ const T& derivative() const { return d2; }
+
+ static bool root_tolerance(const T& a, const T& b)
+ {
+ using std::abs;
+
+ // The relative tolerance here is: ((a - b) * 2) / (a + b).
+ return (abs((a - b) * 2) < ((a + b) * boost::math::tools::epsilon<T>()));
+ }
+
+private:
+ const int order;
+ const T alpha;
+ mutable T p1;
+ mutable T d2;
+
+ laguerre_function_object();
+
+ const laguerre_function_object& operator=(const laguerre_function_object&);
+};
+
+template<typename T>
+class guass_laguerre_abscissas_and_weights : private boost::noncopyable
+{
+public:
+ guass_laguerre_abscissas_and_weights(const int n, const T a) : order(n),
+ alpha(a),
+ valid(true),
+ xi (),
+ wi ()
+ {
+ if(alpha < -20.0F)
+ {
+ // TBD: If we ever boostify this, throw a range error here.
+ // If so, then also document it in the docs.
+ std::cout << "Range error: the order of the Laguerre function must exceed -20.0." << std::endl;
+ }
+ else
+ {
+ calculate();
+ }
+ }
+
+ virtual ~guass_laguerre_abscissas_and_weights() { }
+
+ const std::vector<T>& abscissas() const { return xi; }
+ const std::vector<T>& weights () const { return wi; }
+
+ bool get_valid() const { return valid; }
+
+private:
+ const int order;
+ const T alpha;
+ bool valid;
+
+ std::vector<T> xi;
+ std::vector<T> wi;
+
+ void calculate()
+ {
+ using std::abs;
+
+ std::cout << "finding approximate roots..." << std::endl;
+
+ std::vector<boost::math::tuple<T, T> > root_estimates;
+
+ root_estimates.reserve(static_cast<typename std::vector<boost::math::tuple<T, T> >::size_type>(order));
+
+ const laguerre_function_object<T> laguerre_object(order, alpha);
+
+ // Set the initial values of the step size and the running step
+ // to be used for finding the estimate of the first root.
+ T step_size = 0.01F;
+ T step = step_size;
+
+ T first_laguerre_root = 0.0F;
+
+ bool first_laguerre_root_has_been_found = true;
+
+ if(alpha < -1.0F)
+ {
+ // Iteratively step through the Laguerre function using a
+ // small step-size in order to find a rough estimate of
+ // the first zero.
+
+ bool this_laguerre_value_is_negative = (laguerre_object(mp_type(0)) < 0);
+
+ static const int j_max = 10000;
+
+ int j;
+
+ for(j = 0; (j < j_max) && (this_laguerre_value_is_negative != (laguerre_object(step) < 0)); ++j)
+ {
+ // Increment the step size until the sign of the Laguerre function
+ // switches. This indicates a zero-crossing, signalling the next root.
+ step += step_size;
+ }
+
+ if(j >= j_max)
+ {
+ first_laguerre_root_has_been_found = false;
+ }
+ else
+ {
+ // We have found the first zero-crossing. Put a loose bracket around
+ // the root using a window. Here, we know that the first root lies
+ // between (x - step_size) < root < x.
+
+ // Before storing the approximate root, perform a couple of
+ // bisection steps in order to tighten up the root bracket.
+ boost::uintmax_t a_couple_of_iterations = 3U;
+ const std::pair<T, T>
+ first_laguerre_root = boost::math::tools::bisect(laguerre_object,
+ step - step_size,
+ step,
+ laguerre_function_object<T>::root_tolerance,
+ a_couple_of_iterations);
+
+ static_cast<void>(a_couple_of_iterations);
+ }
+ }
+ else
+ {
+ // Calculate an estimate of the 1st root of a generalized Laguerre
+ // function using either a Taylor series or an expansion in Bessel
+ // function zeros. The Bessel function zeros expansion is from Tricomi.
+
+ // Here, we obtain an estimate of the first zero of J_alpha(x).
+
+ T j_alpha_m1;
+
+ if(alpha < 1.4F)
+ {
+ // For small alpha, use a short series obtained from Mathematica(R).
+ // Series[BesselJZero[v, 1], {v, 0, 3}]
+ // N[%, 12]
+ j_alpha_m1 = ((( 0.09748661784476F
+ * alpha - 0.17549359276115F)
+ * alpha + 1.54288974259931F)
+ * alpha + 2.40482555769577F);
+ }
+ else
+ {
+ // For larger alpha, use the first line of Eqs. 10.21.40 in the NIST Handbook.
+ const T alpha_pow_third(boost::math::cbrt(alpha));
+ const T alpha_pow_minus_two_thirds(T(1) / (alpha_pow_third * alpha_pow_third));
+
+ j_alpha_m1 = alpha * ((((( + 0.043F
+ * alpha_pow_minus_two_thirds - 0.0908F)
+ * alpha_pow_minus_two_thirds - 0.00397F)
+ * alpha_pow_minus_two_thirds + 1.033150F)
+ * alpha_pow_minus_two_thirds + 1.8557571F)
+ * alpha_pow_minus_two_thirds + 1.0F);
+ }
+
+ const T vf = ((order * 4.0F) + (alpha * 2.0F) + 2.0F);
+ const T vf2 = vf * vf;
+ const T j_alpha_m1_sqr = j_alpha_m1 * j_alpha_m1;
+
+ first_laguerre_root = (j_alpha_m1_sqr * (-0.6666666666667F + ((0.6666666666667F * alpha) * alpha) + (0.3333333333333F * j_alpha_m1_sqr) + vf2)) / (vf2 * vf);
+ }
+
+ if(first_laguerre_root_has_been_found)
+ {
+ bool this_laguerre_value_is_negative = (laguerre_object(mp_type(0)) < 0);
+
+ // Re-set the initial value of the step-size based on the
+ // estimate of the first root.
+ step_size = first_laguerre_root / 2;
+ step = step_size;
+
+ // Step through the Laguerre function using a step-size
+ // of dynamic width in order to find the zero crossings
+ // of the Laguerre function, providing rough estimates
+ // of the roots. Refine the brackets with a few bisection
+ // steps, and store the results as bracketed root estimates.
+
+ while(static_cast<int>(root_estimates.size()) < order)
+ {
+ // Increment the step size until the sign of the Laguerre function
+ // switches. This indicates a zero-crossing, signalling the next root.
+ step += step_size;
+
+ if(this_laguerre_value_is_negative != (laguerre_object(step) < 0))
+ {
+ // We have found the next zero-crossing.
+
+ // Change the running sign of the Laguerre function.
+ this_laguerre_value_is_negative = (!this_laguerre_value_is_negative);
+
+ // We have found the first zero-crossing. Put a loose bracket around
+ // the root using a window. Here, we know that the first root lies
+ // between (x - step_size) < root < x.
+
+ // Before storing the approximate root, perform a couple of
+ // bisection steps in order to tighten up the root bracket.
+ boost::uintmax_t a_couple_of_iterations = 3U;
+ const std::pair<T, T>
+ root_estimate_bracket = boost::math::tools::bisect(laguerre_object,
+ step - step_size,
+ step,
+ laguerre_function_object<T>::root_tolerance,
+ a_couple_of_iterations);
+
+ static_cast<void>(a_couple_of_iterations);
+
+ // Store the refined root estimate as a bracketed range in a tuple.
+ root_estimates.push_back(boost::math::tuple<T, T>(root_estimate_bracket.first,
+ root_estimate_bracket.second));
+
+ if(root_estimates.size() >= static_cast<std::size_t>(2U))
+ {
+ // Determine the next step size. This is based on the distance between
+ // the previous two roots, whereby the estimates of the previous roots
+ // are computed by taking the average of the lower and upper range of
+ // the root-estimate bracket.
+
+ const T r0 = ( boost::math::get<0>(*(root_estimates.rbegin() + 1U))
+ + boost::math::get<1>(*(root_estimates.rbegin() + 1U))) / 2;
+
+ const T r1 = ( boost::math::get<0>(*root_estimates.rbegin())
+ + boost::math::get<1>(*root_estimates.rbegin())) / 2;
+
+ const T distance_between_previous_roots = r1 - r0;
+
+ step_size = distance_between_previous_roots / 3;
+ }
+ }
+ }
+
+ const T norm_g =
+ ((alpha == 0) ? T(-1)
+ : -boost::math::tgamma(alpha + order) / boost::math::factorial<T>(order - 1));
+
+ xi.reserve(root_estimates.size());
+ wi.reserve(root_estimates.size());
+
+ // Calculate the abscissas and weights to full precision.
+ for(std::size_t i = static_cast<std::size_t>(0U); i < root_estimates.size(); ++i)
+ {
+ std::cout << "calculating abscissa and weight for index: " << i << std::endl;
+
+ // Calculate the abscissas using iterative root-finding.
+
+ // Select the maximum allowed iterations, being at least 20.
+ // The determination of the maximum allowed iterations is
+ // based on the number of decimal digits in the numerical
+ // type T.
+ const int my_digits10 = static_cast<int>(static_cast<float>(boost::math::tools::digits<T>()) * 0.301F);
+ const boost::uintmax_t number_of_iterations_allowed = (std::max)(20, my_digits10 / 2);
+
+ boost::uintmax_t number_of_iterations_used = number_of_iterations_allowed;
+
+ // Perform the root-finding using ACM TOMS 748 from Boost.Math.
+ const std::pair<T, T>
+ laguerre_root_bracket = boost::math::tools::toms748_solve(laguerre_object,
+ boost::math::get<0>(root_estimates[i]),
+ boost::math::get<1>(root_estimates[i]),
+ laguerre_function_object<T>::root_tolerance,
+ number_of_iterations_used);
+
+ // Based on the result of *each* root-finding operation, re-assess
+ // the validity of the Guass-Laguerre abscissas and weights object.
+ valid &= (number_of_iterations_used < number_of_iterations_allowed);
+
+ // Compute the Laguerre root as the average of the values from
+ // the solved root bracket.
+ const T laguerre_root = ( laguerre_root_bracket.first
+ + laguerre_root_bracket.second) / 2;
+
+ // Calculate the weight for this Laguerre root. Here, we calculate
+ // the derivative of the Laguerre function and the value of the
+ // previous Laguerre function on the x-axis at the value of this
+ // Laguerre root.
+ static_cast<void>(laguerre_object(laguerre_root));
+
+ // Store the abscissa and weight for this index.
+ xi.push_back(laguerre_root);
+ wi.push_back(norm_g / ((laguerre_object.derivative() * order) * laguerre_object.previous()));
+ }
+ }
+ }
+};
+
+namespace
+{
+ template<typename T>
+ struct gauss_laguerre_ai
+ {
+ public:
+ gauss_laguerre_ai(const T X) : x(X)
+ {
+ using std::exp;
+ using std::sqrt;
+
+ zeta = ((sqrt(x) * x) * 2) / 3;
+
+ const T zeta_times_48_pow_sixth = sqrt(boost::math::cbrt(zeta * 48));
+
+ factor = 1 / ((sqrt(boost::math::constants::pi<T>()) * zeta_times_48_pow_sixth) * (exp(zeta) * gamma_of_five_sixths()));
+ }
+
+ gauss_laguerre_ai(const gauss_laguerre_ai& other) : x (other.x),
+ zeta (other.zeta),
+ factor(other.factor) { }
+
+ T operator()(const T& t) const
+ {
+ using std::sqrt;
+
+ return factor / sqrt(boost::math::cbrt(2 + (t / zeta)));
+ }
+
+ private:
+ const T x;
+ T zeta;
+ T factor;
+
+ static const T& gamma_of_five_sixths()
+ {
+ static const T value = boost::math::tgamma(T(5) / 6);
+
+ return value;
+ }
+
+ const gauss_laguerre_ai& operator=(const gauss_laguerre_ai&);
+ };
+
+ template<typename T>
+ T gauss_laguerre_airy_ai(const T x)
+ {
+ static const float digits_factor = static_cast<float>(std::numeric_limits<mp_type>::digits10) / 300.0F;
+ static const int laguerre_order = static_cast<int>(600.0F * digits_factor);
+
+ static const guass_laguerre_abscissas_and_weights<T> abscissas_and_weights(laguerre_order, -T(1) / 6);
+
+ T airy_ai_result;
+
+ if(abscissas_and_weights.get_valid())
+ {
+ const gauss_laguerre_ai<T> this_gauss_laguerre_ai(x);
+
+ airy_ai_result =
+ std::inner_product(abscissas_and_weights.abscissas().begin(),
+ abscissas_and_weights.abscissas().end(),
+ abscissas_and_weights.weights().begin(),
+ T(0),
+ std::plus<T>(),
+ [&this_gauss_laguerre_ai](const T& this_abscissa, const T& this_weight) -> T
+ {
+ return this_gauss_laguerre_ai(this_abscissa) * this_weight;
+ });
+ }
+ else
+ {
+ // TBD: Consider an error message.
+ airy_ai_result = T(0);
+ }
+
+ return airy_ai_result;
+ }
+}
+
+int main()
+{
+ // Use Gauss-Laguerre integration to compute airy_ai(120 / 7).
+
+ // 9 digits
+ // 3.89904210e-22
+
+ // 10 digits
+ // 3.899042098e-22
+
+ // 50 digits.
+ // 3.8990420982303275013276114626640705170145070824318e-22
+
+ // 100 digits.
+ // 3.899042098230327501327611462664070517014507082431797677146153303523108862015228
+ // 864136051942933142648e-22
+
+ // 200 digits.
+ // 3.899042098230327501327611462664070517014507082431797677146153303523108862015228
+ // 86413605194293314264788265460938200890998546786740097437064263800719644346113699
+ // 77010905030516409847054404055843899790277e-22
+
+ // 300 digits.
+ // 3.899042098230327501327611462664070517014507082431797677146153303523108862015228
+ // 86413605194293314264788265460938200890998546786740097437064263800719644346113699
+ // 77010905030516409847054404055843899790277083960877617919088116211775232728792242
+ // 9346416823281460245814808276654088201413901972239996130752528e-22
+
+ // 500 digits.
+ // 3.899042098230327501327611462664070517014507082431797677146153303523108862015228
+ // 86413605194293314264788265460938200890998546786740097437064263800719644346113699
+ // 77010905030516409847054404055843899790277083960877617919088116211775232728792242
+ // 93464168232814602458148082766540882014139019722399961307525276722937464859521685
+ // 42826483602153339361960948844649799257455597165900957281659632186012043089610827
+ // 78871305322190941528281744734605934497977375094921646511687434038062987482900167
+ // 45127557400365419545e-22
+
+ // Mathematica(R) or Wolfram's Alpha:
+ // N[AiryAi[120 / 7], 300]
+ std::cout << std::setprecision(digits_characteristics::digits10)
+ << gauss_laguerre_airy_ai(mp_type(120) / 7)
+ << std::endl;
+}