1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
|
// Copyright Nick Thompson, 2017
// Copyright John Maddock 2017
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <cmath>
#include <cstdint>
#include <functional>
#include <iomanip>
#include <iostream>
#include <numeric>
#include <boost/math/constants/constants.hpp>
#include <boost/math/special_functions/cbrt.hpp>
#include <boost/math/special_functions/factorials.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include <boost/math/tools/roots.hpp>
#include <boost/noncopyable.hpp>
#define CPP_BIN_FLOAT 1
#define CPP_DEC_FLOAT 2
#define CPP_MPFR_FLOAT 3
//#define MP_TYPE CPP_BIN_FLOAT
#define MP_TYPE CPP_DEC_FLOAT
//#define MP_TYPE CPP_MPFR_FLOAT
namespace
{
struct digits_characteristics
{
static const int digits10 = 300;
static const int guard_digits = 6;
};
}
#if (MP_TYPE == CPP_BIN_FLOAT)
#include <boost/multiprecision/cpp_bin_float.hpp>
namespace mp = boost::multiprecision;
typedef mp::number<mp::cpp_bin_float<digits_characteristics::digits10 + digits_characteristics::guard_digits>, mp::et_off> mp_type;
#elif (MP_TYPE == CPP_DEC_FLOAT)
#include <boost/multiprecision/cpp_dec_float.hpp>
namespace mp = boost::multiprecision;
typedef mp::number<mp::cpp_dec_float<digits_characteristics::digits10 + digits_characteristics::guard_digits>, mp::et_off> mp_type;
#elif (MP_TYPE == CPP_MPFR_FLOAT)
#include <boost/multiprecision/mpfr.hpp>
namespace mp = boost::multiprecision;
typedef mp::number<mp::mpfr_float_backend<digits_characteristics::digits10 + digits_characteristics::guard_digits>, mp::et_off> mp_type;
#else
#error MP_TYPE is undefined
#endif
template<typename T>
class laguerre_function_object
{
public:
laguerre_function_object(const int n, const T a) : order(n),
alpha(a),
p1 (0),
d2 (0) { }
laguerre_function_object(const laguerre_function_object& other) : order(other.order),
alpha(other.alpha),
p1 (other.p1),
d2 (other.d2) { }
~laguerre_function_object() { }
T operator()(const T& x) const
{
// Calculate (via forward recursion):
// * the value of the Laguerre function L(n, alpha, x), called (p2),
// * the value of the derivative of the Laguerre function (d2),
// * and the value of the corresponding Laguerre function of
// previous order (p1).
// Return the value of the function (p2) in order to be used as a
// function object with Boost.Math root-finding. Store the values
// of the Laguerre function derivative (d2) and the Laguerre function
// of previous order (p1) in class members for later use.
p1 = T(0);
T p2 = T(1);
d2 = T(0);
T j_plus_alpha(alpha);
T two_j_plus_one_plus_alpha_minus_x(1 + alpha - x);
int j;
const T my_two(2);
for(j = 0; j < order; ++j)
{
const T p0(p1);
// Set the value of the previous Laguerre function.
p1 = p2;
// Use a recurrence relation to compute the value of the Laguerre function.
p2 = ((two_j_plus_one_plus_alpha_minus_x * p1) - (j_plus_alpha * p0)) / (j + 1);
++j_plus_alpha;
two_j_plus_one_plus_alpha_minus_x += my_two;
}
// Set the value of the derivative of the Laguerre function.
d2 = ((p2 * j) - (j_plus_alpha * p1)) / x;
// Return the value of the Laguerre function.
return p2;
}
const T& previous () const { return p1; }
const T& derivative() const { return d2; }
static bool root_tolerance(const T& a, const T& b)
{
using std::abs;
// The relative tolerance here is: ((a - b) * 2) / (a + b).
return (abs((a - b) * 2) < ((a + b) * boost::math::tools::epsilon<T>()));
}
private:
const int order;
const T alpha;
mutable T p1;
mutable T d2;
laguerre_function_object();
const laguerre_function_object& operator=(const laguerre_function_object&);
};
template<typename T>
class guass_laguerre_abscissas_and_weights : private boost::noncopyable
{
public:
guass_laguerre_abscissas_and_weights(const int n, const T a) : order(n),
alpha(a),
valid(true),
xi (),
wi ()
{
if(alpha < -20.0F)
{
// TBD: If we ever boostify this, throw a range error here.
// If so, then also document it in the docs.
std::cout << "Range error: the order of the Laguerre function must exceed -20.0." << std::endl;
}
else
{
calculate();
}
}
virtual ~guass_laguerre_abscissas_and_weights() { }
const std::vector<T>& abscissas() const { return xi; }
const std::vector<T>& weights () const { return wi; }
bool get_valid() const { return valid; }
private:
const int order;
const T alpha;
bool valid;
std::vector<T> xi;
std::vector<T> wi;
void calculate()
{
using std::abs;
std::cout << "finding approximate roots..." << std::endl;
std::vector<boost::math::tuple<T, T> > root_estimates;
root_estimates.reserve(static_cast<typename std::vector<boost::math::tuple<T, T> >::size_type>(order));
const laguerre_function_object<T> laguerre_object(order, alpha);
// Set the initial values of the step size and the running step
// to be used for finding the estimate of the first root.
T step_size = 0.01F;
T step = step_size;
T first_laguerre_root = 0.0F;
bool first_laguerre_root_has_been_found = true;
if(alpha < -1.0F)
{
// Iteratively step through the Laguerre function using a
// small step-size in order to find a rough estimate of
// the first zero.
bool this_laguerre_value_is_negative = (laguerre_object(mp_type(0)) < 0);
static const int j_max = 10000;
int j;
for(j = 0; (j < j_max) && (this_laguerre_value_is_negative != (laguerre_object(step) < 0)); ++j)
{
// Increment the step size until the sign of the Laguerre function
// switches. This indicates a zero-crossing, signalling the next root.
step += step_size;
}
if(j >= j_max)
{
first_laguerre_root_has_been_found = false;
}
else
{
// We have found the first zero-crossing. Put a loose bracket around
// the root using a window. Here, we know that the first root lies
// between (x - step_size) < root < x.
// Before storing the approximate root, perform a couple of
// bisection steps in order to tighten up the root bracket.
boost::uintmax_t a_couple_of_iterations = 3U;
const std::pair<T, T>
first_laguerre_root = boost::math::tools::bisect(laguerre_object,
step - step_size,
step,
laguerre_function_object<T>::root_tolerance,
a_couple_of_iterations);
static_cast<void>(a_couple_of_iterations);
}
}
else
{
// Calculate an estimate of the 1st root of a generalized Laguerre
// function using either a Taylor series or an expansion in Bessel
// function zeros. The Bessel function zeros expansion is from Tricomi.
// Here, we obtain an estimate of the first zero of J_alpha(x).
T j_alpha_m1;
if(alpha < 1.4F)
{
// For small alpha, use a short series obtained from Mathematica(R).
// Series[BesselJZero[v, 1], {v, 0, 3}]
// N[%, 12]
j_alpha_m1 = ((( 0.09748661784476F
* alpha - 0.17549359276115F)
* alpha + 1.54288974259931F)
* alpha + 2.40482555769577F);
}
else
{
// For larger alpha, use the first line of Eqs. 10.21.40 in the NIST Handbook.
const T alpha_pow_third(boost::math::cbrt(alpha));
const T alpha_pow_minus_two_thirds(T(1) / (alpha_pow_third * alpha_pow_third));
j_alpha_m1 = alpha * ((((( + 0.043F
* alpha_pow_minus_two_thirds - 0.0908F)
* alpha_pow_minus_two_thirds - 0.00397F)
* alpha_pow_minus_two_thirds + 1.033150F)
* alpha_pow_minus_two_thirds + 1.8557571F)
* alpha_pow_minus_two_thirds + 1.0F);
}
const T vf = ((order * 4.0F) + (alpha * 2.0F) + 2.0F);
const T vf2 = vf * vf;
const T j_alpha_m1_sqr = j_alpha_m1 * j_alpha_m1;
first_laguerre_root = (j_alpha_m1_sqr * (-0.6666666666667F + ((0.6666666666667F * alpha) * alpha) + (0.3333333333333F * j_alpha_m1_sqr) + vf2)) / (vf2 * vf);
}
if(first_laguerre_root_has_been_found)
{
bool this_laguerre_value_is_negative = (laguerre_object(mp_type(0)) < 0);
// Re-set the initial value of the step-size based on the
// estimate of the first root.
step_size = first_laguerre_root / 2;
step = step_size;
// Step through the Laguerre function using a step-size
// of dynamic width in order to find the zero crossings
// of the Laguerre function, providing rough estimates
// of the roots. Refine the brackets with a few bisection
// steps, and store the results as bracketed root estimates.
while(static_cast<int>(root_estimates.size()) < order)
{
// Increment the step size until the sign of the Laguerre function
// switches. This indicates a zero-crossing, signalling the next root.
step += step_size;
if(this_laguerre_value_is_negative != (laguerre_object(step) < 0))
{
// We have found the next zero-crossing.
// Change the running sign of the Laguerre function.
this_laguerre_value_is_negative = (!this_laguerre_value_is_negative);
// We have found the first zero-crossing. Put a loose bracket around
// the root using a window. Here, we know that the first root lies
// between (x - step_size) < root < x.
// Before storing the approximate root, perform a couple of
// bisection steps in order to tighten up the root bracket.
boost::uintmax_t a_couple_of_iterations = 3U;
const std::pair<T, T>
root_estimate_bracket = boost::math::tools::bisect(laguerre_object,
step - step_size,
step,
laguerre_function_object<T>::root_tolerance,
a_couple_of_iterations);
static_cast<void>(a_couple_of_iterations);
// Store the refined root estimate as a bracketed range in a tuple.
root_estimates.push_back(boost::math::tuple<T, T>(root_estimate_bracket.first,
root_estimate_bracket.second));
if(root_estimates.size() >= static_cast<std::size_t>(2U))
{
// Determine the next step size. This is based on the distance between
// the previous two roots, whereby the estimates of the previous roots
// are computed by taking the average of the lower and upper range of
// the root-estimate bracket.
const T r0 = ( boost::math::get<0>(*(root_estimates.rbegin() + 1U))
+ boost::math::get<1>(*(root_estimates.rbegin() + 1U))) / 2;
const T r1 = ( boost::math::get<0>(*root_estimates.rbegin())
+ boost::math::get<1>(*root_estimates.rbegin())) / 2;
const T distance_between_previous_roots = r1 - r0;
step_size = distance_between_previous_roots / 3;
}
}
}
const T norm_g =
((alpha == 0) ? T(-1)
: -boost::math::tgamma(alpha + order) / boost::math::factorial<T>(order - 1));
xi.reserve(root_estimates.size());
wi.reserve(root_estimates.size());
// Calculate the abscissas and weights to full precision.
for(std::size_t i = static_cast<std::size_t>(0U); i < root_estimates.size(); ++i)
{
std::cout << "calculating abscissa and weight for index: " << i << std::endl;
// Calculate the abscissas using iterative root-finding.
// Select the maximum allowed iterations, being at least 20.
// The determination of the maximum allowed iterations is
// based on the number of decimal digits in the numerical
// type T.
const int my_digits10 = static_cast<int>(static_cast<float>(boost::math::tools::digits<T>()) * 0.301F);
const boost::uintmax_t number_of_iterations_allowed = (std::max)(20, my_digits10 / 2);
boost::uintmax_t number_of_iterations_used = number_of_iterations_allowed;
// Perform the root-finding using ACM TOMS 748 from Boost.Math.
const std::pair<T, T>
laguerre_root_bracket = boost::math::tools::toms748_solve(laguerre_object,
boost::math::get<0>(root_estimates[i]),
boost::math::get<1>(root_estimates[i]),
laguerre_function_object<T>::root_tolerance,
number_of_iterations_used);
// Based on the result of *each* root-finding operation, re-assess
// the validity of the Guass-Laguerre abscissas and weights object.
valid &= (number_of_iterations_used < number_of_iterations_allowed);
// Compute the Laguerre root as the average of the values from
// the solved root bracket.
const T laguerre_root = ( laguerre_root_bracket.first
+ laguerre_root_bracket.second) / 2;
// Calculate the weight for this Laguerre root. Here, we calculate
// the derivative of the Laguerre function and the value of the
// previous Laguerre function on the x-axis at the value of this
// Laguerre root.
static_cast<void>(laguerre_object(laguerre_root));
// Store the abscissa and weight for this index.
xi.push_back(laguerre_root);
wi.push_back(norm_g / ((laguerre_object.derivative() * order) * laguerre_object.previous()));
}
}
}
};
namespace
{
template<typename T>
struct gauss_laguerre_ai
{
public:
gauss_laguerre_ai(const T X) : x(X)
{
using std::exp;
using std::sqrt;
zeta = ((sqrt(x) * x) * 2) / 3;
const T zeta_times_48_pow_sixth = sqrt(boost::math::cbrt(zeta * 48));
factor = 1 / ((sqrt(boost::math::constants::pi<T>()) * zeta_times_48_pow_sixth) * (exp(zeta) * gamma_of_five_sixths()));
}
gauss_laguerre_ai(const gauss_laguerre_ai& other) : x (other.x),
zeta (other.zeta),
factor(other.factor) { }
T operator()(const T& t) const
{
using std::sqrt;
return factor / sqrt(boost::math::cbrt(2 + (t / zeta)));
}
private:
const T x;
T zeta;
T factor;
static const T& gamma_of_five_sixths()
{
static const T value = boost::math::tgamma(T(5) / 6);
return value;
}
const gauss_laguerre_ai& operator=(const gauss_laguerre_ai&);
};
template<typename T>
T gauss_laguerre_airy_ai(const T x)
{
static const float digits_factor = static_cast<float>(std::numeric_limits<mp_type>::digits10) / 300.0F;
static const int laguerre_order = static_cast<int>(600.0F * digits_factor);
static const guass_laguerre_abscissas_and_weights<T> abscissas_and_weights(laguerre_order, -T(1) / 6);
T airy_ai_result;
if(abscissas_and_weights.get_valid())
{
const gauss_laguerre_ai<T> this_gauss_laguerre_ai(x);
airy_ai_result =
std::inner_product(abscissas_and_weights.abscissas().begin(),
abscissas_and_weights.abscissas().end(),
abscissas_and_weights.weights().begin(),
T(0),
std::plus<T>(),
[&this_gauss_laguerre_ai](const T& this_abscissa, const T& this_weight) -> T
{
return this_gauss_laguerre_ai(this_abscissa) * this_weight;
});
}
else
{
// TBD: Consider an error message.
airy_ai_result = T(0);
}
return airy_ai_result;
}
}
int main()
{
// Use Gauss-Laguerre integration to compute airy_ai(120 / 7).
// 9 digits
// 3.89904210e-22
// 10 digits
// 3.899042098e-22
// 50 digits.
// 3.8990420982303275013276114626640705170145070824318e-22
// 100 digits.
// 3.899042098230327501327611462664070517014507082431797677146153303523108862015228
// 864136051942933142648e-22
// 200 digits.
// 3.899042098230327501327611462664070517014507082431797677146153303523108862015228
// 86413605194293314264788265460938200890998546786740097437064263800719644346113699
// 77010905030516409847054404055843899790277e-22
// 300 digits.
// 3.899042098230327501327611462664070517014507082431797677146153303523108862015228
// 86413605194293314264788265460938200890998546786740097437064263800719644346113699
// 77010905030516409847054404055843899790277083960877617919088116211775232728792242
// 9346416823281460245814808276654088201413901972239996130752528e-22
// 500 digits.
// 3.899042098230327501327611462664070517014507082431797677146153303523108862015228
// 86413605194293314264788265460938200890998546786740097437064263800719644346113699
// 77010905030516409847054404055843899790277083960877617919088116211775232728792242
// 93464168232814602458148082766540882014139019722399961307525276722937464859521685
// 42826483602153339361960948844649799257455597165900957281659632186012043089610827
// 78871305322190941528281744734605934497977375094921646511687434038062987482900167
// 45127557400365419545e-22
// Mathematica(R) or Wolfram's Alpha:
// N[AiryAi[120 / 7], 300]
std::cout << std::setprecision(digits_characteristics::digits10)
<< gauss_laguerre_airy_ai(mp_type(120) / 7)
<< std::endl;
}
|