summaryrefslogtreecommitdiffstats
path: root/third_party/rust/num-bigint
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
commit2aa4a82499d4becd2284cdb482213d541b8804dd (patch)
treeb80bf8bf13c3766139fbacc530efd0dd9d54394c /third_party/rust/num-bigint
parentInitial commit. (diff)
downloadfirefox-2aa4a82499d4becd2284cdb482213d541b8804dd.tar.xz
firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.zip
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/num-bigint')
-rw-r--r--third_party/rust/num-bigint/.cargo-checksum.json1
-rw-r--r--third_party/rust/num-bigint/Cargo.toml81
-rw-r--r--third_party/rust/num-bigint/LICENSE-APACHE201
-rw-r--r--third_party/rust/num-bigint/LICENSE-MIT25
-rw-r--r--third_party/rust/num-bigint/README.md63
-rw-r--r--third_party/rust/num-bigint/RELEASES.md134
-rw-r--r--third_party/rust/num-bigint/benches/bigint.rs368
-rw-r--r--third_party/rust/num-bigint/benches/factorial.rs44
-rw-r--r--third_party/rust/num-bigint/benches/gcd.rs86
-rw-r--r--third_party/rust/num-bigint/benches/roots.rs176
-rw-r--r--third_party/rust/num-bigint/benches/shootout-pidigits.rs142
-rw-r--r--third_party/rust/num-bigint/bors.toml3
-rw-r--r--third_party/rust/num-bigint/build.rs14
-rwxr-xr-xthird_party/rust/num-bigint/ci/rustup.sh12
-rwxr-xr-xthird_party/rust/num-bigint/ci/test_full.sh39
-rw-r--r--third_party/rust/num-bigint/src/algorithms.rs789
-rw-r--r--third_party/rust/num-bigint/src/bigint.rs3084
-rw-r--r--third_party/rust/num-bigint/src/bigrand.rs218
-rw-r--r--third_party/rust/num-bigint/src/biguint.rs3088
-rw-r--r--third_party/rust/num-bigint/src/lib.rs206
-rw-r--r--third_party/rust/num-bigint/src/macros.rs445
-rw-r--r--third_party/rust/num-bigint/src/monty.rs129
-rw-r--r--third_party/rust/num-bigint/tests/bigint.rs1193
-rw-r--r--third_party/rust/num-bigint/tests/bigint_bitwise.rs181
-rw-r--r--third_party/rust/num-bigint/tests/bigint_scalar.rs145
-rw-r--r--third_party/rust/num-bigint/tests/biguint.rs1713
-rw-r--r--third_party/rust/num-bigint/tests/biguint_scalar.rs109
-rw-r--r--third_party/rust/num-bigint/tests/consts/mod.rs56
-rw-r--r--third_party/rust/num-bigint/tests/macros/mod.rs70
-rw-r--r--third_party/rust/num-bigint/tests/modpow.rs150
-rw-r--r--third_party/rust/num-bigint/tests/quickcheck.rs317
-rw-r--r--third_party/rust/num-bigint/tests/rand.rs324
-rw-r--r--third_party/rust/num-bigint/tests/roots.rs186
-rw-r--r--third_party/rust/num-bigint/tests/serde.rs103
-rw-r--r--third_party/rust/num-bigint/tests/torture.rs43
35 files changed, 13938 insertions, 0 deletions
diff --git a/third_party/rust/num-bigint/.cargo-checksum.json b/third_party/rust/num-bigint/.cargo-checksum.json
new file mode 100644
index 0000000000..288114fb2c
--- /dev/null
+++ b/third_party/rust/num-bigint/.cargo-checksum.json
@@ -0,0 +1 @@
+{"files":{"Cargo.toml":"ba1041ccca008388ab7d7432ae63b811d8e744c8fa9e50f371bfbeb78acd1995","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"6485b8ed310d3f0340bf1ad1f47645069ce4069dcc6bb46c7d5c6faf41de1fdb","README.md":"25f684f15b0ed6ea216c3831e567a9b5dc02b78ff7e579e0d7323305db75218c","RELEASES.md":"5a3045437dc1850ae4e39acd14f2660ed7bace9b0c4d7dae3950f049dbfd4d65","benches/bigint.rs":"252c0dc1f220a6fbdc151e729069260c2f5909516467ceb873e412e5691d7042","benches/factorial.rs":"d536f5584987847f10321b94175a0d8fd2beb14b7c814ec28eef1f96ca081fbe","benches/gcd.rs":"7ec5ce7174e1d31bd08ccc5670f5a32a5c084f258d7980cd6d02e0a8bb5562c4","benches/roots.rs":"3f87db894c379122aee5cd8520c7c759c26d8a9649ac47f45d1bf4d560e1cb07","benches/shootout-pidigits.rs":"985b76d6dba05c396efe4da136c6a0bb2c02bcf5b05cbb346f0f802a891629bb","bors.toml":"1c81ede536a37edd30fe4e622ff0531b25372403ac9475a5d6c50f14156565a2","build.rs":"56d4fbb7a55750e61d2074df2735a31995c1decbd988c0e722926235e0fed487","ci/rustup.sh":"c976bb2756da3876363b01fdbf06c13de20df421e5add45e4017c4df42ed06a6","ci/test_full.sh":"a0ac26b85809eb43edd813c9dc88f34a1a8227b7618f4bede89c8f2ac9a4c05a","src/algorithms.rs":"8827c46df051214d1d0e7670680ca9f4834eae678ed340c86b5ea32fddbc7c3c","src/bigint.rs":"7f113fdc034c566bc8475ff0a7d136aa8250cae047b4356084e6797a15f968e1","src/bigrand.rs":"d2f72b8833f367dd8990b4b026f302d838144c5a4de942135d39a3a9932f137d","src/biguint.rs":"b95bfcf84e3f831fb07982aa4b058cd16a524eaa493946eed8e8c5fb8d65797a","src/lib.rs":"d5cc50306f73f07555e7d3413edd2ca5c7d54cbc80a2e83844d77fb8750ae314","src/macros.rs":"2e763517922d960c06e3ac4d319b1d81e66dffadfde8fdf300ff8b8bb95bd8cd","src/monty.rs":"6a867846b7f6af9115add2fd59fccd0651c71dd7f2316e8fb9c812ff3c27da12","tests/bigint.rs":"f7df454f085a862ad5a98e3a802303a3fdf06275a7a1b92074b40b76a715bed2","tests/bigint_bitwise.rs":"dc9436c8f200f2b0ac08cefb23bb8e39c4e688e9026a506a678416c3d573128b","tests/bigint_scalar.rs":"aa176ed102cafd425a215a93460806914d8f3ac288c98ec3e56772fa17379838","tests/biguint.rs":"9ae79f96d1a3beca5be95dffe9d79dc3436f886edc6cae51faf4203c3e0c4681","tests/biguint_scalar.rs":"9cc6f2bf2fe77f34b09eb2266c23aded3b27a60dc1859eb60d3013164292467e","tests/consts/mod.rs":"f9ea5f40733e2f5f432803d830be9db929d91e5e5efd8510b07c6ced2fe554be","tests/macros/mod.rs":"2789b680dd14a770d5ceef430018be0ada85098d69e218c61c17214084c4f763","tests/modpow.rs":"f14cdea11e355a371b314cc866dfa13281a3226706ab2cf01c1485273afde300","tests/quickcheck.rs":"6d6c1ec244b2384a8b34e989870aef8bcedccf6cc46e2626b29a032703bef03c","tests/rand.rs":"08370135bd78432660cfcd708a9ea852022d555bc92c1f3c482fabd17faa64a0","tests/roots.rs":"9ec1bdb0cd1c72402a41e5470325a5276af75979b7fc0f0b63e7bbbb9f3505b2","tests/serde.rs":"79d7a0347207b3a3666af67d2ed97fa34f2922732121a3cb8f5b9f990846acfa","tests/torture.rs":"9fe4897580c0ebe2b7062f5b0b890b4b03510daa45c9236f0edba7144f9eb6f8"},"package":"f9c3f34cdd24f334cb265d9bf8bfa8a241920d026916785747a92f0e55541a1a"} \ No newline at end of file
diff --git a/third_party/rust/num-bigint/Cargo.toml b/third_party/rust/num-bigint/Cargo.toml
new file mode 100644
index 0000000000..d8403a5659
--- /dev/null
+++ b/third_party/rust/num-bigint/Cargo.toml
@@ -0,0 +1,81 @@
+# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
+#
+# When uploading crates to the registry Cargo will automatically
+# "normalize" Cargo.toml files for maximal compatibility
+# with all versions of Cargo and also rewrite `path` dependencies
+# to registry (e.g., crates.io) dependencies
+#
+# If you believe there's an error in this file please file an
+# issue against the rust-lang/cargo repository. If you're
+# editing this file be aware that the upstream Cargo.toml
+# will likely look very different (and much more reasonable)
+
+[package]
+name = "num-bigint"
+version = "0.2.3"
+authors = ["The Rust Project Developers"]
+build = "build.rs"
+description = "Big integer implementation for Rust"
+homepage = "https://github.com/rust-num/num-bigint"
+documentation = "https://docs.rs/num-bigint"
+readme = "README.md"
+keywords = ["mathematics", "numerics", "bignum"]
+categories = ["algorithms", "data-structures", "science"]
+license = "MIT/Apache-2.0"
+repository = "https://github.com/rust-num/num-bigint"
+[package.metadata.docs.rs]
+features = ["std", "serde", "rand", "quickcheck"]
+
+[[bench]]
+name = "bigint"
+
+[[bench]]
+name = "factorial"
+
+[[bench]]
+name = "gcd"
+
+[[bench]]
+name = "roots"
+
+[[bench]]
+name = "shootout-pidigits"
+harness = false
+[dependencies.num-integer]
+version = "0.1.39"
+default-features = false
+
+[dependencies.num-traits]
+version = "0.2.7"
+default-features = false
+
+[dependencies.quickcheck]
+version = "0.8"
+optional = true
+default-features = false
+
+[dependencies.quickcheck_macros]
+version = "0.8"
+optional = true
+default-features = false
+
+[dependencies.rand]
+version = "0.5"
+features = ["std"]
+optional = true
+default-features = false
+
+[dependencies.serde]
+version = "1.0"
+features = ["std"]
+optional = true
+default-features = false
+[dev-dependencies.serde_test]
+version = "1.0"
+[build-dependencies.autocfg]
+version = "0.1.2"
+
+[features]
+default = ["std"]
+i128 = ["num-integer/i128", "num-traits/i128"]
+std = ["num-integer/std", "num-traits/std"]
diff --git a/third_party/rust/num-bigint/LICENSE-APACHE b/third_party/rust/num-bigint/LICENSE-APACHE
new file mode 100644
index 0000000000..16fe87b06e
--- /dev/null
+++ b/third_party/rust/num-bigint/LICENSE-APACHE
@@ -0,0 +1,201 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+END OF TERMS AND CONDITIONS
+
+APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+Copyright [yyyy] [name of copyright owner]
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
diff --git a/third_party/rust/num-bigint/LICENSE-MIT b/third_party/rust/num-bigint/LICENSE-MIT
new file mode 100644
index 0000000000..39d4bdb5ac
--- /dev/null
+++ b/third_party/rust/num-bigint/LICENSE-MIT
@@ -0,0 +1,25 @@
+Copyright (c) 2014 The Rust Project Developers
+
+Permission is hereby granted, free of charge, to any
+person obtaining a copy of this software and associated
+documentation files (the "Software"), to deal in the
+Software without restriction, including without
+limitation the rights to use, copy, modify, merge,
+publish, distribute, sublicense, and/or sell copies of
+the Software, and to permit persons to whom the Software
+is furnished to do so, subject to the following
+conditions:
+
+The above copyright notice and this permission notice
+shall be included in all copies or substantial portions
+of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
+ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
+TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
+PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
+SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
+IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+DEALINGS IN THE SOFTWARE.
diff --git a/third_party/rust/num-bigint/README.md b/third_party/rust/num-bigint/README.md
new file mode 100644
index 0000000000..f7eefed87e
--- /dev/null
+++ b/third_party/rust/num-bigint/README.md
@@ -0,0 +1,63 @@
+# num-bigint
+
+[![crate](https://img.shields.io/crates/v/num-bigint.svg)](https://crates.io/crates/num-bigint)
+[![documentation](https://docs.rs/num-bigint/badge.svg)](https://docs.rs/num-bigint)
+![minimum rustc 1.15](https://img.shields.io/badge/rustc-1.15+-red.svg)
+[![Travis status](https://travis-ci.org/rust-num/num-bigint.svg?branch=master)](https://travis-ci.org/rust-num/num-bigint)
+
+Big integer types for Rust, `BigInt` and `BigUint`.
+
+## Usage
+
+Add this to your `Cargo.toml`:
+
+```toml
+[dependencies]
+num-bigint = "0.2"
+```
+
+and this to your crate root:
+
+```rust
+extern crate num_bigint;
+```
+
+## Features
+
+The `std` crate feature is mandatory and enabled by default. If you depend on
+`num-bigint` with `default-features = false`, you must manually enable the
+`std` feature yourself. In the future, we hope to support `#![no_std]` with
+the `alloc` crate when `std` is not enabled.
+
+Implementations for `i128` and `u128` are only available with Rust 1.26 and
+later. The build script automatically detects this, but you can make it
+mandatory by enabling the `i128` crate feature.
+
+## Releases
+
+Release notes are available in [RELEASES.md](RELEASES.md).
+
+## Compatibility
+
+The `num-bigint` crate is tested for rustc 1.15 and greater.
+
+## Alternatives
+
+While `num-bigint` strives for good performance in pure Rust code, other
+crates may offer better performance with different trade-offs. The following
+table offers a brief comparison to a few alternatives.
+
+| Crate | License | Min rustc | Implementation |
+| :--------------- | :------------- | :-------- | :------------- |
+| **`num-bigint`** | MIT/Apache-2.0 | 1.15 | pure rust |
+| [`ramp`] | Apache-2.0 | nightly | rust and inline assembly |
+| [`rug`] | LGPL-3.0+ | 1.31 | bundles [GMP] via [`gmp-mpfr-sys`] |
+| [`rust-gmp`] | MIT | stable? | links to [GMP] |
+| [`apint`] | MIT/Apache-2.0 | 1.26 | pure rust (unfinished) |
+
+[GMP]: https://gmplib.org/
+[`gmp-mpfr-sys`]: https://crates.io/crates/gmp-mpfr-sys
+[`rug`]: https://crates.io/crates/rug
+[`rust-gmp`]: https://crates.io/crates/rust-gmp
+[`ramp`]: https://crates.io/crates/ramp
+[`apint`]: https://crates.io/crates/apint
diff --git a/third_party/rust/num-bigint/RELEASES.md b/third_party/rust/num-bigint/RELEASES.md
new file mode 100644
index 0000000000..911dd7835f
--- /dev/null
+++ b/third_party/rust/num-bigint/RELEASES.md
@@ -0,0 +1,134 @@
+# Release 0.2.3 (2019-09-03)
+
+- [`Pow` is now implemented for `BigUint` exponents][77].
+- [The optional `quickcheck` feature enables implementations of `Arbitrary`][99].
+- See the [full comparison][compare-0.2.3] for performance enhancements and more!
+
+[77]: https://github.com/rust-num/num-bigint/pull/77
+[99]: https://github.com/rust-num/num-bigint/pull/99
+[compare-0.2.3]: https://github.com/rust-num/num-bigint/compare/num-bigint-0.2.2...num-bigint-0.2.3
+
+**Contributors**: @cuviper, @lcnr, @maxbla, @mikelodder7, @mikong,
+@TheLetterTheta, @tspiteri, @XAMPPRocky, @youknowone
+
+# Release 0.2.2 (2018-12-14)
+
+- [The `Roots` implementations now use better initial guesses][71].
+- [Fixed `to_signed_bytes_*` for some positive numbers][72], where the
+ most-significant byte is `0x80` and the rest are `0`.
+
+[71]: https://github.com/rust-num/num-bigint/pull/71
+[72]: https://github.com/rust-num/num-bigint/pull/72
+
+**Contributors**: @cuviper, @leodasvacas
+
+# Release 0.2.1 (2018-11-02)
+
+- [`RandBigInt` now uses `Rng::fill_bytes`][53] to improve performance, instead
+ of repeated `gen::<u32>` calls. The also affects the implementations of the
+ other `rand` traits. This may potentially change the values produced by some
+ seeded RNGs on previous versions, but the values were tested to be stable
+ with `ChaChaRng`, `IsaacRng`, and `XorShiftRng`.
+- [`BigInt` and `BigUint` now implement `num_integer::Roots`][56].
+- [`BigInt` and `BigUint` now implement `num_traits::Pow`][54].
+- [`BigInt` and `BigUint` now implement operators with 128-bit integers][64].
+
+**Contributors**: @cuviper, @dignifiedquire, @mancabizjak, @Robbepop,
+@TheIronBorn, @thomwiggers
+
+[53]: https://github.com/rust-num/num-bigint/pull/53
+[54]: https://github.com/rust-num/num-bigint/pull/54
+[56]: https://github.com/rust-num/num-bigint/pull/56
+[64]: https://github.com/rust-num/num-bigint/pull/64
+
+# Release 0.2.0 (2018-05-25)
+
+### Enhancements
+
+- [`BigInt` and `BigUint` now implement `Product` and `Sum`][22] for iterators
+ of any item that we can `Mul` and `Add`, respectively. For example, a
+ factorial can now be simply: `let f: BigUint = (1u32..1000).product();`
+- [`BigInt` now supports two's-complement logic operations][26], namely
+ `BitAnd`, `BitOr`, `BitXor`, and `Not`. These act conceptually as if each
+ number had an infinite prefix of `0` or `1` bits for positive or negative.
+- [`BigInt` now supports assignment operators][41] like `AddAssign`.
+- [`BigInt` and `BigUint` now support conversions with `i128` and `u128`][44],
+ if sufficient compiler support is detected.
+- [`BigInt` and `BigUint` now implement rand's `SampleUniform` trait][48], and
+ [a custom `RandomBits` distribution samples by bit size][49].
+- The release also includes other miscellaneous improvements to performance.
+
+### Breaking Changes
+
+- [`num-bigint` now requires rustc 1.15 or greater][23].
+- [The crate now has a `std` feature, and won't build without it][46]. This is
+ in preparation for someday supporting `#![no_std]` with `alloc`.
+- [The `serde` dependency has been updated to 1.0][24], still disabled by
+ default. The `rustc-serialize` crate is no longer supported by `num-bigint`.
+- [The `rand` dependency has been updated to 0.5][48], now disabled by default.
+ This requires rustc 1.22 or greater for `rand`'s own requirement.
+- [`Shr for BigInt` now rounds down][8] rather than toward zero, matching the
+ behavior of the primitive integers for negative values.
+- [`ParseBigIntError` is now an opaque type][37].
+- [The `big_digit` module is no longer public][38], nor are the `BigDigit` and
+ `DoubleBigDigit` types and `ZERO_BIG_DIGIT` constant that were re-exported in
+ the crate root. Public APIs which deal in digits, like `BigUint::from_slice`,
+ will now always be base-`u32`.
+
+**Contributors**: @clarcharr, @cuviper, @dodomorandi, @tiehuis, @tspiteri
+
+[8]: https://github.com/rust-num/num-bigint/pull/8
+[22]: https://github.com/rust-num/num-bigint/pull/22
+[23]: https://github.com/rust-num/num-bigint/pull/23
+[24]: https://github.com/rust-num/num-bigint/pull/24
+[26]: https://github.com/rust-num/num-bigint/pull/26
+[37]: https://github.com/rust-num/num-bigint/pull/37
+[38]: https://github.com/rust-num/num-bigint/pull/38
+[41]: https://github.com/rust-num/num-bigint/pull/41
+[44]: https://github.com/rust-num/num-bigint/pull/44
+[46]: https://github.com/rust-num/num-bigint/pull/46
+[48]: https://github.com/rust-num/num-bigint/pull/48
+[49]: https://github.com/rust-num/num-bigint/pull/49
+
+# Release 0.1.44 (2018-05-14)
+
+- [Division with single-digit divisors is now much faster.][42]
+- The README now compares [`ramp`, `rug`, `rust-gmp`][20], and [`apint`][21].
+
+**Contributors**: @cuviper, @Robbepop
+
+[20]: https://github.com/rust-num/num-bigint/pull/20
+[21]: https://github.com/rust-num/num-bigint/pull/21
+[42]: https://github.com/rust-num/num-bigint/pull/42
+
+# Release 0.1.43 (2018-02-08)
+
+- [The new `BigInt::modpow`][18] performs signed modular exponentiation, using
+ the existing `BigUint::modpow` and rounding negatives similar to `mod_floor`.
+
+**Contributors**: @cuviper
+
+[18]: https://github.com/rust-num/num-bigint/pull/18
+
+
+# Release 0.1.42 (2018-02-07)
+
+- [num-bigint now has its own source repository][num-356] at [rust-num/num-bigint][home].
+- [`lcm` now avoids creating a large intermediate product][num-350].
+- [`gcd` now uses Stein's algorithm][15] with faster shifts instead of division.
+- [`rand` support is now extended to 0.4][11] (while still allowing 0.3).
+
+**Contributors**: @cuviper, @Emerentius, @ignatenkobrain, @mhogrefe
+
+[home]: https://github.com/rust-num/num-bigint
+[num-350]: https://github.com/rust-num/num/pull/350
+[num-356]: https://github.com/rust-num/num/pull/356
+[11]: https://github.com/rust-num/num-bigint/pull/11
+[15]: https://github.com/rust-num/num-bigint/pull/15
+
+
+# Prior releases
+
+No prior release notes were kept. Thanks all the same to the many
+contributors that have made this crate what it is!
+
diff --git a/third_party/rust/num-bigint/benches/bigint.rs b/third_party/rust/num-bigint/benches/bigint.rs
new file mode 100644
index 0000000000..bc0875d8f6
--- /dev/null
+++ b/third_party/rust/num-bigint/benches/bigint.rs
@@ -0,0 +1,368 @@
+#![feature(test)]
+#![cfg(feature = "rand")]
+
+extern crate num_bigint;
+extern crate num_integer;
+extern crate num_traits;
+extern crate rand;
+extern crate test;
+
+use num_bigint::{BigInt, BigUint, RandBigInt};
+use num_traits::{FromPrimitive, Num, One, Pow, Zero};
+use rand::{SeedableRng, StdRng};
+use std::mem::replace;
+use test::Bencher;
+
+fn get_rng() -> StdRng {
+ let mut seed = [0; 32];
+ for i in 1..32 {
+ seed[usize::from(i)] = i;
+ }
+ SeedableRng::from_seed(seed)
+}
+
+fn multiply_bench(b: &mut Bencher, xbits: usize, ybits: usize) {
+ let mut rng = get_rng();
+ let x = rng.gen_bigint(xbits);
+ let y = rng.gen_bigint(ybits);
+
+ b.iter(|| &x * &y);
+}
+
+fn divide_bench(b: &mut Bencher, xbits: usize, ybits: usize) {
+ let mut rng = get_rng();
+ let x = rng.gen_bigint(xbits);
+ let y = rng.gen_bigint(ybits);
+
+ b.iter(|| &x / &y);
+}
+
+fn remainder_bench(b: &mut Bencher, xbits: usize, ybits: usize) {
+ let mut rng = get_rng();
+ let x = rng.gen_bigint(xbits);
+ let y = rng.gen_bigint(ybits);
+
+ b.iter(|| &x % &y);
+}
+
+fn factorial(n: usize) -> BigUint {
+ let mut f: BigUint = One::one();
+ for i in 1..(n + 1) {
+ let bu: BigUint = FromPrimitive::from_usize(i).unwrap();
+ f = f * bu;
+ }
+ f
+}
+
+/// Compute Fibonacci numbers
+fn fib(n: usize) -> BigUint {
+ let mut f0: BigUint = Zero::zero();
+ let mut f1: BigUint = One::one();
+ for _ in 0..n {
+ let f2 = f0 + &f1;
+ f0 = replace(&mut f1, f2);
+ }
+ f0
+}
+
+/// Compute Fibonacci numbers with two ops per iteration
+/// (add and subtract, like issue #200)
+fn fib2(n: usize) -> BigUint {
+ let mut f0: BigUint = Zero::zero();
+ let mut f1: BigUint = One::one();
+ for _ in 0..n {
+ f1 = f1 + &f0;
+ f0 = &f1 - f0;
+ }
+ f0
+}
+
+#[bench]
+fn multiply_0(b: &mut Bencher) {
+ multiply_bench(b, 1 << 8, 1 << 8);
+}
+
+#[bench]
+fn multiply_1(b: &mut Bencher) {
+ multiply_bench(b, 1 << 8, 1 << 16);
+}
+
+#[bench]
+fn multiply_2(b: &mut Bencher) {
+ multiply_bench(b, 1 << 16, 1 << 16);
+}
+
+#[bench]
+fn multiply_3(b: &mut Bencher) {
+ multiply_bench(b, 1 << 16, 1 << 17);
+}
+
+#[bench]
+fn divide_0(b: &mut Bencher) {
+ divide_bench(b, 1 << 8, 1 << 6);
+}
+
+#[bench]
+fn divide_1(b: &mut Bencher) {
+ divide_bench(b, 1 << 12, 1 << 8);
+}
+
+#[bench]
+fn divide_2(b: &mut Bencher) {
+ divide_bench(b, 1 << 16, 1 << 12);
+}
+
+#[bench]
+fn remainder_0(b: &mut Bencher) {
+ remainder_bench(b, 1 << 8, 1 << 6);
+}
+
+#[bench]
+fn remainder_1(b: &mut Bencher) {
+ remainder_bench(b, 1 << 12, 1 << 8);
+}
+
+#[bench]
+fn remainder_2(b: &mut Bencher) {
+ remainder_bench(b, 1 << 16, 1 << 12);
+}
+
+#[bench]
+fn factorial_100(b: &mut Bencher) {
+ b.iter(|| factorial(100));
+}
+
+#[bench]
+fn fib_100(b: &mut Bencher) {
+ b.iter(|| fib(100));
+}
+
+#[bench]
+fn fib_1000(b: &mut Bencher) {
+ b.iter(|| fib(1000));
+}
+
+#[bench]
+fn fib_10000(b: &mut Bencher) {
+ b.iter(|| fib(10000));
+}
+
+#[bench]
+fn fib2_100(b: &mut Bencher) {
+ b.iter(|| fib2(100));
+}
+
+#[bench]
+fn fib2_1000(b: &mut Bencher) {
+ b.iter(|| fib2(1000));
+}
+
+#[bench]
+fn fib2_10000(b: &mut Bencher) {
+ b.iter(|| fib2(10000));
+}
+
+#[bench]
+fn fac_to_string(b: &mut Bencher) {
+ let fac = factorial(100);
+ b.iter(|| fac.to_string());
+}
+
+#[bench]
+fn fib_to_string(b: &mut Bencher) {
+ let fib = fib(100);
+ b.iter(|| fib.to_string());
+}
+
+fn to_str_radix_bench(b: &mut Bencher, radix: u32) {
+ let mut rng = get_rng();
+ let x = rng.gen_bigint(1009);
+ b.iter(|| x.to_str_radix(radix));
+}
+
+#[bench]
+fn to_str_radix_02(b: &mut Bencher) {
+ to_str_radix_bench(b, 2);
+}
+
+#[bench]
+fn to_str_radix_08(b: &mut Bencher) {
+ to_str_radix_bench(b, 8);
+}
+
+#[bench]
+fn to_str_radix_10(b: &mut Bencher) {
+ to_str_radix_bench(b, 10);
+}
+
+#[bench]
+fn to_str_radix_16(b: &mut Bencher) {
+ to_str_radix_bench(b, 16);
+}
+
+#[bench]
+fn to_str_radix_36(b: &mut Bencher) {
+ to_str_radix_bench(b, 36);
+}
+
+fn from_str_radix_bench(b: &mut Bencher, radix: u32) {
+ let mut rng = get_rng();
+ let x = rng.gen_bigint(1009);
+ let s = x.to_str_radix(radix);
+ assert_eq!(x, BigInt::from_str_radix(&s, radix).unwrap());
+ b.iter(|| BigInt::from_str_radix(&s, radix));
+}
+
+#[bench]
+fn from_str_radix_02(b: &mut Bencher) {
+ from_str_radix_bench(b, 2);
+}
+
+#[bench]
+fn from_str_radix_08(b: &mut Bencher) {
+ from_str_radix_bench(b, 8);
+}
+
+#[bench]
+fn from_str_radix_10(b: &mut Bencher) {
+ from_str_radix_bench(b, 10);
+}
+
+#[bench]
+fn from_str_radix_16(b: &mut Bencher) {
+ from_str_radix_bench(b, 16);
+}
+
+#[bench]
+fn from_str_radix_36(b: &mut Bencher) {
+ from_str_radix_bench(b, 36);
+}
+
+fn rand_bench(b: &mut Bencher, bits: usize) {
+ let mut rng = get_rng();
+
+ b.iter(|| rng.gen_bigint(bits));
+}
+
+#[bench]
+fn rand_64(b: &mut Bencher) {
+ rand_bench(b, 1 << 6);
+}
+
+#[bench]
+fn rand_256(b: &mut Bencher) {
+ rand_bench(b, 1 << 8);
+}
+
+#[bench]
+fn rand_1009(b: &mut Bencher) {
+ rand_bench(b, 1009);
+}
+
+#[bench]
+fn rand_2048(b: &mut Bencher) {
+ rand_bench(b, 1 << 11);
+}
+
+#[bench]
+fn rand_4096(b: &mut Bencher) {
+ rand_bench(b, 1 << 12);
+}
+
+#[bench]
+fn rand_8192(b: &mut Bencher) {
+ rand_bench(b, 1 << 13);
+}
+
+#[bench]
+fn rand_65536(b: &mut Bencher) {
+ rand_bench(b, 1 << 16);
+}
+
+#[bench]
+fn rand_131072(b: &mut Bencher) {
+ rand_bench(b, 1 << 17);
+}
+
+#[bench]
+fn shl(b: &mut Bencher) {
+ let n = BigUint::one() << 1000;
+ b.iter(|| {
+ let mut m = n.clone();
+ for i in 0..50 {
+ m = m << i;
+ }
+ })
+}
+
+#[bench]
+fn shr(b: &mut Bencher) {
+ let n = BigUint::one() << 2000;
+ b.iter(|| {
+ let mut m = n.clone();
+ for i in 0..50 {
+ m = m >> i;
+ }
+ })
+}
+
+#[bench]
+fn hash(b: &mut Bencher) {
+ use std::collections::HashSet;
+ let mut rng = get_rng();
+ let v: Vec<BigInt> = (1000..2000).map(|bits| rng.gen_bigint(bits)).collect();
+ b.iter(|| {
+ let h: HashSet<&BigInt> = v.iter().collect();
+ assert_eq!(h.len(), v.len());
+ });
+}
+
+#[bench]
+fn pow_bench(b: &mut Bencher) {
+ b.iter(|| {
+ let upper = 100_usize;
+ for i in 2..upper + 1 {
+ for j in 2..upper + 1 {
+ let i_big = BigUint::from_usize(i).unwrap();
+ i_big.pow(j);
+ }
+ }
+ });
+}
+
+/// This modulus is the prime from the 2048-bit MODP DH group:
+/// https://tools.ietf.org/html/rfc3526#section-3
+const RFC3526_2048BIT_MODP_GROUP: &'static str =
+ "\
+ FFFFFFFF_FFFFFFFF_C90FDAA2_2168C234_C4C6628B_80DC1CD1\
+ 29024E08_8A67CC74_020BBEA6_3B139B22_514A0879_8E3404DD\
+ EF9519B3_CD3A431B_302B0A6D_F25F1437_4FE1356D_6D51C245\
+ E485B576_625E7EC6_F44C42E9_A637ED6B_0BFF5CB6_F406B7ED\
+ EE386BFB_5A899FA5_AE9F2411_7C4B1FE6_49286651_ECE45B3D\
+ C2007CB8_A163BF05_98DA4836_1C55D39A_69163FA8_FD24CF5F\
+ 83655D23_DCA3AD96_1C62F356_208552BB_9ED52907_7096966D\
+ 670C354E_4ABC9804_F1746C08_CA18217C_32905E46_2E36CE3B\
+ E39E772C_180E8603_9B2783A2_EC07A28F_B5C55DF0_6F4C52C9\
+ DE2BCBF6_95581718_3995497C_EA956AE5_15D22618_98FA0510\
+ 15728E5A_8AACAA68_FFFFFFFF_FFFFFFFF";
+
+#[bench]
+fn modpow(b: &mut Bencher) {
+ let mut rng = get_rng();
+ let base = rng.gen_biguint(2048);
+ let e = rng.gen_biguint(2048);
+ let m = BigUint::from_str_radix(RFC3526_2048BIT_MODP_GROUP, 16).unwrap();
+
+ b.iter(|| base.modpow(&e, &m));
+}
+
+#[bench]
+fn modpow_even(b: &mut Bencher) {
+ let mut rng = get_rng();
+ let base = rng.gen_biguint(2048);
+ let e = rng.gen_biguint(2048);
+ // Make the modulus even, so monty (base-2^32) doesn't apply.
+ let m = BigUint::from_str_radix(RFC3526_2048BIT_MODP_GROUP, 16).unwrap() - 1u32;
+
+ b.iter(|| base.modpow(&e, &m));
+}
diff --git a/third_party/rust/num-bigint/benches/factorial.rs b/third_party/rust/num-bigint/benches/factorial.rs
new file mode 100644
index 0000000000..4392df8319
--- /dev/null
+++ b/third_party/rust/num-bigint/benches/factorial.rs
@@ -0,0 +1,44 @@
+#![feature(test)]
+
+extern crate num_bigint;
+extern crate num_traits;
+extern crate test;
+
+use num_bigint::BigUint;
+use num_traits::One;
+use std::ops::{Div, Mul};
+use test::Bencher;
+
+#[bench]
+fn factorial_mul_biguint(b: &mut Bencher) {
+ b.iter(|| {
+ (1u32..1000)
+ .map(BigUint::from)
+ .fold(BigUint::one(), Mul::mul)
+ });
+}
+
+#[bench]
+fn factorial_mul_u32(b: &mut Bencher) {
+ b.iter(|| (1u32..1000).fold(BigUint::one(), Mul::mul));
+}
+
+// The division test is inspired by this blog comparison:
+// <https://tiehuis.github.io/big-integers-in-zig#division-test-single-limb>
+
+#[bench]
+fn factorial_div_biguint(b: &mut Bencher) {
+ let n: BigUint = (1u32..1000).fold(BigUint::one(), Mul::mul);
+ b.iter(|| {
+ (1u32..1000)
+ .rev()
+ .map(BigUint::from)
+ .fold(n.clone(), Div::div)
+ });
+}
+
+#[bench]
+fn factorial_div_u32(b: &mut Bencher) {
+ let n: BigUint = (1u32..1000).fold(BigUint::one(), Mul::mul);
+ b.iter(|| (1u32..1000).rev().fold(n.clone(), Div::div));
+}
diff --git a/third_party/rust/num-bigint/benches/gcd.rs b/third_party/rust/num-bigint/benches/gcd.rs
new file mode 100644
index 0000000000..5fe5260ddf
--- /dev/null
+++ b/third_party/rust/num-bigint/benches/gcd.rs
@@ -0,0 +1,86 @@
+#![feature(test)]
+#![cfg(feature = "rand")]
+
+extern crate num_bigint;
+extern crate num_integer;
+extern crate num_traits;
+extern crate rand;
+extern crate test;
+
+use num_bigint::{BigUint, RandBigInt};
+use num_integer::Integer;
+use num_traits::Zero;
+use rand::{SeedableRng, StdRng};
+use test::Bencher;
+
+fn get_rng() -> StdRng {
+ let mut seed = [0; 32];
+ for i in 1..32 {
+ seed[usize::from(i)] = i;
+ }
+ SeedableRng::from_seed(seed)
+}
+
+fn bench(b: &mut Bencher, bits: usize, gcd: fn(&BigUint, &BigUint) -> BigUint) {
+ let mut rng = get_rng();
+ let x = rng.gen_biguint(bits);
+ let y = rng.gen_biguint(bits);
+
+ assert_eq!(euclid(&x, &y), x.gcd(&y));
+
+ b.iter(|| gcd(&x, &y));
+}
+
+fn euclid(x: &BigUint, y: &BigUint) -> BigUint {
+ // Use Euclid's algorithm
+ let mut m = x.clone();
+ let mut n = y.clone();
+ while !m.is_zero() {
+ let temp = m;
+ m = n % &temp;
+ n = temp;
+ }
+ return n;
+}
+
+#[bench]
+fn gcd_euclid_0064(b: &mut Bencher) {
+ bench(b, 64, euclid);
+}
+
+#[bench]
+fn gcd_euclid_0256(b: &mut Bencher) {
+ bench(b, 256, euclid);
+}
+
+#[bench]
+fn gcd_euclid_1024(b: &mut Bencher) {
+ bench(b, 1024, euclid);
+}
+
+#[bench]
+fn gcd_euclid_4096(b: &mut Bencher) {
+ bench(b, 4096, euclid);
+}
+
+// Integer for BigUint now uses Stein for gcd
+
+#[bench]
+fn gcd_stein_0064(b: &mut Bencher) {
+ bench(b, 64, BigUint::gcd);
+}
+
+#[bench]
+fn gcd_stein_0256(b: &mut Bencher) {
+ bench(b, 256, BigUint::gcd);
+}
+
+#[bench]
+fn gcd_stein_1024(b: &mut Bencher) {
+ bench(b, 1024, BigUint::gcd);
+}
+
+#[bench]
+fn gcd_stein_4096(b: &mut Bencher) {
+ bench(b, 4096, BigUint::gcd);
+}
diff --git a/third_party/rust/num-bigint/benches/roots.rs b/third_party/rust/num-bigint/benches/roots.rs
new file mode 100644
index 0000000000..51e67d9f3d
--- /dev/null
+++ b/third_party/rust/num-bigint/benches/roots.rs
@@ -0,0 +1,176 @@
+#![feature(test)]
+#![cfg(feature = "rand")]
+
+extern crate num_bigint;
+extern crate num_traits;
+extern crate rand;
+extern crate test;
+
+use num_bigint::{BigUint, RandBigInt};
+use num_traits::Pow;
+use rand::{SeedableRng, StdRng};
+use test::Bencher;
+
+// The `big64` cases demonstrate the speed of cases where the value
+// can be converted to a `u64` primitive for faster calculation.
+//
+// The `big1k` cases demonstrate those that can convert to `f64` for
+// a better initial guess of the actual value.
+//
+// The `big2k` and `big4k` cases are too big for `f64`, and use a simpler guess.
+
+fn get_rng() -> StdRng {
+ let mut seed = [0; 32];
+ for i in 1..32 {
+ seed[usize::from(i)] = i;
+ }
+ SeedableRng::from_seed(seed)
+}
+
+fn check(x: &BigUint, n: u32) {
+ let root = x.nth_root(n);
+ if n == 2 {
+ assert_eq!(root, x.sqrt())
+ } else if n == 3 {
+ assert_eq!(root, x.cbrt())
+ }
+
+ let lo = root.pow(n);
+ assert!(lo <= *x);
+ assert_eq!(lo.nth_root(n), root);
+ assert_eq!((&lo - 1u32).nth_root(n), &root - 1u32);
+
+ let hi = (&root + 1u32).pow(n);
+ assert!(hi > *x);
+ assert_eq!(hi.nth_root(n), &root + 1u32);
+ assert_eq!((&hi - 1u32).nth_root(n), root);
+}
+
+fn bench_sqrt(b: &mut Bencher, bits: usize) {
+ let x = get_rng().gen_biguint(bits);
+ eprintln!("bench_sqrt({})", x);
+
+ check(&x, 2);
+ b.iter(|| x.sqrt());
+}
+
+#[bench]
+fn big64_sqrt(b: &mut Bencher) {
+ bench_sqrt(b, 64);
+}
+
+#[bench]
+fn big1k_sqrt(b: &mut Bencher) {
+ bench_sqrt(b, 1024);
+}
+
+#[bench]
+fn big2k_sqrt(b: &mut Bencher) {
+ bench_sqrt(b, 2048);
+}
+
+#[bench]
+fn big4k_sqrt(b: &mut Bencher) {
+ bench_sqrt(b, 4096);
+}
+
+fn bench_cbrt(b: &mut Bencher, bits: usize) {
+ let x = get_rng().gen_biguint(bits);
+ eprintln!("bench_cbrt({})", x);
+
+ check(&x, 3);
+ b.iter(|| x.cbrt());
+}
+
+#[bench]
+fn big64_cbrt(b: &mut Bencher) {
+ bench_cbrt(b, 64);
+}
+
+#[bench]
+fn big1k_cbrt(b: &mut Bencher) {
+ bench_cbrt(b, 1024);
+}
+
+#[bench]
+fn big2k_cbrt(b: &mut Bencher) {
+ bench_cbrt(b, 2048);
+}
+
+#[bench]
+fn big4k_cbrt(b: &mut Bencher) {
+ bench_cbrt(b, 4096);
+}
+
+fn bench_nth_root(b: &mut Bencher, bits: usize, n: u32) {
+ let x = get_rng().gen_biguint(bits);
+ eprintln!("bench_{}th_root({})", n, x);
+
+ check(&x, n);
+ b.iter(|| x.nth_root(n));
+}
+
+#[bench]
+fn big64_nth_10(b: &mut Bencher) {
+ bench_nth_root(b, 64, 10);
+}
+
+#[bench]
+fn big1k_nth_10(b: &mut Bencher) {
+ bench_nth_root(b, 1024, 10);
+}
+
+#[bench]
+fn big1k_nth_100(b: &mut Bencher) {
+ bench_nth_root(b, 1024, 100);
+}
+
+#[bench]
+fn big1k_nth_1000(b: &mut Bencher) {
+ bench_nth_root(b, 1024, 1000);
+}
+
+#[bench]
+fn big1k_nth_10000(b: &mut Bencher) {
+ bench_nth_root(b, 1024, 10000);
+}
+
+#[bench]
+fn big2k_nth_10(b: &mut Bencher) {
+ bench_nth_root(b, 2048, 10);
+}
+
+#[bench]
+fn big2k_nth_100(b: &mut Bencher) {
+ bench_nth_root(b, 2048, 100);
+}
+
+#[bench]
+fn big2k_nth_1000(b: &mut Bencher) {
+ bench_nth_root(b, 2048, 1000);
+}
+
+#[bench]
+fn big2k_nth_10000(b: &mut Bencher) {
+ bench_nth_root(b, 2048, 10000);
+}
+
+#[bench]
+fn big4k_nth_10(b: &mut Bencher) {
+ bench_nth_root(b, 4096, 10);
+}
+
+#[bench]
+fn big4k_nth_100(b: &mut Bencher) {
+ bench_nth_root(b, 4096, 100);
+}
+
+#[bench]
+fn big4k_nth_1000(b: &mut Bencher) {
+ bench_nth_root(b, 4096, 1000);
+}
+
+#[bench]
+fn big4k_nth_10000(b: &mut Bencher) {
+ bench_nth_root(b, 4096, 10000);
+}
diff --git a/third_party/rust/num-bigint/benches/shootout-pidigits.rs b/third_party/rust/num-bigint/benches/shootout-pidigits.rs
new file mode 100644
index 0000000000..f90a697357
--- /dev/null
+++ b/third_party/rust/num-bigint/benches/shootout-pidigits.rs
@@ -0,0 +1,142 @@
+// The Computer Language Benchmarks Game
+// http://benchmarksgame.alioth.debian.org/
+//
+// contributed by the Rust Project Developers
+
+// Copyright (c) 2013-2014 The Rust Project Developers
+//
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+//
+// - Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// - Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in
+// the documentation and/or other materials provided with the
+// distribution.
+//
+// - Neither the name of "The Computer Language Benchmarks Game" nor
+// the name of "The Computer Language Shootout Benchmarks" nor the
+// names of its contributors may be used to endorse or promote
+// products derived from this software without specific prior
+// written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+// OF THE POSSIBILITY OF SUCH DAMAGE.
+
+extern crate num_bigint;
+extern crate num_integer;
+extern crate num_traits;
+
+use std::io;
+use std::str::FromStr;
+
+use num_bigint::BigInt;
+use num_integer::Integer;
+use num_traits::{FromPrimitive, One, ToPrimitive, Zero};
+
+struct Context {
+ numer: BigInt,
+ accum: BigInt,
+ denom: BigInt,
+}
+
+impl Context {
+ fn new() -> Context {
+ Context {
+ numer: One::one(),
+ accum: Zero::zero(),
+ denom: One::one(),
+ }
+ }
+
+ fn from_i32(i: i32) -> BigInt {
+ FromPrimitive::from_i32(i).unwrap()
+ }
+
+ fn extract_digit(&self) -> i32 {
+ if self.numer > self.accum {
+ return -1;
+ }
+ let (q, r) = (&self.numer * Context::from_i32(3) + &self.accum).div_rem(&self.denom);
+ if r + &self.numer >= self.denom {
+ return -1;
+ }
+ q.to_i32().unwrap()
+ }
+
+ fn next_term(&mut self, k: i32) {
+ let y2 = Context::from_i32(k * 2 + 1);
+ self.accum = (&self.accum + (&self.numer << 1)) * &y2;
+ self.numer = &self.numer * Context::from_i32(k);
+ self.denom = &self.denom * y2;
+ }
+
+ fn eliminate_digit(&mut self, d: i32) {
+ let d = Context::from_i32(d);
+ let ten = Context::from_i32(10);
+ self.accum = (&self.accum - &self.denom * d) * &ten;
+ self.numer = &self.numer * ten;
+ }
+}
+
+fn pidigits(n: isize, out: &mut dyn io::Write) -> io::Result<()> {
+ let mut k = 0;
+ let mut context = Context::new();
+
+ for i in 1..(n + 1) {
+ let mut d;
+ loop {
+ k += 1;
+ context.next_term(k);
+ d = context.extract_digit();
+ if d != -1 {
+ break;
+ }
+ }
+
+ write!(out, "{}", d)?;
+ if i % 10 == 0 {
+ write!(out, "\t:{}\n", i)?;
+ }
+
+ context.eliminate_digit(d);
+ }
+
+ let m = n % 10;
+ if m != 0 {
+ for _ in m..10 {
+ write!(out, " ")?;
+ }
+ write!(out, "\t:{}\n", n)?;
+ }
+ Ok(())
+}
+
+const DEFAULT_DIGITS: isize = 512;
+
+fn main() {
+ let args = std::env::args().collect::<Vec<_>>();
+ let n = if args.len() < 2 {
+ DEFAULT_DIGITS
+ } else if args[1] == "--bench" {
+ return pidigits(DEFAULT_DIGITS, &mut std::io::sink()).unwrap();
+ } else {
+ FromStr::from_str(&args[1]).unwrap()
+ };
+ pidigits(n, &mut std::io::stdout()).unwrap();
+}
diff --git a/third_party/rust/num-bigint/bors.toml b/third_party/rust/num-bigint/bors.toml
new file mode 100644
index 0000000000..ca08e818bf
--- /dev/null
+++ b/third_party/rust/num-bigint/bors.toml
@@ -0,0 +1,3 @@
+status = [
+ "continuous-integration/travis-ci/push",
+]
diff --git a/third_party/rust/num-bigint/build.rs b/third_party/rust/num-bigint/build.rs
new file mode 100644
index 0000000000..15590bbc12
--- /dev/null
+++ b/third_party/rust/num-bigint/build.rs
@@ -0,0 +1,14 @@
+extern crate autocfg;
+
+use std::env;
+
+fn main() {
+ let ac = autocfg::new();
+ if ac.probe_type("i128") {
+ println!("cargo:rustc-cfg=has_i128");
+ } else if env::var_os("CARGO_FEATURE_I128").is_some() {
+ panic!("i128 support was not detected!");
+ }
+
+ autocfg::rerun_path(file!());
+}
diff --git a/third_party/rust/num-bigint/ci/rustup.sh b/third_party/rust/num-bigint/ci/rustup.sh
new file mode 100755
index 0000000000..c5aea794b5
--- /dev/null
+++ b/third_party/rust/num-bigint/ci/rustup.sh
@@ -0,0 +1,12 @@
+#!/bin/sh
+# Use rustup to locally run the same suite of tests as .travis.yml.
+# (You should first install/update all versions listed below.)
+
+set -ex
+
+export TRAVIS_RUST_VERSION
+for TRAVIS_RUST_VERSION in 1.15.0 1.22.0 1.26.0 stable beta nightly; do
+ run="rustup run $TRAVIS_RUST_VERSION"
+ $run cargo build --verbose
+ $run $PWD/ci/test_full.sh
+done
diff --git a/third_party/rust/num-bigint/ci/test_full.sh b/third_party/rust/num-bigint/ci/test_full.sh
new file mode 100755
index 0000000000..4e1b60e98a
--- /dev/null
+++ b/third_party/rust/num-bigint/ci/test_full.sh
@@ -0,0 +1,39 @@
+#!/bin/bash
+
+set -ex
+
+echo Testing num-bigint on rustc ${TRAVIS_RUST_VERSION}
+
+FEATURES="serde"
+if [[ "$TRAVIS_RUST_VERSION" =~ ^(nightly|beta|stable|1.31.0|1.26.0|1.22.0)$ ]]; then
+ FEATURES="$FEATURES rand"
+fi
+if [[ "$TRAVIS_RUST_VERSION" =~ ^(nightly|beta|stable|1.31.0|1.26.0)$ ]]; then
+ FEATURES="$FEATURES i128"
+fi
+if [[ "$TRAVIS_RUST_VERSION" =~ ^(nightly|beta|stable|1.31.0)$ ]]; then
+ FEATURES="$FEATURES quickcheck quickcheck_macros"
+fi
+
+# num-bigint should build and test everywhere.
+cargo build --verbose
+cargo test --verbose
+
+# It should build with minimal features too.
+cargo build --no-default-features --features="std"
+cargo test --no-default-features --features="std"
+
+# Each isolated feature should also work everywhere.
+for feature in $FEATURES; do
+ cargo build --verbose --no-default-features --features="std $feature"
+ cargo test --verbose --no-default-features --features="std $feature"
+done
+
+# test all supported features together
+cargo build --features="std $FEATURES"
+cargo test --features="std $FEATURES"
+
+# make sure benchmarks can be built
+if [[ "$TRAVIS_RUST_VERSION" == "nightly" ]]; then
+ cargo bench --all-features --no-run
+fi
diff --git a/third_party/rust/num-bigint/src/algorithms.rs b/third_party/rust/num-bigint/src/algorithms.rs
new file mode 100644
index 0000000000..26f29b8154
--- /dev/null
+++ b/third_party/rust/num-bigint/src/algorithms.rs
@@ -0,0 +1,789 @@
+use std::borrow::Cow;
+use std::cmp;
+use std::cmp::Ordering::{self, Equal, Greater, Less};
+use std::iter::repeat;
+use std::mem;
+use traits;
+use traits::{One, Zero};
+
+use biguint::BigUint;
+
+use bigint::BigInt;
+use bigint::Sign;
+use bigint::Sign::{Minus, NoSign, Plus};
+
+use big_digit::{self, BigDigit, DoubleBigDigit, SignedDoubleBigDigit};
+
+// Generic functions for add/subtract/multiply with carry/borrow:
+
+// Add with carry:
+#[inline]
+fn adc(a: BigDigit, b: BigDigit, acc: &mut DoubleBigDigit) -> BigDigit {
+ *acc += DoubleBigDigit::from(a);
+ *acc += DoubleBigDigit::from(b);
+ let lo = *acc as BigDigit;
+ *acc >>= big_digit::BITS;
+ lo
+}
+
+// Subtract with borrow:
+#[inline]
+fn sbb(a: BigDigit, b: BigDigit, acc: &mut SignedDoubleBigDigit) -> BigDigit {
+ *acc += SignedDoubleBigDigit::from(a);
+ *acc -= SignedDoubleBigDigit::from(b);
+ let lo = *acc as BigDigit;
+ *acc >>= big_digit::BITS;
+ lo
+}
+
+#[inline]
+pub fn mac_with_carry(a: BigDigit, b: BigDigit, c: BigDigit, acc: &mut DoubleBigDigit) -> BigDigit {
+ *acc += DoubleBigDigit::from(a);
+ *acc += DoubleBigDigit::from(b) * DoubleBigDigit::from(c);
+ let lo = *acc as BigDigit;
+ *acc >>= big_digit::BITS;
+ lo
+}
+
+#[inline]
+pub fn mul_with_carry(a: BigDigit, b: BigDigit, acc: &mut DoubleBigDigit) -> BigDigit {
+ *acc += DoubleBigDigit::from(a) * DoubleBigDigit::from(b);
+ let lo = *acc as BigDigit;
+ *acc >>= big_digit::BITS;
+ lo
+}
+
+/// Divide a two digit numerator by a one digit divisor, returns quotient and remainder:
+///
+/// Note: the caller must ensure that both the quotient and remainder will fit into a single digit.
+/// This is _not_ true for an arbitrary numerator/denominator.
+///
+/// (This function also matches what the x86 divide instruction does).
+#[inline]
+fn div_wide(hi: BigDigit, lo: BigDigit, divisor: BigDigit) -> (BigDigit, BigDigit) {
+ debug_assert!(hi < divisor);
+
+ let lhs = big_digit::to_doublebigdigit(hi, lo);
+ let rhs = DoubleBigDigit::from(divisor);
+ ((lhs / rhs) as BigDigit, (lhs % rhs) as BigDigit)
+}
+
+pub fn div_rem_digit(mut a: BigUint, b: BigDigit) -> (BigUint, BigDigit) {
+ let mut rem = 0;
+
+ for d in a.data.iter_mut().rev() {
+ let (q, r) = div_wide(rem, *d, b);
+ *d = q;
+ rem = r;
+ }
+
+ (a.normalized(), rem)
+}
+
+pub fn rem_digit(a: &BigUint, b: BigDigit) -> BigDigit {
+ let mut rem: DoubleBigDigit = 0;
+ for &digit in a.data.iter().rev() {
+ rem = (rem << big_digit::BITS) + DoubleBigDigit::from(digit);
+ rem %= DoubleBigDigit::from(b);
+ }
+
+ rem as BigDigit
+}
+
+// Only for the Add impl:
+#[inline]
+pub fn __add2(a: &mut [BigDigit], b: &[BigDigit]) -> BigDigit {
+ debug_assert!(a.len() >= b.len());
+
+ let mut carry = 0;
+ let (a_lo, a_hi) = a.split_at_mut(b.len());
+
+ for (a, b) in a_lo.iter_mut().zip(b) {
+ *a = adc(*a, *b, &mut carry);
+ }
+
+ if carry != 0 {
+ for a in a_hi {
+ *a = adc(*a, 0, &mut carry);
+ if carry == 0 {
+ break;
+ }
+ }
+ }
+
+ carry as BigDigit
+}
+
+/// Two argument addition of raw slices:
+/// a += b
+///
+/// The caller _must_ ensure that a is big enough to store the result - typically this means
+/// resizing a to max(a.len(), b.len()) + 1, to fit a possible carry.
+pub fn add2(a: &mut [BigDigit], b: &[BigDigit]) {
+ let carry = __add2(a, b);
+
+ debug_assert!(carry == 0);
+}
+
+pub fn sub2(a: &mut [BigDigit], b: &[BigDigit]) {
+ let mut borrow = 0;
+
+ let len = cmp::min(a.len(), b.len());
+ let (a_lo, a_hi) = a.split_at_mut(len);
+ let (b_lo, b_hi) = b.split_at(len);
+
+ for (a, b) in a_lo.iter_mut().zip(b_lo) {
+ *a = sbb(*a, *b, &mut borrow);
+ }
+
+ if borrow != 0 {
+ for a in a_hi {
+ *a = sbb(*a, 0, &mut borrow);
+ if borrow == 0 {
+ break;
+ }
+ }
+ }
+
+ // note: we're _required_ to fail on underflow
+ assert!(
+ borrow == 0 && b_hi.iter().all(|x| *x == 0),
+ "Cannot subtract b from a because b is larger than a."
+ );
+}
+
+// Only for the Sub impl. `a` and `b` must have same length.
+#[inline]
+pub fn __sub2rev(a: &[BigDigit], b: &mut [BigDigit]) -> BigDigit {
+ debug_assert!(b.len() == a.len());
+
+ let mut borrow = 0;
+
+ for (ai, bi) in a.iter().zip(b) {
+ *bi = sbb(*ai, *bi, &mut borrow);
+ }
+
+ borrow as BigDigit
+}
+
+pub fn sub2rev(a: &[BigDigit], b: &mut [BigDigit]) {
+ debug_assert!(b.len() >= a.len());
+
+ let len = cmp::min(a.len(), b.len());
+ let (a_lo, a_hi) = a.split_at(len);
+ let (b_lo, b_hi) = b.split_at_mut(len);
+
+ let borrow = __sub2rev(a_lo, b_lo);
+
+ assert!(a_hi.is_empty());
+
+ // note: we're _required_ to fail on underflow
+ assert!(
+ borrow == 0 && b_hi.iter().all(|x| *x == 0),
+ "Cannot subtract b from a because b is larger than a."
+ );
+}
+
+pub fn sub_sign(a: &[BigDigit], b: &[BigDigit]) -> (Sign, BigUint) {
+ // Normalize:
+ let a = &a[..a.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)];
+ let b = &b[..b.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)];
+
+ match cmp_slice(a, b) {
+ Greater => {
+ let mut a = a.to_vec();
+ sub2(&mut a, b);
+ (Plus, BigUint::new(a))
+ }
+ Less => {
+ let mut b = b.to_vec();
+ sub2(&mut b, a);
+ (Minus, BigUint::new(b))
+ }
+ _ => (NoSign, Zero::zero()),
+ }
+}
+
+/// Three argument multiply accumulate:
+/// acc += b * c
+pub fn mac_digit(acc: &mut [BigDigit], b: &[BigDigit], c: BigDigit) {
+ if c == 0 {
+ return;
+ }
+
+ let mut carry = 0;
+ let (a_lo, a_hi) = acc.split_at_mut(b.len());
+
+ for (a, &b) in a_lo.iter_mut().zip(b) {
+ *a = mac_with_carry(*a, b, c, &mut carry);
+ }
+
+ let mut a = a_hi.iter_mut();
+ while carry != 0 {
+ let a = a.next().expect("carry overflow during multiplication!");
+ *a = adc(*a, 0, &mut carry);
+ }
+}
+
+/// Three argument multiply accumulate:
+/// acc += b * c
+fn mac3(acc: &mut [BigDigit], b: &[BigDigit], c: &[BigDigit]) {
+ let (x, y) = if b.len() < c.len() { (b, c) } else { (c, b) };
+
+ // We use three algorithms for different input sizes.
+ //
+ // - For small inputs, long multiplication is fastest.
+ // - Next we use Karatsuba multiplication (Toom-2), which we have optimized
+ // to avoid unnecessary allocations for intermediate values.
+ // - For the largest inputs we use Toom-3, which better optimizes the
+ // number of operations, but uses more temporary allocations.
+ //
+ // The thresholds are somewhat arbitrary, chosen by evaluating the results
+ // of `cargo bench --bench bigint multiply`.
+
+ if x.len() <= 32 {
+ // Long multiplication:
+ for (i, xi) in x.iter().enumerate() {
+ mac_digit(&mut acc[i..], y, *xi);
+ }
+ } else if x.len() <= 256 {
+ /*
+ * Karatsuba multiplication:
+ *
+ * The idea is that we break x and y up into two smaller numbers that each have about half
+ * as many digits, like so (note that multiplying by b is just a shift):
+ *
+ * x = x0 + x1 * b
+ * y = y0 + y1 * b
+ *
+ * With some algebra, we can compute x * y with three smaller products, where the inputs to
+ * each of the smaller products have only about half as many digits as x and y:
+ *
+ * x * y = (x0 + x1 * b) * (y0 + y1 * b)
+ *
+ * x * y = x0 * y0
+ * + x0 * y1 * b
+ * + x1 * y0 * b
+ * + x1 * y1 * b^2
+ *
+ * Let p0 = x0 * y0 and p2 = x1 * y1:
+ *
+ * x * y = p0
+ * + (x0 * y1 + x1 * y0) * b
+ * + p2 * b^2
+ *
+ * The real trick is that middle term:
+ *
+ * x0 * y1 + x1 * y0
+ *
+ * = x0 * y1 + x1 * y0 - p0 + p0 - p2 + p2
+ *
+ * = x0 * y1 + x1 * y0 - x0 * y0 - x1 * y1 + p0 + p2
+ *
+ * Now we complete the square:
+ *
+ * = -(x0 * y0 - x0 * y1 - x1 * y0 + x1 * y1) + p0 + p2
+ *
+ * = -((x1 - x0) * (y1 - y0)) + p0 + p2
+ *
+ * Let p1 = (x1 - x0) * (y1 - y0), and substitute back into our original formula:
+ *
+ * x * y = p0
+ * + (p0 + p2 - p1) * b
+ * + p2 * b^2
+ *
+ * Where the three intermediate products are:
+ *
+ * p0 = x0 * y0
+ * p1 = (x1 - x0) * (y1 - y0)
+ * p2 = x1 * y1
+ *
+ * In doing the computation, we take great care to avoid unnecessary temporary variables
+ * (since creating a BigUint requires a heap allocation): thus, we rearrange the formula a
+ * bit so we can use the same temporary variable for all the intermediate products:
+ *
+ * x * y = p2 * b^2 + p2 * b
+ * + p0 * b + p0
+ * - p1 * b
+ *
+ * The other trick we use is instead of doing explicit shifts, we slice acc at the
+ * appropriate offset when doing the add.
+ */
+
+ /*
+ * When x is smaller than y, it's significantly faster to pick b such that x is split in
+ * half, not y:
+ */
+ let b = x.len() / 2;
+ let (x0, x1) = x.split_at(b);
+ let (y0, y1) = y.split_at(b);
+
+ /*
+ * We reuse the same BigUint for all the intermediate multiplies and have to size p
+ * appropriately here: x1.len() >= x0.len and y1.len() >= y0.len():
+ */
+ let len = x1.len() + y1.len() + 1;
+ let mut p = BigUint { data: vec![0; len] };
+
+ // p2 = x1 * y1
+ mac3(&mut p.data[..], x1, y1);
+
+ // Not required, but the adds go faster if we drop any unneeded 0s from the end:
+ p.normalize();
+
+ add2(&mut acc[b..], &p.data[..]);
+ add2(&mut acc[b * 2..], &p.data[..]);
+
+ // Zero out p before the next multiply:
+ p.data.truncate(0);
+ p.data.extend(repeat(0).take(len));
+
+ // p0 = x0 * y0
+ mac3(&mut p.data[..], x0, y0);
+ p.normalize();
+
+ add2(&mut acc[..], &p.data[..]);
+ add2(&mut acc[b..], &p.data[..]);
+
+ // p1 = (x1 - x0) * (y1 - y0)
+ // We do this one last, since it may be negative and acc can't ever be negative:
+ let (j0_sign, j0) = sub_sign(x1, x0);
+ let (j1_sign, j1) = sub_sign(y1, y0);
+
+ match j0_sign * j1_sign {
+ Plus => {
+ p.data.truncate(0);
+ p.data.extend(repeat(0).take(len));
+
+ mac3(&mut p.data[..], &j0.data[..], &j1.data[..]);
+ p.normalize();
+
+ sub2(&mut acc[b..], &p.data[..]);
+ }
+ Minus => {
+ mac3(&mut acc[b..], &j0.data[..], &j1.data[..]);
+ }
+ NoSign => (),
+ }
+ } else {
+ // Toom-3 multiplication:
+ //
+ // Toom-3 is like Karatsuba above, but dividing the inputs into three parts.
+ // Both are instances of Toom-Cook, using `k=3` and `k=2` respectively.
+ //
+ // The general idea is to treat the large integers digits as
+ // polynomials of a certain degree and determine the coefficients/digits
+ // of the product of the two via interpolation of the polynomial product.
+ let i = y.len() / 3 + 1;
+
+ let x0_len = cmp::min(x.len(), i);
+ let x1_len = cmp::min(x.len() - x0_len, i);
+
+ let y0_len = i;
+ let y1_len = cmp::min(y.len() - y0_len, i);
+
+ // Break x and y into three parts, representating an order two polynomial.
+ // t is chosen to be the size of a digit so we can use faster shifts
+ // in place of multiplications.
+ //
+ // x(t) = x2*t^2 + x1*t + x0
+ let x0 = BigInt::from_slice(Plus, &x[..x0_len]);
+ let x1 = BigInt::from_slice(Plus, &x[x0_len..x0_len + x1_len]);
+ let x2 = BigInt::from_slice(Plus, &x[x0_len + x1_len..]);
+
+ // y(t) = y2*t^2 + y1*t + y0
+ let y0 = BigInt::from_slice(Plus, &y[..y0_len]);
+ let y1 = BigInt::from_slice(Plus, &y[y0_len..y0_len + y1_len]);
+ let y2 = BigInt::from_slice(Plus, &y[y0_len + y1_len..]);
+
+ // Let w(t) = x(t) * y(t)
+ //
+ // This gives us the following order-4 polynomial.
+ //
+ // w(t) = w4*t^4 + w3*t^3 + w2*t^2 + w1*t + w0
+ //
+ // We need to find the coefficients w4, w3, w2, w1 and w0. Instead
+ // of simply multiplying the x and y in total, we can evaluate w
+ // at 5 points. An n-degree polynomial is uniquely identified by (n + 1)
+ // points.
+ //
+ // It is arbitrary as to what points we evaluate w at but we use the
+ // following.
+ //
+ // w(t) at t = 0, 1, -1, -2 and inf
+ //
+ // The values for w(t) in terms of x(t)*y(t) at these points are:
+ //
+ // let a = w(0) = x0 * y0
+ // let b = w(1) = (x2 + x1 + x0) * (y2 + y1 + y0)
+ // let c = w(-1) = (x2 - x1 + x0) * (y2 - y1 + y0)
+ // let d = w(-2) = (4*x2 - 2*x1 + x0) * (4*y2 - 2*y1 + y0)
+ // let e = w(inf) = x2 * y2 as t -> inf
+
+ // x0 + x2, avoiding temporaries
+ let p = &x0 + &x2;
+
+ // y0 + y2, avoiding temporaries
+ let q = &y0 + &y2;
+
+ // x2 - x1 + x0, avoiding temporaries
+ let p2 = &p - &x1;
+
+ // y2 - y1 + y0, avoiding temporaries
+ let q2 = &q - &y1;
+
+ // w(0)
+ let r0 = &x0 * &y0;
+
+ // w(inf)
+ let r4 = &x2 * &y2;
+
+ // w(1)
+ let r1 = (p + x1) * (q + y1);
+
+ // w(-1)
+ let r2 = &p2 * &q2;
+
+ // w(-2)
+ let r3 = ((p2 + x2) * 2 - x0) * ((q2 + y2) * 2 - y0);
+
+ // Evaluating these points gives us the following system of linear equations.
+ //
+ // 0 0 0 0 1 | a
+ // 1 1 1 1 1 | b
+ // 1 -1 1 -1 1 | c
+ // 16 -8 4 -2 1 | d
+ // 1 0 0 0 0 | e
+ //
+ // The solved equation (after gaussian elimination or similar)
+ // in terms of its coefficients:
+ //
+ // w0 = w(0)
+ // w1 = w(0)/2 + w(1)/3 - w(-1) + w(2)/6 - 2*w(inf)
+ // w2 = -w(0) + w(1)/2 + w(-1)/2 - w(inf)
+ // w3 = -w(0)/2 + w(1)/6 + w(-1)/2 - w(1)/6
+ // w4 = w(inf)
+ //
+ // This particular sequence is given by Bodrato and is an interpolation
+ // of the above equations.
+ let mut comp3: BigInt = (r3 - &r1) / 3;
+ let mut comp1: BigInt = (r1 - &r2) / 2;
+ let mut comp2: BigInt = r2 - &r0;
+ comp3 = (&comp2 - comp3) / 2 + &r4 * 2;
+ comp2 = comp2 + &comp1 - &r4;
+ comp1 = comp1 - &comp3;
+
+ // Recomposition. The coefficients of the polynomial are now known.
+ //
+ // Evaluate at w(t) where t is our given base to get the result.
+ let result = r0
+ + (comp1 << 32 * i)
+ + (comp2 << 2 * 32 * i)
+ + (comp3 << 3 * 32 * i)
+ + (r4 << 4 * 32 * i);
+ let result_pos = result.to_biguint().unwrap();
+ add2(&mut acc[..], &result_pos.data);
+ }
+}
+
+pub fn mul3(x: &[BigDigit], y: &[BigDigit]) -> BigUint {
+ let len = x.len() + y.len() + 1;
+ let mut prod = BigUint { data: vec![0; len] };
+
+ mac3(&mut prod.data[..], x, y);
+ prod.normalized()
+}
+
+pub fn scalar_mul(a: &mut [BigDigit], b: BigDigit) -> BigDigit {
+ let mut carry = 0;
+ for a in a.iter_mut() {
+ *a = mul_with_carry(*a, b, &mut carry);
+ }
+ carry as BigDigit
+}
+
+pub fn div_rem(mut u: BigUint, mut d: BigUint) -> (BigUint, BigUint) {
+ if d.is_zero() {
+ panic!()
+ }
+ if u.is_zero() {
+ return (Zero::zero(), Zero::zero());
+ }
+
+ if d.data.len() == 1 {
+ if d.data == [1] {
+ return (u, Zero::zero());
+ }
+ let (div, rem) = div_rem_digit(u, d.data[0]);
+ // reuse d
+ d.data.clear();
+ d += rem;
+ return (div, d);
+ }
+
+ // Required or the q_len calculation below can underflow:
+ match u.cmp(&d) {
+ Less => return (Zero::zero(), u),
+ Equal => {
+ u.set_one();
+ return (u, Zero::zero());
+ }
+ Greater => {} // Do nothing
+ }
+
+ // This algorithm is from Knuth, TAOCP vol 2 section 4.3, algorithm D:
+ //
+ // First, normalize the arguments so the highest bit in the highest digit of the divisor is
+ // set: the main loop uses the highest digit of the divisor for generating guesses, so we
+ // want it to be the largest number we can efficiently divide by.
+ //
+ let shift = d.data.last().unwrap().leading_zeros() as usize;
+ let (q, r) = if shift == 0 {
+ // no need to clone d
+ div_rem_core(u, &d)
+ } else {
+ div_rem_core(u << shift, &(d << shift))
+ };
+ // renormalize the remainder
+ (q, r >> shift)
+}
+
+pub fn div_rem_ref(u: &BigUint, d: &BigUint) -> (BigUint, BigUint) {
+ if d.is_zero() {
+ panic!()
+ }
+ if u.is_zero() {
+ return (Zero::zero(), Zero::zero());
+ }
+
+ if d.data.len() == 1 {
+ if d.data == [1] {
+ return (u.clone(), Zero::zero());
+ }
+
+ let (div, rem) = div_rem_digit(u.clone(), d.data[0]);
+ return (div, rem.into());
+ }
+
+ // Required or the q_len calculation below can underflow:
+ match u.cmp(d) {
+ Less => return (Zero::zero(), u.clone()),
+ Equal => return (One::one(), Zero::zero()),
+ Greater => {} // Do nothing
+ }
+
+ // This algorithm is from Knuth, TAOCP vol 2 section 4.3, algorithm D:
+ //
+ // First, normalize the arguments so the highest bit in the highest digit of the divisor is
+ // set: the main loop uses the highest digit of the divisor for generating guesses, so we
+ // want it to be the largest number we can efficiently divide by.
+ //
+ let shift = d.data.last().unwrap().leading_zeros() as usize;
+
+ let (q, r) = if shift == 0 {
+ // no need to clone d
+ div_rem_core(u.clone(), d)
+ } else {
+ div_rem_core(u << shift, &(d << shift))
+ };
+ // renormalize the remainder
+ (q, r >> shift)
+}
+
+/// an implementation of Knuth, TAOCP vol 2 section 4.3, algorithm D
+///
+/// # Correctness
+///
+/// This function requires the following conditions to run correctly and/or effectively
+///
+/// - `a > b`
+/// - `d.data.len() > 1`
+/// - `d.data.last().unwrap().leading_zeros() == 0`
+fn div_rem_core(mut a: BigUint, b: &BigUint) -> (BigUint, BigUint) {
+ // The algorithm works by incrementally calculating "guesses", q0, for part of the
+ // remainder. Once we have any number q0 such that q0 * b <= a, we can set
+ //
+ // q += q0
+ // a -= q0 * b
+ //
+ // and then iterate until a < b. Then, (q, a) will be our desired quotient and remainder.
+ //
+ // q0, our guess, is calculated by dividing the last few digits of a by the last digit of b
+ // - this should give us a guess that is "close" to the actual quotient, but is possibly
+ // greater than the actual quotient. If q0 * b > a, we simply use iterated subtraction
+ // until we have a guess such that q0 * b <= a.
+ //
+
+ let bn = *b.data.last().unwrap();
+ let q_len = a.data.len() - b.data.len() + 1;
+ let mut q = BigUint {
+ data: vec![0; q_len],
+ };
+
+ // We reuse the same temporary to avoid hitting the allocator in our inner loop - this is
+ // sized to hold a0 (in the common case; if a particular digit of the quotient is zero a0
+ // can be bigger).
+ //
+ let mut tmp = BigUint {
+ data: Vec::with_capacity(2),
+ };
+
+ for j in (0..q_len).rev() {
+ /*
+ * When calculating our next guess q0, we don't need to consider the digits below j
+ * + b.data.len() - 1: we're guessing digit j of the quotient (i.e. q0 << j) from
+ * digit bn of the divisor (i.e. bn << (b.data.len() - 1) - so the product of those
+ * two numbers will be zero in all digits up to (j + b.data.len() - 1).
+ */
+ let offset = j + b.data.len() - 1;
+ if offset >= a.data.len() {
+ continue;
+ }
+
+ /* just avoiding a heap allocation: */
+ let mut a0 = tmp;
+ a0.data.truncate(0);
+ a0.data.extend(a.data[offset..].iter().cloned());
+
+ /*
+ * q0 << j * big_digit::BITS is our actual quotient estimate - we do the shifts
+ * implicitly at the end, when adding and subtracting to a and q. Not only do we
+ * save the cost of the shifts, the rest of the arithmetic gets to work with
+ * smaller numbers.
+ */
+ let (mut q0, _) = div_rem_digit(a0, bn);
+ let mut prod = b * &q0;
+
+ while cmp_slice(&prod.data[..], &a.data[j..]) == Greater {
+ let one: BigUint = One::one();
+ q0 = q0 - one;
+ prod = prod - b;
+ }
+
+ add2(&mut q.data[j..], &q0.data[..]);
+ sub2(&mut a.data[j..], &prod.data[..]);
+ a.normalize();
+
+ tmp = q0;
+ }
+
+ debug_assert!(&a < b);
+
+ (q.normalized(), a)
+}
+
+/// Find last set bit
+/// fls(0) == 0, fls(u32::MAX) == 32
+pub fn fls<T: traits::PrimInt>(v: T) -> usize {
+ mem::size_of::<T>() * 8 - v.leading_zeros() as usize
+}
+
+pub fn ilog2<T: traits::PrimInt>(v: T) -> usize {
+ fls(v) - 1
+}
+
+#[inline]
+pub fn biguint_shl(n: Cow<BigUint>, bits: usize) -> BigUint {
+ let n_unit = bits / big_digit::BITS;
+ let mut data = match n_unit {
+ 0 => n.into_owned().data,
+ _ => {
+ let len = n_unit + n.data.len() + 1;
+ let mut data = Vec::with_capacity(len);
+ data.extend(repeat(0).take(n_unit));
+ data.extend(n.data.iter().cloned());
+ data
+ }
+ };
+
+ let n_bits = bits % big_digit::BITS;
+ if n_bits > 0 {
+ let mut carry = 0;
+ for elem in data[n_unit..].iter_mut() {
+ let new_carry = *elem >> (big_digit::BITS - n_bits);
+ *elem = (*elem << n_bits) | carry;
+ carry = new_carry;
+ }
+ if carry != 0 {
+ data.push(carry);
+ }
+ }
+
+ BigUint::new(data)
+}
+
+#[inline]
+pub fn biguint_shr(n: Cow<BigUint>, bits: usize) -> BigUint {
+ let n_unit = bits / big_digit::BITS;
+ if n_unit >= n.data.len() {
+ return Zero::zero();
+ }
+ let mut data = match n {
+ Cow::Borrowed(n) => n.data[n_unit..].to_vec(),
+ Cow::Owned(mut n) => {
+ n.data.drain(..n_unit);
+ n.data
+ }
+ };
+
+ let n_bits = bits % big_digit::BITS;
+ if n_bits > 0 {
+ let mut borrow = 0;
+ for elem in data.iter_mut().rev() {
+ let new_borrow = *elem << (big_digit::BITS - n_bits);
+ *elem = (*elem >> n_bits) | borrow;
+ borrow = new_borrow;
+ }
+ }
+
+ BigUint::new(data)
+}
+
+pub fn cmp_slice(a: &[BigDigit], b: &[BigDigit]) -> Ordering {
+ debug_assert!(a.last() != Some(&0));
+ debug_assert!(b.last() != Some(&0));
+
+ let (a_len, b_len) = (a.len(), b.len());
+ if a_len < b_len {
+ return Less;
+ }
+ if a_len > b_len {
+ return Greater;
+ }
+
+ for (&ai, &bi) in a.iter().rev().zip(b.iter().rev()) {
+ if ai < bi {
+ return Less;
+ }
+ if ai > bi {
+ return Greater;
+ }
+ }
+ return Equal;
+}
+
+#[cfg(test)]
+mod algorithm_tests {
+ use big_digit::BigDigit;
+ use traits::Num;
+ use Sign::Plus;
+ use {BigInt, BigUint};
+
+ #[test]
+ fn test_sub_sign() {
+ use super::sub_sign;
+
+ fn sub_sign_i(a: &[BigDigit], b: &[BigDigit]) -> BigInt {
+ let (sign, val) = sub_sign(a, b);
+ BigInt::from_biguint(sign, val)
+ }
+
+ let a = BigUint::from_str_radix("265252859812191058636308480000000", 10).unwrap();
+ let b = BigUint::from_str_radix("26525285981219105863630848000000", 10).unwrap();
+ let a_i = BigInt::from_biguint(Plus, a.clone());
+ let b_i = BigInt::from_biguint(Plus, b.clone());
+
+ assert_eq!(sub_sign_i(&a.data[..], &b.data[..]), &a_i - &b_i);
+ assert_eq!(sub_sign_i(&b.data[..], &a.data[..]), &b_i - &a_i);
+ }
+}
diff --git a/third_party/rust/num-bigint/src/bigint.rs b/third_party/rust/num-bigint/src/bigint.rs
new file mode 100644
index 0000000000..93c72be6af
--- /dev/null
+++ b/third_party/rust/num-bigint/src/bigint.rs
@@ -0,0 +1,3084 @@
+#[allow(deprecated, unused_imports)]
+use std::ascii::AsciiExt;
+use std::cmp::Ordering::{self, Equal, Greater, Less};
+use std::default::Default;
+use std::fmt;
+use std::iter::{Product, Sum};
+use std::mem;
+use std::ops::{
+ Add, AddAssign, BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Div, DivAssign,
+ Mul, MulAssign, Neg, Not, Rem, RemAssign, Shl, ShlAssign, Shr, ShrAssign, Sub, SubAssign,
+};
+use std::str::{self, FromStr};
+#[cfg(has_i128)]
+use std::{i128, u128};
+use std::{i64, u64};
+
+#[cfg(feature = "serde")]
+use serde;
+
+use integer::{Integer, Roots};
+use traits::{
+ CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, FromPrimitive, Num, One, Pow, Signed,
+ ToPrimitive, Zero,
+};
+
+use self::Sign::{Minus, NoSign, Plus};
+
+use super::ParseBigIntError;
+use big_digit::{self, BigDigit, DoubleBigDigit};
+use biguint;
+use biguint::to_str_radix_reversed;
+use biguint::{BigUint, IntDigits};
+
+use IsizePromotion;
+use UsizePromotion;
+
+#[cfg(feature = "quickcheck")]
+use quickcheck::{Arbitrary, Gen};
+
+/// A Sign is a `BigInt`'s composing element.
+#[derive(PartialEq, PartialOrd, Eq, Ord, Copy, Clone, Debug, Hash)]
+pub enum Sign {
+ Minus,
+ NoSign,
+ Plus,
+}
+
+impl Neg for Sign {
+ type Output = Sign;
+
+ /// Negate Sign value.
+ #[inline]
+ fn neg(self) -> Sign {
+ match self {
+ Minus => Plus,
+ NoSign => NoSign,
+ Plus => Minus,
+ }
+ }
+}
+
+impl Mul<Sign> for Sign {
+ type Output = Sign;
+
+ #[inline]
+ fn mul(self, other: Sign) -> Sign {
+ match (self, other) {
+ (NoSign, _) | (_, NoSign) => NoSign,
+ (Plus, Plus) | (Minus, Minus) => Plus,
+ (Plus, Minus) | (Minus, Plus) => Minus,
+ }
+ }
+}
+
+#[cfg(feature = "serde")]
+impl serde::Serialize for Sign {
+ fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
+ where
+ S: serde::Serializer,
+ {
+ // Note: do not change the serialization format, or it may break
+ // forward and backward compatibility of serialized data!
+ match *self {
+ Sign::Minus => (-1i8).serialize(serializer),
+ Sign::NoSign => 0i8.serialize(serializer),
+ Sign::Plus => 1i8.serialize(serializer),
+ }
+ }
+}
+
+#[cfg(feature = "serde")]
+impl<'de> serde::Deserialize<'de> for Sign {
+ fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
+ where
+ D: serde::Deserializer<'de>,
+ {
+ use serde::de::Error;
+ use serde::de::Unexpected;
+
+ let sign: i8 = serde::Deserialize::deserialize(deserializer)?;
+ match sign {
+ -1 => Ok(Sign::Minus),
+ 0 => Ok(Sign::NoSign),
+ 1 => Ok(Sign::Plus),
+ _ => Err(D::Error::invalid_value(
+ Unexpected::Signed(sign.into()),
+ &"a sign of -1, 0, or 1",
+ )),
+ }
+ }
+}
+
+/// A big signed integer type.
+#[derive(Clone, Debug, Hash)]
+pub struct BigInt {
+ sign: Sign,
+ data: BigUint,
+}
+
+#[cfg(feature = "quickcheck")]
+impl Arbitrary for BigInt {
+ fn arbitrary<G: Gen>(g: &mut G) -> Self {
+ let positive = bool::arbitrary(g);
+ let sign = if positive { Sign::Plus } else { Sign::Minus };
+ Self::from_biguint(sign, BigUint::arbitrary(g))
+ }
+
+ #[allow(bare_trait_objects)] // `dyn` needs Rust 1.27 to parse, even when cfg-disabled
+ fn shrink(&self) -> Box<Iterator<Item = Self>> {
+ let sign = self.sign();
+ let unsigned_shrink = self.data.shrink();
+ Box::new(unsigned_shrink.map(move |x| BigInt::from_biguint(sign, x)))
+ }
+}
+
+/// Return the magnitude of a `BigInt`.
+///
+/// This is in a private module, pseudo pub(crate)
+#[cfg(feature = "rand")]
+pub fn magnitude(i: &BigInt) -> &BigUint {
+ &i.data
+}
+
+/// Return the owned magnitude of a `BigInt`.
+///
+/// This is in a private module, pseudo pub(crate)
+#[cfg(feature = "rand")]
+pub fn into_magnitude(i: BigInt) -> BigUint {
+ i.data
+}
+
+impl PartialEq for BigInt {
+ #[inline]
+ fn eq(&self, other: &BigInt) -> bool {
+ self.cmp(other) == Equal
+ }
+}
+
+impl Eq for BigInt {}
+
+impl PartialOrd for BigInt {
+ #[inline]
+ fn partial_cmp(&self, other: &BigInt) -> Option<Ordering> {
+ Some(self.cmp(other))
+ }
+}
+
+impl Ord for BigInt {
+ #[inline]
+ fn cmp(&self, other: &BigInt) -> Ordering {
+ let scmp = self.sign.cmp(&other.sign);
+ if scmp != Equal {
+ return scmp;
+ }
+
+ match self.sign {
+ NoSign => Equal,
+ Plus => self.data.cmp(&other.data),
+ Minus => other.data.cmp(&self.data),
+ }
+ }
+}
+
+impl Default for BigInt {
+ #[inline]
+ fn default() -> BigInt {
+ Zero::zero()
+ }
+}
+
+impl fmt::Display for BigInt {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.pad_integral(!self.is_negative(), "", &self.data.to_str_radix(10))
+ }
+}
+
+impl fmt::Binary for BigInt {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.pad_integral(!self.is_negative(), "0b", &self.data.to_str_radix(2))
+ }
+}
+
+impl fmt::Octal for BigInt {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.pad_integral(!self.is_negative(), "0o", &self.data.to_str_radix(8))
+ }
+}
+
+impl fmt::LowerHex for BigInt {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.pad_integral(!self.is_negative(), "0x", &self.data.to_str_radix(16))
+ }
+}
+
+impl fmt::UpperHex for BigInt {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ let mut s = self.data.to_str_radix(16);
+ s.make_ascii_uppercase();
+ f.pad_integral(!self.is_negative(), "0x", &s)
+ }
+}
+
+// Negation in two's complement.
+// acc must be initialized as 1 for least-significant digit.
+//
+// When negating, a carry (acc == 1) means that all the digits
+// considered to this point were zero. This means that if all the
+// digits of a negative BigInt have been considered, carry must be
+// zero as we cannot have negative zero.
+//
+// 01 -> ...f ff
+// ff -> ...f 01
+// 01 00 -> ...f ff 00
+// 01 01 -> ...f fe ff
+// 01 ff -> ...f fe 01
+// ff 00 -> ...f 01 00
+// ff 01 -> ...f 00 ff
+// ff ff -> ...f 00 01
+#[inline]
+fn negate_carry(a: BigDigit, acc: &mut DoubleBigDigit) -> BigDigit {
+ *acc += DoubleBigDigit::from(!a);
+ let lo = *acc as BigDigit;
+ *acc >>= big_digit::BITS;
+ lo
+}
+
+// !-2 = !...f fe = ...0 01 = +1
+// !-1 = !...f ff = ...0 00 = 0
+// ! 0 = !...0 00 = ...f ff = -1
+// !+1 = !...0 01 = ...f fe = -2
+impl Not for BigInt {
+ type Output = BigInt;
+
+ fn not(mut self) -> BigInt {
+ match self.sign {
+ NoSign | Plus => {
+ self.data += 1u32;
+ self.sign = Minus;
+ }
+ Minus => {
+ self.data -= 1u32;
+ self.sign = if self.data.is_zero() { NoSign } else { Plus };
+ }
+ }
+ self
+ }
+}
+
+impl<'a> Not for &'a BigInt {
+ type Output = BigInt;
+
+ fn not(self) -> BigInt {
+ match self.sign {
+ NoSign | Plus => BigInt::from_biguint(Minus, &self.data + 1u32),
+ Minus => BigInt::from_biguint(Plus, &self.data - 1u32),
+ }
+ }
+}
+
+// + 1 & -ff = ...0 01 & ...f 01 = ...0 01 = + 1
+// +ff & - 1 = ...0 ff & ...f ff = ...0 ff = +ff
+// answer is pos, has length of a
+fn bitand_pos_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) {
+ let mut carry_b = 1;
+ for (ai, &bi) in a.iter_mut().zip(b.iter()) {
+ let twos_b = negate_carry(bi, &mut carry_b);
+ *ai &= twos_b;
+ }
+ debug_assert!(b.len() > a.len() || carry_b == 0);
+}
+
+// - 1 & +ff = ...f ff & ...0 ff = ...0 ff = +ff
+// -ff & + 1 = ...f 01 & ...0 01 = ...0 01 = + 1
+// answer is pos, has length of b
+fn bitand_neg_pos(a: &mut Vec<BigDigit>, b: &[BigDigit]) {
+ let mut carry_a = 1;
+ for (ai, &bi) in a.iter_mut().zip(b.iter()) {
+ let twos_a = negate_carry(*ai, &mut carry_a);
+ *ai = twos_a & bi;
+ }
+ debug_assert!(a.len() > b.len() || carry_a == 0);
+ if a.len() > b.len() {
+ a.truncate(b.len());
+ } else if b.len() > a.len() {
+ let extra = &b[a.len()..];
+ a.extend(extra.iter().cloned());
+ }
+}
+
+// - 1 & -ff = ...f ff & ...f 01 = ...f 01 = - ff
+// -ff & - 1 = ...f 01 & ...f ff = ...f 01 = - ff
+// -ff & -fe = ...f 01 & ...f 02 = ...f 00 = -100
+// answer is neg, has length of longest with a possible carry
+fn bitand_neg_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) {
+ let mut carry_a = 1;
+ let mut carry_b = 1;
+ let mut carry_and = 1;
+ for (ai, &bi) in a.iter_mut().zip(b.iter()) {
+ let twos_a = negate_carry(*ai, &mut carry_a);
+ let twos_b = negate_carry(bi, &mut carry_b);
+ *ai = negate_carry(twos_a & twos_b, &mut carry_and);
+ }
+ debug_assert!(a.len() > b.len() || carry_a == 0);
+ debug_assert!(b.len() > a.len() || carry_b == 0);
+ if a.len() > b.len() {
+ for ai in a[b.len()..].iter_mut() {
+ let twos_a = negate_carry(*ai, &mut carry_a);
+ *ai = negate_carry(twos_a, &mut carry_and);
+ }
+ debug_assert!(carry_a == 0);
+ } else if b.len() > a.len() {
+ let extra = &b[a.len()..];
+ a.extend(extra.iter().map(|&bi| {
+ let twos_b = negate_carry(bi, &mut carry_b);
+ negate_carry(twos_b, &mut carry_and)
+ }));
+ debug_assert!(carry_b == 0);
+ }
+ if carry_and != 0 {
+ a.push(1);
+ }
+}
+
+forward_val_val_binop!(impl BitAnd for BigInt, bitand);
+forward_ref_val_binop!(impl BitAnd for BigInt, bitand);
+
+// do not use forward_ref_ref_binop_commutative! for bitand so that we can
+// clone as needed, avoiding over-allocation
+impl<'a, 'b> BitAnd<&'b BigInt> for &'a BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn bitand(self, other: &BigInt) -> BigInt {
+ match (self.sign, other.sign) {
+ (NoSign, _) | (_, NoSign) => BigInt::from_slice(NoSign, &[]),
+ (Plus, Plus) => BigInt::from_biguint(Plus, &self.data & &other.data),
+ (Plus, Minus) => self.clone() & other,
+ (Minus, Plus) => other.clone() & self,
+ (Minus, Minus) => {
+ // forward to val-ref, choosing the larger to clone
+ if self.len() >= other.len() {
+ self.clone() & other
+ } else {
+ other.clone() & self
+ }
+ }
+ }
+ }
+}
+
+impl<'a> BitAnd<&'a BigInt> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn bitand(mut self, other: &BigInt) -> BigInt {
+ self &= other;
+ self
+ }
+}
+
+forward_val_assign!(impl BitAndAssign for BigInt, bitand_assign);
+
+impl<'a> BitAndAssign<&'a BigInt> for BigInt {
+ fn bitand_assign(&mut self, other: &BigInt) {
+ match (self.sign, other.sign) {
+ (NoSign, _) => {}
+ (_, NoSign) => self.assign_from_slice(NoSign, &[]),
+ (Plus, Plus) => {
+ self.data &= &other.data;
+ if self.data.is_zero() {
+ self.sign = NoSign;
+ }
+ }
+ (Plus, Minus) => {
+ bitand_pos_neg(self.digits_mut(), other.digits());
+ self.normalize();
+ }
+ (Minus, Plus) => {
+ bitand_neg_pos(self.digits_mut(), other.digits());
+ self.sign = Plus;
+ self.normalize();
+ }
+ (Minus, Minus) => {
+ bitand_neg_neg(self.digits_mut(), other.digits());
+ self.normalize();
+ }
+ }
+ }
+}
+
+// + 1 | -ff = ...0 01 | ...f 01 = ...f 01 = -ff
+// +ff | - 1 = ...0 ff | ...f ff = ...f ff = - 1
+// answer is neg, has length of b
+fn bitor_pos_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) {
+ let mut carry_b = 1;
+ let mut carry_or = 1;
+ for (ai, &bi) in a.iter_mut().zip(b.iter()) {
+ let twos_b = negate_carry(bi, &mut carry_b);
+ *ai = negate_carry(*ai | twos_b, &mut carry_or);
+ }
+ debug_assert!(b.len() > a.len() || carry_b == 0);
+ if a.len() > b.len() {
+ a.truncate(b.len());
+ } else if b.len() > a.len() {
+ let extra = &b[a.len()..];
+ a.extend(extra.iter().map(|&bi| {
+ let twos_b = negate_carry(bi, &mut carry_b);
+ negate_carry(twos_b, &mut carry_or)
+ }));
+ debug_assert!(carry_b == 0);
+ }
+ // for carry_or to be non-zero, we would need twos_b == 0
+ debug_assert!(carry_or == 0);
+}
+
+// - 1 | +ff = ...f ff | ...0 ff = ...f ff = - 1
+// -ff | + 1 = ...f 01 | ...0 01 = ...f 01 = -ff
+// answer is neg, has length of a
+fn bitor_neg_pos(a: &mut Vec<BigDigit>, b: &[BigDigit]) {
+ let mut carry_a = 1;
+ let mut carry_or = 1;
+ for (ai, &bi) in a.iter_mut().zip(b.iter()) {
+ let twos_a = negate_carry(*ai, &mut carry_a);
+ *ai = negate_carry(twos_a | bi, &mut carry_or);
+ }
+ debug_assert!(a.len() > b.len() || carry_a == 0);
+ if a.len() > b.len() {
+ for ai in a[b.len()..].iter_mut() {
+ let twos_a = negate_carry(*ai, &mut carry_a);
+ *ai = negate_carry(twos_a, &mut carry_or);
+ }
+ debug_assert!(carry_a == 0);
+ }
+ // for carry_or to be non-zero, we would need twos_a == 0
+ debug_assert!(carry_or == 0);
+}
+
+// - 1 | -ff = ...f ff | ...f 01 = ...f ff = -1
+// -ff | - 1 = ...f 01 | ...f ff = ...f ff = -1
+// answer is neg, has length of shortest
+fn bitor_neg_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) {
+ let mut carry_a = 1;
+ let mut carry_b = 1;
+ let mut carry_or = 1;
+ for (ai, &bi) in a.iter_mut().zip(b.iter()) {
+ let twos_a = negate_carry(*ai, &mut carry_a);
+ let twos_b = negate_carry(bi, &mut carry_b);
+ *ai = negate_carry(twos_a | twos_b, &mut carry_or);
+ }
+ debug_assert!(a.len() > b.len() || carry_a == 0);
+ debug_assert!(b.len() > a.len() || carry_b == 0);
+ if a.len() > b.len() {
+ a.truncate(b.len());
+ }
+ // for carry_or to be non-zero, we would need twos_a == 0 or twos_b == 0
+ debug_assert!(carry_or == 0);
+}
+
+forward_val_val_binop!(impl BitOr for BigInt, bitor);
+forward_ref_val_binop!(impl BitOr for BigInt, bitor);
+
+// do not use forward_ref_ref_binop_commutative! for bitor so that we can
+// clone as needed, avoiding over-allocation
+impl<'a, 'b> BitOr<&'b BigInt> for &'a BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn bitor(self, other: &BigInt) -> BigInt {
+ match (self.sign, other.sign) {
+ (NoSign, _) => other.clone(),
+ (_, NoSign) => self.clone(),
+ (Plus, Plus) => BigInt::from_biguint(Plus, &self.data | &other.data),
+ (Plus, Minus) => other.clone() | self,
+ (Minus, Plus) => self.clone() | other,
+ (Minus, Minus) => {
+ // forward to val-ref, choosing the smaller to clone
+ if self.len() <= other.len() {
+ self.clone() | other
+ } else {
+ other.clone() | self
+ }
+ }
+ }
+ }
+}
+
+impl<'a> BitOr<&'a BigInt> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn bitor(mut self, other: &BigInt) -> BigInt {
+ self |= other;
+ self
+ }
+}
+
+forward_val_assign!(impl BitOrAssign for BigInt, bitor_assign);
+
+impl<'a> BitOrAssign<&'a BigInt> for BigInt {
+ fn bitor_assign(&mut self, other: &BigInt) {
+ match (self.sign, other.sign) {
+ (_, NoSign) => {}
+ (NoSign, _) => self.assign_from_slice(other.sign, other.digits()),
+ (Plus, Plus) => self.data |= &other.data,
+ (Plus, Minus) => {
+ bitor_pos_neg(self.digits_mut(), other.digits());
+ self.sign = Minus;
+ self.normalize();
+ }
+ (Minus, Plus) => {
+ bitor_neg_pos(self.digits_mut(), other.digits());
+ self.normalize();
+ }
+ (Minus, Minus) => {
+ bitor_neg_neg(self.digits_mut(), other.digits());
+ self.normalize();
+ }
+ }
+ }
+}
+
+// + 1 ^ -ff = ...0 01 ^ ...f 01 = ...f 00 = -100
+// +ff ^ - 1 = ...0 ff ^ ...f ff = ...f 00 = -100
+// answer is neg, has length of longest with a possible carry
+fn bitxor_pos_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) {
+ let mut carry_b = 1;
+ let mut carry_xor = 1;
+ for (ai, &bi) in a.iter_mut().zip(b.iter()) {
+ let twos_b = negate_carry(bi, &mut carry_b);
+ *ai = negate_carry(*ai ^ twos_b, &mut carry_xor);
+ }
+ debug_assert!(b.len() > a.len() || carry_b == 0);
+ if a.len() > b.len() {
+ for ai in a[b.len()..].iter_mut() {
+ let twos_b = !0;
+ *ai = negate_carry(*ai ^ twos_b, &mut carry_xor);
+ }
+ } else if b.len() > a.len() {
+ let extra = &b[a.len()..];
+ a.extend(extra.iter().map(|&bi| {
+ let twos_b = negate_carry(bi, &mut carry_b);
+ negate_carry(twos_b, &mut carry_xor)
+ }));
+ debug_assert!(carry_b == 0);
+ }
+ if carry_xor != 0 {
+ a.push(1);
+ }
+}
+
+// - 1 ^ +ff = ...f ff ^ ...0 ff = ...f 00 = -100
+// -ff ^ + 1 = ...f 01 ^ ...0 01 = ...f 00 = -100
+// answer is neg, has length of longest with a possible carry
+fn bitxor_neg_pos(a: &mut Vec<BigDigit>, b: &[BigDigit]) {
+ let mut carry_a = 1;
+ let mut carry_xor = 1;
+ for (ai, &bi) in a.iter_mut().zip(b.iter()) {
+ let twos_a = negate_carry(*ai, &mut carry_a);
+ *ai = negate_carry(twos_a ^ bi, &mut carry_xor);
+ }
+ debug_assert!(a.len() > b.len() || carry_a == 0);
+ if a.len() > b.len() {
+ for ai in a[b.len()..].iter_mut() {
+ let twos_a = negate_carry(*ai, &mut carry_a);
+ *ai = negate_carry(twos_a, &mut carry_xor);
+ }
+ debug_assert!(carry_a == 0);
+ } else if b.len() > a.len() {
+ let extra = &b[a.len()..];
+ a.extend(extra.iter().map(|&bi| {
+ let twos_a = !0;
+ negate_carry(twos_a ^ bi, &mut carry_xor)
+ }));
+ }
+ if carry_xor != 0 {
+ a.push(1);
+ }
+}
+
+// - 1 ^ -ff = ...f ff ^ ...f 01 = ...0 fe = +fe
+// -ff & - 1 = ...f 01 ^ ...f ff = ...0 fe = +fe
+// answer is pos, has length of longest
+fn bitxor_neg_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) {
+ let mut carry_a = 1;
+ let mut carry_b = 1;
+ for (ai, &bi) in a.iter_mut().zip(b.iter()) {
+ let twos_a = negate_carry(*ai, &mut carry_a);
+ let twos_b = negate_carry(bi, &mut carry_b);
+ *ai = twos_a ^ twos_b;
+ }
+ debug_assert!(a.len() > b.len() || carry_a == 0);
+ debug_assert!(b.len() > a.len() || carry_b == 0);
+ if a.len() > b.len() {
+ for ai in a[b.len()..].iter_mut() {
+ let twos_a = negate_carry(*ai, &mut carry_a);
+ let twos_b = !0;
+ *ai = twos_a ^ twos_b;
+ }
+ debug_assert!(carry_a == 0);
+ } else if b.len() > a.len() {
+ let extra = &b[a.len()..];
+ a.extend(extra.iter().map(|&bi| {
+ let twos_a = !0;
+ let twos_b = negate_carry(bi, &mut carry_b);
+ twos_a ^ twos_b
+ }));
+ debug_assert!(carry_b == 0);
+ }
+}
+
+forward_all_binop_to_val_ref_commutative!(impl BitXor for BigInt, bitxor);
+
+impl<'a> BitXor<&'a BigInt> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn bitxor(mut self, other: &BigInt) -> BigInt {
+ self ^= other;
+ self
+ }
+}
+
+forward_val_assign!(impl BitXorAssign for BigInt, bitxor_assign);
+
+impl<'a> BitXorAssign<&'a BigInt> for BigInt {
+ fn bitxor_assign(&mut self, other: &BigInt) {
+ match (self.sign, other.sign) {
+ (_, NoSign) => {}
+ (NoSign, _) => self.assign_from_slice(other.sign, other.digits()),
+ (Plus, Plus) => {
+ self.data ^= &other.data;
+ if self.data.is_zero() {
+ self.sign = NoSign;
+ }
+ }
+ (Plus, Minus) => {
+ bitxor_pos_neg(self.digits_mut(), other.digits());
+ self.sign = Minus;
+ self.normalize();
+ }
+ (Minus, Plus) => {
+ bitxor_neg_pos(self.digits_mut(), other.digits());
+ self.normalize();
+ }
+ (Minus, Minus) => {
+ bitxor_neg_neg(self.digits_mut(), other.digits());
+ self.sign = Plus;
+ self.normalize();
+ }
+ }
+ }
+}
+
+impl FromStr for BigInt {
+ type Err = ParseBigIntError;
+
+ #[inline]
+ fn from_str(s: &str) -> Result<BigInt, ParseBigIntError> {
+ BigInt::from_str_radix(s, 10)
+ }
+}
+
+impl Num for BigInt {
+ type FromStrRadixErr = ParseBigIntError;
+
+ /// Creates and initializes a BigInt.
+ #[inline]
+ fn from_str_radix(mut s: &str, radix: u32) -> Result<BigInt, ParseBigIntError> {
+ let sign = if s.starts_with('-') {
+ let tail = &s[1..];
+ if !tail.starts_with('+') {
+ s = tail
+ }
+ Minus
+ } else {
+ Plus
+ };
+ let bu = BigUint::from_str_radix(s, radix)?;
+ Ok(BigInt::from_biguint(sign, bu))
+ }
+}
+
+impl Shl<usize> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn shl(mut self, rhs: usize) -> BigInt {
+ self <<= rhs;
+ self
+ }
+}
+
+impl<'a> Shl<usize> for &'a BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn shl(self, rhs: usize) -> BigInt {
+ BigInt::from_biguint(self.sign, &self.data << rhs)
+ }
+}
+
+impl ShlAssign<usize> for BigInt {
+ #[inline]
+ fn shl_assign(&mut self, rhs: usize) {
+ self.data <<= rhs;
+ }
+}
+
+// Negative values need a rounding adjustment if there are any ones in the
+// bits that are getting shifted out.
+fn shr_round_down(i: &BigInt, rhs: usize) -> bool {
+ i.is_negative()
+ && biguint::trailing_zeros(&i.data)
+ .map(|n| n < rhs)
+ .unwrap_or(false)
+}
+
+impl Shr<usize> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn shr(mut self, rhs: usize) -> BigInt {
+ self >>= rhs;
+ self
+ }
+}
+
+impl<'a> Shr<usize> for &'a BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn shr(self, rhs: usize) -> BigInt {
+ let round_down = shr_round_down(self, rhs);
+ let data = &self.data >> rhs;
+ BigInt::from_biguint(self.sign, if round_down { data + 1u8 } else { data })
+ }
+}
+
+impl ShrAssign<usize> for BigInt {
+ #[inline]
+ fn shr_assign(&mut self, rhs: usize) {
+ let round_down = shr_round_down(self, rhs);
+ self.data >>= rhs;
+ if round_down {
+ self.data += 1u8;
+ } else if self.data.is_zero() {
+ self.sign = NoSign;
+ }
+ }
+}
+
+impl Zero for BigInt {
+ #[inline]
+ fn zero() -> BigInt {
+ BigInt::from_biguint(NoSign, Zero::zero())
+ }
+
+ #[inline]
+ fn set_zero(&mut self) {
+ self.data.set_zero();
+ self.sign = NoSign;
+ }
+
+ #[inline]
+ fn is_zero(&self) -> bool {
+ self.sign == NoSign
+ }
+}
+
+impl One for BigInt {
+ #[inline]
+ fn one() -> BigInt {
+ BigInt::from_biguint(Plus, One::one())
+ }
+
+ #[inline]
+ fn set_one(&mut self) {
+ self.data.set_one();
+ self.sign = Plus;
+ }
+
+ #[inline]
+ fn is_one(&self) -> bool {
+ self.sign == Plus && self.data.is_one()
+ }
+}
+
+impl Signed for BigInt {
+ #[inline]
+ fn abs(&self) -> BigInt {
+ match self.sign {
+ Plus | NoSign => self.clone(),
+ Minus => BigInt::from_biguint(Plus, self.data.clone()),
+ }
+ }
+
+ #[inline]
+ fn abs_sub(&self, other: &BigInt) -> BigInt {
+ if *self <= *other {
+ Zero::zero()
+ } else {
+ self - other
+ }
+ }
+
+ #[inline]
+ fn signum(&self) -> BigInt {
+ match self.sign {
+ Plus => BigInt::from_biguint(Plus, One::one()),
+ Minus => BigInt::from_biguint(Minus, One::one()),
+ NoSign => Zero::zero(),
+ }
+ }
+
+ #[inline]
+ fn is_positive(&self) -> bool {
+ self.sign == Plus
+ }
+
+ #[inline]
+ fn is_negative(&self) -> bool {
+ self.sign == Minus
+ }
+}
+
+/// Help function for pow
+///
+/// Computes the effect of the exponent on the sign.
+#[inline]
+fn powsign<T: Integer>(sign: Sign, other: &T) -> Sign {
+ if other.is_zero() {
+ Plus
+ } else if sign != Minus {
+ sign
+ } else if other.is_odd() {
+ sign
+ } else {
+ -sign
+ }
+}
+
+macro_rules! pow_impl {
+ ($T:ty) => {
+ impl<'a> Pow<$T> for &'a BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn pow(self, rhs: $T) -> BigInt {
+ BigInt::from_biguint(powsign(self.sign, &rhs), (&self.data).pow(rhs))
+ }
+ }
+
+ impl<'a, 'b> Pow<&'b $T> for &'a BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn pow(self, rhs: &$T) -> BigInt {
+ BigInt::from_biguint(powsign(self.sign, rhs), (&self.data).pow(rhs))
+ }
+ }
+ };
+}
+
+pow_impl!(u8);
+pow_impl!(u16);
+pow_impl!(u32);
+pow_impl!(u64);
+pow_impl!(usize);
+#[cfg(has_i128)]
+pow_impl!(u128);
+pow_impl!(BigUint);
+
+// A convenience method for getting the absolute value of an i32 in a u32.
+#[inline]
+fn i32_abs_as_u32(a: i32) -> u32 {
+ if a == i32::min_value() {
+ a as u32
+ } else {
+ a.abs() as u32
+ }
+}
+
+// A convenience method for getting the absolute value of an i64 in a u64.
+#[inline]
+fn i64_abs_as_u64(a: i64) -> u64 {
+ if a == i64::min_value() {
+ a as u64
+ } else {
+ a.abs() as u64
+ }
+}
+
+// A convenience method for getting the absolute value of an i128 in a u128.
+#[cfg(has_i128)]
+#[inline]
+fn i128_abs_as_u128(a: i128) -> u128 {
+ if a == i128::min_value() {
+ a as u128
+ } else {
+ a.abs() as u128
+ }
+}
+
+// We want to forward to BigUint::add, but it's not clear how that will go until
+// we compare both sign and magnitude. So we duplicate this body for every
+// val/ref combination, deferring that decision to BigUint's own forwarding.
+macro_rules! bigint_add {
+ ($a:expr, $a_owned:expr, $a_data:expr, $b:expr, $b_owned:expr, $b_data:expr) => {
+ match ($a.sign, $b.sign) {
+ (_, NoSign) => $a_owned,
+ (NoSign, _) => $b_owned,
+ // same sign => keep the sign with the sum of magnitudes
+ (Plus, Plus) | (Minus, Minus) => BigInt::from_biguint($a.sign, $a_data + $b_data),
+ // opposite signs => keep the sign of the larger with the difference of magnitudes
+ (Plus, Minus) | (Minus, Plus) => match $a.data.cmp(&$b.data) {
+ Less => BigInt::from_biguint($b.sign, $b_data - $a_data),
+ Greater => BigInt::from_biguint($a.sign, $a_data - $b_data),
+ Equal => Zero::zero(),
+ },
+ }
+ };
+}
+
+impl<'a, 'b> Add<&'b BigInt> for &'a BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn add(self, other: &BigInt) -> BigInt {
+ bigint_add!(
+ self,
+ self.clone(),
+ &self.data,
+ other,
+ other.clone(),
+ &other.data
+ )
+ }
+}
+
+impl<'a> Add<BigInt> for &'a BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn add(self, other: BigInt) -> BigInt {
+ bigint_add!(self, self.clone(), &self.data, other, other, other.data)
+ }
+}
+
+impl<'a> Add<&'a BigInt> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn add(self, other: &BigInt) -> BigInt {
+ bigint_add!(self, self, self.data, other, other.clone(), &other.data)
+ }
+}
+
+impl Add<BigInt> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn add(self, other: BigInt) -> BigInt {
+ bigint_add!(self, self, self.data, other, other, other.data)
+ }
+}
+
+impl<'a> AddAssign<&'a BigInt> for BigInt {
+ #[inline]
+ fn add_assign(&mut self, other: &BigInt) {
+ let n = mem::replace(self, BigInt::zero());
+ *self = n + other;
+ }
+}
+forward_val_assign!(impl AddAssign for BigInt, add_assign);
+
+promote_all_scalars!(impl Add for BigInt, add);
+promote_all_scalars_assign!(impl AddAssign for BigInt, add_assign);
+forward_all_scalar_binop_to_val_val_commutative!(impl Add<u32> for BigInt, add);
+forward_all_scalar_binop_to_val_val_commutative!(impl Add<u64> for BigInt, add);
+#[cfg(has_i128)]
+forward_all_scalar_binop_to_val_val_commutative!(impl Add<u128> for BigInt, add);
+
+impl Add<u32> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn add(self, other: u32) -> BigInt {
+ match self.sign {
+ NoSign => From::from(other),
+ Plus => BigInt::from_biguint(Plus, self.data + other),
+ Minus => match self.data.cmp(&From::from(other)) {
+ Equal => Zero::zero(),
+ Less => BigInt::from_biguint(Plus, other - self.data),
+ Greater => BigInt::from_biguint(Minus, self.data - other),
+ },
+ }
+ }
+}
+impl AddAssign<u32> for BigInt {
+ #[inline]
+ fn add_assign(&mut self, other: u32) {
+ let n = mem::replace(self, BigInt::zero());
+ *self = n + other;
+ }
+}
+
+impl Add<u64> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn add(self, other: u64) -> BigInt {
+ match self.sign {
+ NoSign => From::from(other),
+ Plus => BigInt::from_biguint(Plus, self.data + other),
+ Minus => match self.data.cmp(&From::from(other)) {
+ Equal => Zero::zero(),
+ Less => BigInt::from_biguint(Plus, other - self.data),
+ Greater => BigInt::from_biguint(Minus, self.data - other),
+ },
+ }
+ }
+}
+impl AddAssign<u64> for BigInt {
+ #[inline]
+ fn add_assign(&mut self, other: u64) {
+ let n = mem::replace(self, BigInt::zero());
+ *self = n + other;
+ }
+}
+
+#[cfg(has_i128)]
+impl Add<u128> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn add(self, other: u128) -> BigInt {
+ match self.sign {
+ NoSign => From::from(other),
+ Plus => BigInt::from_biguint(Plus, self.data + other),
+ Minus => match self.data.cmp(&From::from(other)) {
+ Equal => Zero::zero(),
+ Less => BigInt::from_biguint(Plus, other - self.data),
+ Greater => BigInt::from_biguint(Minus, self.data - other),
+ },
+ }
+ }
+}
+#[cfg(has_i128)]
+impl AddAssign<u128> for BigInt {
+ #[inline]
+ fn add_assign(&mut self, other: u128) {
+ let n = mem::replace(self, BigInt::zero());
+ *self = n + other;
+ }
+}
+
+forward_all_scalar_binop_to_val_val_commutative!(impl Add<i32> for BigInt, add);
+forward_all_scalar_binop_to_val_val_commutative!(impl Add<i64> for BigInt, add);
+#[cfg(has_i128)]
+forward_all_scalar_binop_to_val_val_commutative!(impl Add<i128> for BigInt, add);
+
+impl Add<i32> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn add(self, other: i32) -> BigInt {
+ if other >= 0 {
+ self + other as u32
+ } else {
+ self - i32_abs_as_u32(other)
+ }
+ }
+}
+impl AddAssign<i32> for BigInt {
+ #[inline]
+ fn add_assign(&mut self, other: i32) {
+ if other >= 0 {
+ *self += other as u32;
+ } else {
+ *self -= i32_abs_as_u32(other);
+ }
+ }
+}
+
+impl Add<i64> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn add(self, other: i64) -> BigInt {
+ if other >= 0 {
+ self + other as u64
+ } else {
+ self - i64_abs_as_u64(other)
+ }
+ }
+}
+impl AddAssign<i64> for BigInt {
+ #[inline]
+ fn add_assign(&mut self, other: i64) {
+ if other >= 0 {
+ *self += other as u64;
+ } else {
+ *self -= i64_abs_as_u64(other);
+ }
+ }
+}
+
+#[cfg(has_i128)]
+impl Add<i128> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn add(self, other: i128) -> BigInt {
+ if other >= 0 {
+ self + other as u128
+ } else {
+ self - i128_abs_as_u128(other)
+ }
+ }
+}
+#[cfg(has_i128)]
+impl AddAssign<i128> for BigInt {
+ #[inline]
+ fn add_assign(&mut self, other: i128) {
+ if other >= 0 {
+ *self += other as u128;
+ } else {
+ *self -= i128_abs_as_u128(other);
+ }
+ }
+}
+
+// We want to forward to BigUint::sub, but it's not clear how that will go until
+// we compare both sign and magnitude. So we duplicate this body for every
+// val/ref combination, deferring that decision to BigUint's own forwarding.
+macro_rules! bigint_sub {
+ ($a:expr, $a_owned:expr, $a_data:expr, $b:expr, $b_owned:expr, $b_data:expr) => {
+ match ($a.sign, $b.sign) {
+ (_, NoSign) => $a_owned,
+ (NoSign, _) => -$b_owned,
+ // opposite signs => keep the sign of the left with the sum of magnitudes
+ (Plus, Minus) | (Minus, Plus) => BigInt::from_biguint($a.sign, $a_data + $b_data),
+ // same sign => keep or toggle the sign of the left with the difference of magnitudes
+ (Plus, Plus) | (Minus, Minus) => match $a.data.cmp(&$b.data) {
+ Less => BigInt::from_biguint(-$a.sign, $b_data - $a_data),
+ Greater => BigInt::from_biguint($a.sign, $a_data - $b_data),
+ Equal => Zero::zero(),
+ },
+ }
+ };
+}
+
+impl<'a, 'b> Sub<&'b BigInt> for &'a BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn sub(self, other: &BigInt) -> BigInt {
+ bigint_sub!(
+ self,
+ self.clone(),
+ &self.data,
+ other,
+ other.clone(),
+ &other.data
+ )
+ }
+}
+
+impl<'a> Sub<BigInt> for &'a BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn sub(self, other: BigInt) -> BigInt {
+ bigint_sub!(self, self.clone(), &self.data, other, other, other.data)
+ }
+}
+
+impl<'a> Sub<&'a BigInt> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn sub(self, other: &BigInt) -> BigInt {
+ bigint_sub!(self, self, self.data, other, other.clone(), &other.data)
+ }
+}
+
+impl Sub<BigInt> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn sub(self, other: BigInt) -> BigInt {
+ bigint_sub!(self, self, self.data, other, other, other.data)
+ }
+}
+
+impl<'a> SubAssign<&'a BigInt> for BigInt {
+ #[inline]
+ fn sub_assign(&mut self, other: &BigInt) {
+ let n = mem::replace(self, BigInt::zero());
+ *self = n - other;
+ }
+}
+forward_val_assign!(impl SubAssign for BigInt, sub_assign);
+
+promote_all_scalars!(impl Sub for BigInt, sub);
+promote_all_scalars_assign!(impl SubAssign for BigInt, sub_assign);
+forward_all_scalar_binop_to_val_val!(impl Sub<u32> for BigInt, sub);
+forward_all_scalar_binop_to_val_val!(impl Sub<u64> for BigInt, sub);
+#[cfg(has_i128)]
+forward_all_scalar_binop_to_val_val!(impl Sub<u128> for BigInt, sub);
+
+impl Sub<u32> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn sub(self, other: u32) -> BigInt {
+ match self.sign {
+ NoSign => BigInt::from_biguint(Minus, From::from(other)),
+ Minus => BigInt::from_biguint(Minus, self.data + other),
+ Plus => match self.data.cmp(&From::from(other)) {
+ Equal => Zero::zero(),
+ Greater => BigInt::from_biguint(Plus, self.data - other),
+ Less => BigInt::from_biguint(Minus, other - self.data),
+ },
+ }
+ }
+}
+impl SubAssign<u32> for BigInt {
+ #[inline]
+ fn sub_assign(&mut self, other: u32) {
+ let n = mem::replace(self, BigInt::zero());
+ *self = n - other;
+ }
+}
+
+impl Sub<BigInt> for u32 {
+ type Output = BigInt;
+
+ #[inline]
+ fn sub(self, other: BigInt) -> BigInt {
+ -(other - self)
+ }
+}
+
+impl Sub<BigInt> for u64 {
+ type Output = BigInt;
+
+ #[inline]
+ fn sub(self, other: BigInt) -> BigInt {
+ -(other - self)
+ }
+}
+#[cfg(has_i128)]
+impl Sub<BigInt> for u128 {
+ type Output = BigInt;
+
+ #[inline]
+ fn sub(self, other: BigInt) -> BigInt {
+ -(other - self)
+ }
+}
+
+impl Sub<u64> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn sub(self, other: u64) -> BigInt {
+ match self.sign {
+ NoSign => BigInt::from_biguint(Minus, From::from(other)),
+ Minus => BigInt::from_biguint(Minus, self.data + other),
+ Plus => match self.data.cmp(&From::from(other)) {
+ Equal => Zero::zero(),
+ Greater => BigInt::from_biguint(Plus, self.data - other),
+ Less => BigInt::from_biguint(Minus, other - self.data),
+ },
+ }
+ }
+}
+impl SubAssign<u64> for BigInt {
+ #[inline]
+ fn sub_assign(&mut self, other: u64) {
+ let n = mem::replace(self, BigInt::zero());
+ *self = n - other;
+ }
+}
+
+#[cfg(has_i128)]
+impl Sub<u128> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn sub(self, other: u128) -> BigInt {
+ match self.sign {
+ NoSign => BigInt::from_biguint(Minus, From::from(other)),
+ Minus => BigInt::from_biguint(Minus, self.data + other),
+ Plus => match self.data.cmp(&From::from(other)) {
+ Equal => Zero::zero(),
+ Greater => BigInt::from_biguint(Plus, self.data - other),
+ Less => BigInt::from_biguint(Minus, other - self.data),
+ },
+ }
+ }
+}
+#[cfg(has_i128)]
+impl SubAssign<u128> for BigInt {
+ #[inline]
+ fn sub_assign(&mut self, other: u128) {
+ let n = mem::replace(self, BigInt::zero());
+ *self = n - other;
+ }
+}
+
+forward_all_scalar_binop_to_val_val!(impl Sub<i32> for BigInt, sub);
+forward_all_scalar_binop_to_val_val!(impl Sub<i64> for BigInt, sub);
+#[cfg(has_i128)]
+forward_all_scalar_binop_to_val_val!(impl Sub<i128> for BigInt, sub);
+
+impl Sub<i32> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn sub(self, other: i32) -> BigInt {
+ if other >= 0 {
+ self - other as u32
+ } else {
+ self + i32_abs_as_u32(other)
+ }
+ }
+}
+impl SubAssign<i32> for BigInt {
+ #[inline]
+ fn sub_assign(&mut self, other: i32) {
+ if other >= 0 {
+ *self -= other as u32;
+ } else {
+ *self += i32_abs_as_u32(other);
+ }
+ }
+}
+
+impl Sub<BigInt> for i32 {
+ type Output = BigInt;
+
+ #[inline]
+ fn sub(self, other: BigInt) -> BigInt {
+ if self >= 0 {
+ self as u32 - other
+ } else {
+ -other - i32_abs_as_u32(self)
+ }
+ }
+}
+
+impl Sub<i64> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn sub(self, other: i64) -> BigInt {
+ if other >= 0 {
+ self - other as u64
+ } else {
+ self + i64_abs_as_u64(other)
+ }
+ }
+}
+impl SubAssign<i64> for BigInt {
+ #[inline]
+ fn sub_assign(&mut self, other: i64) {
+ if other >= 0 {
+ *self -= other as u64;
+ } else {
+ *self += i64_abs_as_u64(other);
+ }
+ }
+}
+
+impl Sub<BigInt> for i64 {
+ type Output = BigInt;
+
+ #[inline]
+ fn sub(self, other: BigInt) -> BigInt {
+ if self >= 0 {
+ self as u64 - other
+ } else {
+ -other - i64_abs_as_u64(self)
+ }
+ }
+}
+
+#[cfg(has_i128)]
+impl Sub<i128> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn sub(self, other: i128) -> BigInt {
+ if other >= 0 {
+ self - other as u128
+ } else {
+ self + i128_abs_as_u128(other)
+ }
+ }
+}
+#[cfg(has_i128)]
+impl SubAssign<i128> for BigInt {
+ #[inline]
+ fn sub_assign(&mut self, other: i128) {
+ if other >= 0 {
+ *self -= other as u128;
+ } else {
+ *self += i128_abs_as_u128(other);
+ }
+ }
+}
+#[cfg(has_i128)]
+impl Sub<BigInt> for i128 {
+ type Output = BigInt;
+
+ #[inline]
+ fn sub(self, other: BigInt) -> BigInt {
+ if self >= 0 {
+ self as u128 - other
+ } else {
+ -other - i128_abs_as_u128(self)
+ }
+ }
+}
+
+forward_all_binop_to_ref_ref!(impl Mul for BigInt, mul);
+
+impl<'a, 'b> Mul<&'b BigInt> for &'a BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn mul(self, other: &BigInt) -> BigInt {
+ BigInt::from_biguint(self.sign * other.sign, &self.data * &other.data)
+ }
+}
+
+impl<'a> MulAssign<&'a BigInt> for BigInt {
+ #[inline]
+ fn mul_assign(&mut self, other: &BigInt) {
+ *self = &*self * other;
+ }
+}
+forward_val_assign!(impl MulAssign for BigInt, mul_assign);
+
+promote_all_scalars!(impl Mul for BigInt, mul);
+promote_all_scalars_assign!(impl MulAssign for BigInt, mul_assign);
+forward_all_scalar_binop_to_val_val_commutative!(impl Mul<u32> for BigInt, mul);
+forward_all_scalar_binop_to_val_val_commutative!(impl Mul<u64> for BigInt, mul);
+#[cfg(has_i128)]
+forward_all_scalar_binop_to_val_val_commutative!(impl Mul<u128> for BigInt, mul);
+
+impl Mul<u32> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn mul(self, other: u32) -> BigInt {
+ BigInt::from_biguint(self.sign, self.data * other)
+ }
+}
+
+impl MulAssign<u32> for BigInt {
+ #[inline]
+ fn mul_assign(&mut self, other: u32) {
+ self.data *= other;
+ if self.data.is_zero() {
+ self.sign = NoSign;
+ }
+ }
+}
+
+impl Mul<u64> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn mul(self, other: u64) -> BigInt {
+ BigInt::from_biguint(self.sign, self.data * other)
+ }
+}
+
+impl MulAssign<u64> for BigInt {
+ #[inline]
+ fn mul_assign(&mut self, other: u64) {
+ self.data *= other;
+ if self.data.is_zero() {
+ self.sign = NoSign;
+ }
+ }
+}
+#[cfg(has_i128)]
+impl Mul<u128> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn mul(self, other: u128) -> BigInt {
+ BigInt::from_biguint(self.sign, self.data * other)
+ }
+}
+#[cfg(has_i128)]
+impl MulAssign<u128> for BigInt {
+ #[inline]
+ fn mul_assign(&mut self, other: u128) {
+ self.data *= other;
+ if self.data.is_zero() {
+ self.sign = NoSign;
+ }
+ }
+}
+
+forward_all_scalar_binop_to_val_val_commutative!(impl Mul<i32> for BigInt, mul);
+forward_all_scalar_binop_to_val_val_commutative!(impl Mul<i64> for BigInt, mul);
+#[cfg(has_i128)]
+forward_all_scalar_binop_to_val_val_commutative!(impl Mul<i128> for BigInt, mul);
+
+impl Mul<i32> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn mul(self, other: i32) -> BigInt {
+ if other >= 0 {
+ self * other as u32
+ } else {
+ -(self * i32_abs_as_u32(other))
+ }
+ }
+}
+
+impl MulAssign<i32> for BigInt {
+ #[inline]
+ fn mul_assign(&mut self, other: i32) {
+ if other >= 0 {
+ *self *= other as u32;
+ } else {
+ self.sign = -self.sign;
+ *self *= i32_abs_as_u32(other);
+ }
+ }
+}
+
+impl Mul<i64> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn mul(self, other: i64) -> BigInt {
+ if other >= 0 {
+ self * other as u64
+ } else {
+ -(self * i64_abs_as_u64(other))
+ }
+ }
+}
+
+impl MulAssign<i64> for BigInt {
+ #[inline]
+ fn mul_assign(&mut self, other: i64) {
+ if other >= 0 {
+ *self *= other as u64;
+ } else {
+ self.sign = -self.sign;
+ *self *= i64_abs_as_u64(other);
+ }
+ }
+}
+#[cfg(has_i128)]
+impl Mul<i128> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn mul(self, other: i128) -> BigInt {
+ if other >= 0 {
+ self * other as u128
+ } else {
+ -(self * i128_abs_as_u128(other))
+ }
+ }
+}
+#[cfg(has_i128)]
+impl MulAssign<i128> for BigInt {
+ #[inline]
+ fn mul_assign(&mut self, other: i128) {
+ if other >= 0 {
+ *self *= other as u128;
+ } else {
+ self.sign = -self.sign;
+ *self *= i128_abs_as_u128(other);
+ }
+ }
+}
+
+forward_all_binop_to_ref_ref!(impl Div for BigInt, div);
+
+impl<'a, 'b> Div<&'b BigInt> for &'a BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn div(self, other: &BigInt) -> BigInt {
+ let (q, _) = self.div_rem(other);
+ q
+ }
+}
+
+impl<'a> DivAssign<&'a BigInt> for BigInt {
+ #[inline]
+ fn div_assign(&mut self, other: &BigInt) {
+ *self = &*self / other;
+ }
+}
+forward_val_assign!(impl DivAssign for BigInt, div_assign);
+
+promote_all_scalars!(impl Div for BigInt, div);
+promote_all_scalars_assign!(impl DivAssign for BigInt, div_assign);
+forward_all_scalar_binop_to_val_val!(impl Div<u32> for BigInt, div);
+forward_all_scalar_binop_to_val_val!(impl Div<u64> for BigInt, div);
+#[cfg(has_i128)]
+forward_all_scalar_binop_to_val_val!(impl Div<u128> for BigInt, div);
+
+impl Div<u32> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn div(self, other: u32) -> BigInt {
+ BigInt::from_biguint(self.sign, self.data / other)
+ }
+}
+
+impl DivAssign<u32> for BigInt {
+ #[inline]
+ fn div_assign(&mut self, other: u32) {
+ self.data /= other;
+ if self.data.is_zero() {
+ self.sign = NoSign;
+ }
+ }
+}
+
+impl Div<BigInt> for u32 {
+ type Output = BigInt;
+
+ #[inline]
+ fn div(self, other: BigInt) -> BigInt {
+ BigInt::from_biguint(other.sign, self / other.data)
+ }
+}
+
+impl Div<u64> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn div(self, other: u64) -> BigInt {
+ BigInt::from_biguint(self.sign, self.data / other)
+ }
+}
+
+impl DivAssign<u64> for BigInt {
+ #[inline]
+ fn div_assign(&mut self, other: u64) {
+ self.data /= other;
+ if self.data.is_zero() {
+ self.sign = NoSign;
+ }
+ }
+}
+
+impl Div<BigInt> for u64 {
+ type Output = BigInt;
+
+ #[inline]
+ fn div(self, other: BigInt) -> BigInt {
+ BigInt::from_biguint(other.sign, self / other.data)
+ }
+}
+
+#[cfg(has_i128)]
+impl Div<u128> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn div(self, other: u128) -> BigInt {
+ BigInt::from_biguint(self.sign, self.data / other)
+ }
+}
+
+#[cfg(has_i128)]
+impl DivAssign<u128> for BigInt {
+ #[inline]
+ fn div_assign(&mut self, other: u128) {
+ self.data /= other;
+ if self.data.is_zero() {
+ self.sign = NoSign;
+ }
+ }
+}
+
+#[cfg(has_i128)]
+impl Div<BigInt> for u128 {
+ type Output = BigInt;
+
+ #[inline]
+ fn div(self, other: BigInt) -> BigInt {
+ BigInt::from_biguint(other.sign, self / other.data)
+ }
+}
+
+forward_all_scalar_binop_to_val_val!(impl Div<i32> for BigInt, div);
+forward_all_scalar_binop_to_val_val!(impl Div<i64> for BigInt, div);
+#[cfg(has_i128)]
+forward_all_scalar_binop_to_val_val!(impl Div<i128> for BigInt, div);
+
+impl Div<i32> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn div(self, other: i32) -> BigInt {
+ if other >= 0 {
+ self / other as u32
+ } else {
+ -(self / i32_abs_as_u32(other))
+ }
+ }
+}
+
+impl DivAssign<i32> for BigInt {
+ #[inline]
+ fn div_assign(&mut self, other: i32) {
+ if other >= 0 {
+ *self /= other as u32;
+ } else {
+ self.sign = -self.sign;
+ *self /= i32_abs_as_u32(other);
+ }
+ }
+}
+
+impl Div<BigInt> for i32 {
+ type Output = BigInt;
+
+ #[inline]
+ fn div(self, other: BigInt) -> BigInt {
+ if self >= 0 {
+ self as u32 / other
+ } else {
+ -(i32_abs_as_u32(self) / other)
+ }
+ }
+}
+
+impl Div<i64> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn div(self, other: i64) -> BigInt {
+ if other >= 0 {
+ self / other as u64
+ } else {
+ -(self / i64_abs_as_u64(other))
+ }
+ }
+}
+
+impl DivAssign<i64> for BigInt {
+ #[inline]
+ fn div_assign(&mut self, other: i64) {
+ if other >= 0 {
+ *self /= other as u64;
+ } else {
+ self.sign = -self.sign;
+ *self /= i64_abs_as_u64(other);
+ }
+ }
+}
+
+impl Div<BigInt> for i64 {
+ type Output = BigInt;
+
+ #[inline]
+ fn div(self, other: BigInt) -> BigInt {
+ if self >= 0 {
+ self as u64 / other
+ } else {
+ -(i64_abs_as_u64(self) / other)
+ }
+ }
+}
+
+#[cfg(has_i128)]
+impl Div<i128> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn div(self, other: i128) -> BigInt {
+ if other >= 0 {
+ self / other as u128
+ } else {
+ -(self / i128_abs_as_u128(other))
+ }
+ }
+}
+
+#[cfg(has_i128)]
+impl DivAssign<i128> for BigInt {
+ #[inline]
+ fn div_assign(&mut self, other: i128) {
+ if other >= 0 {
+ *self /= other as u128;
+ } else {
+ self.sign = -self.sign;
+ *self /= i128_abs_as_u128(other);
+ }
+ }
+}
+
+#[cfg(has_i128)]
+impl Div<BigInt> for i128 {
+ type Output = BigInt;
+
+ #[inline]
+ fn div(self, other: BigInt) -> BigInt {
+ if self >= 0 {
+ self as u128 / other
+ } else {
+ -(i128_abs_as_u128(self) / other)
+ }
+ }
+}
+
+forward_all_binop_to_ref_ref!(impl Rem for BigInt, rem);
+
+impl<'a, 'b> Rem<&'b BigInt> for &'a BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn rem(self, other: &BigInt) -> BigInt {
+ let (_, r) = self.div_rem(other);
+ r
+ }
+}
+
+impl<'a> RemAssign<&'a BigInt> for BigInt {
+ #[inline]
+ fn rem_assign(&mut self, other: &BigInt) {
+ *self = &*self % other;
+ }
+}
+forward_val_assign!(impl RemAssign for BigInt, rem_assign);
+
+promote_all_scalars!(impl Rem for BigInt, rem);
+promote_all_scalars_assign!(impl RemAssign for BigInt, rem_assign);
+forward_all_scalar_binop_to_val_val!(impl Rem<u32> for BigInt, rem);
+forward_all_scalar_binop_to_val_val!(impl Rem<u64> for BigInt, rem);
+#[cfg(has_i128)]
+forward_all_scalar_binop_to_val_val!(impl Rem<u128> for BigInt, rem);
+
+impl Rem<u32> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn rem(self, other: u32) -> BigInt {
+ BigInt::from_biguint(self.sign, self.data % other)
+ }
+}
+
+impl RemAssign<u32> for BigInt {
+ #[inline]
+ fn rem_assign(&mut self, other: u32) {
+ self.data %= other;
+ if self.data.is_zero() {
+ self.sign = NoSign;
+ }
+ }
+}
+
+impl Rem<BigInt> for u32 {
+ type Output = BigInt;
+
+ #[inline]
+ fn rem(self, other: BigInt) -> BigInt {
+ BigInt::from_biguint(Plus, self % other.data)
+ }
+}
+
+impl Rem<u64> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn rem(self, other: u64) -> BigInt {
+ BigInt::from_biguint(self.sign, self.data % other)
+ }
+}
+
+impl RemAssign<u64> for BigInt {
+ #[inline]
+ fn rem_assign(&mut self, other: u64) {
+ self.data %= other;
+ if self.data.is_zero() {
+ self.sign = NoSign;
+ }
+ }
+}
+
+impl Rem<BigInt> for u64 {
+ type Output = BigInt;
+
+ #[inline]
+ fn rem(self, other: BigInt) -> BigInt {
+ BigInt::from_biguint(Plus, self % other.data)
+ }
+}
+
+#[cfg(has_i128)]
+impl Rem<u128> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn rem(self, other: u128) -> BigInt {
+ BigInt::from_biguint(self.sign, self.data % other)
+ }
+}
+
+#[cfg(has_i128)]
+impl RemAssign<u128> for BigInt {
+ #[inline]
+ fn rem_assign(&mut self, other: u128) {
+ self.data %= other;
+ if self.data.is_zero() {
+ self.sign = NoSign;
+ }
+ }
+}
+
+#[cfg(has_i128)]
+impl Rem<BigInt> for u128 {
+ type Output = BigInt;
+
+ #[inline]
+ fn rem(self, other: BigInt) -> BigInt {
+ BigInt::from_biguint(Plus, self % other.data)
+ }
+}
+
+forward_all_scalar_binop_to_val_val!(impl Rem<i32> for BigInt, rem);
+forward_all_scalar_binop_to_val_val!(impl Rem<i64> for BigInt, rem);
+#[cfg(has_i128)]
+forward_all_scalar_binop_to_val_val!(impl Rem<i128> for BigInt, rem);
+
+impl Rem<i32> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn rem(self, other: i32) -> BigInt {
+ if other >= 0 {
+ self % other as u32
+ } else {
+ self % i32_abs_as_u32(other)
+ }
+ }
+}
+
+impl RemAssign<i32> for BigInt {
+ #[inline]
+ fn rem_assign(&mut self, other: i32) {
+ if other >= 0 {
+ *self %= other as u32;
+ } else {
+ *self %= i32_abs_as_u32(other);
+ }
+ }
+}
+
+impl Rem<BigInt> for i32 {
+ type Output = BigInt;
+
+ #[inline]
+ fn rem(self, other: BigInt) -> BigInt {
+ if self >= 0 {
+ self as u32 % other
+ } else {
+ -(i32_abs_as_u32(self) % other)
+ }
+ }
+}
+
+impl Rem<i64> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn rem(self, other: i64) -> BigInt {
+ if other >= 0 {
+ self % other as u64
+ } else {
+ self % i64_abs_as_u64(other)
+ }
+ }
+}
+
+impl RemAssign<i64> for BigInt {
+ #[inline]
+ fn rem_assign(&mut self, other: i64) {
+ if other >= 0 {
+ *self %= other as u64;
+ } else {
+ *self %= i64_abs_as_u64(other);
+ }
+ }
+}
+
+impl Rem<BigInt> for i64 {
+ type Output = BigInt;
+
+ #[inline]
+ fn rem(self, other: BigInt) -> BigInt {
+ if self >= 0 {
+ self as u64 % other
+ } else {
+ -(i64_abs_as_u64(self) % other)
+ }
+ }
+}
+
+#[cfg(has_i128)]
+impl Rem<i128> for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn rem(self, other: i128) -> BigInt {
+ if other >= 0 {
+ self % other as u128
+ } else {
+ self % i128_abs_as_u128(other)
+ }
+ }
+}
+#[cfg(has_i128)]
+impl RemAssign<i128> for BigInt {
+ #[inline]
+ fn rem_assign(&mut self, other: i128) {
+ if other >= 0 {
+ *self %= other as u128;
+ } else {
+ *self %= i128_abs_as_u128(other);
+ }
+ }
+}
+#[cfg(has_i128)]
+impl Rem<BigInt> for i128 {
+ type Output = BigInt;
+
+ #[inline]
+ fn rem(self, other: BigInt) -> BigInt {
+ if self >= 0 {
+ self as u128 % other
+ } else {
+ -(i128_abs_as_u128(self) % other)
+ }
+ }
+}
+
+impl Neg for BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn neg(mut self) -> BigInt {
+ self.sign = -self.sign;
+ self
+ }
+}
+
+impl<'a> Neg for &'a BigInt {
+ type Output = BigInt;
+
+ #[inline]
+ fn neg(self) -> BigInt {
+ -self.clone()
+ }
+}
+
+impl CheckedAdd for BigInt {
+ #[inline]
+ fn checked_add(&self, v: &BigInt) -> Option<BigInt> {
+ return Some(self.add(v));
+ }
+}
+
+impl CheckedSub for BigInt {
+ #[inline]
+ fn checked_sub(&self, v: &BigInt) -> Option<BigInt> {
+ return Some(self.sub(v));
+ }
+}
+
+impl CheckedMul for BigInt {
+ #[inline]
+ fn checked_mul(&self, v: &BigInt) -> Option<BigInt> {
+ return Some(self.mul(v));
+ }
+}
+
+impl CheckedDiv for BigInt {
+ #[inline]
+ fn checked_div(&self, v: &BigInt) -> Option<BigInt> {
+ if v.is_zero() {
+ return None;
+ }
+ return Some(self.div(v));
+ }
+}
+
+impl Integer for BigInt {
+ #[inline]
+ fn div_rem(&self, other: &BigInt) -> (BigInt, BigInt) {
+ // r.sign == self.sign
+ let (d_ui, r_ui) = self.data.div_mod_floor(&other.data);
+ let d = BigInt::from_biguint(self.sign, d_ui);
+ let r = BigInt::from_biguint(self.sign, r_ui);
+ if other.is_negative() {
+ (-d, r)
+ } else {
+ (d, r)
+ }
+ }
+
+ #[inline]
+ fn div_floor(&self, other: &BigInt) -> BigInt {
+ let (d, _) = self.div_mod_floor(other);
+ d
+ }
+
+ #[inline]
+ fn mod_floor(&self, other: &BigInt) -> BigInt {
+ let (_, m) = self.div_mod_floor(other);
+ m
+ }
+
+ fn div_mod_floor(&self, other: &BigInt) -> (BigInt, BigInt) {
+ // m.sign == other.sign
+ let (d_ui, m_ui) = self.data.div_rem(&other.data);
+ let d = BigInt::from_biguint(Plus, d_ui);
+ let m = BigInt::from_biguint(Plus, m_ui);
+ let one: BigInt = One::one();
+ match (self.sign, other.sign) {
+ (_, NoSign) => panic!(),
+ (Plus, Plus) | (NoSign, Plus) => (d, m),
+ (Plus, Minus) | (NoSign, Minus) => {
+ if m.is_zero() {
+ (-d, Zero::zero())
+ } else {
+ (-d - one, m + other)
+ }
+ }
+ (Minus, Plus) => {
+ if m.is_zero() {
+ (-d, Zero::zero())
+ } else {
+ (-d - one, other - m)
+ }
+ }
+ (Minus, Minus) => (d, -m),
+ }
+ }
+
+ /// Calculates the Greatest Common Divisor (GCD) of the number and `other`.
+ ///
+ /// The result is always positive.
+ #[inline]
+ fn gcd(&self, other: &BigInt) -> BigInt {
+ BigInt::from_biguint(Plus, self.data.gcd(&other.data))
+ }
+
+ /// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
+ #[inline]
+ fn lcm(&self, other: &BigInt) -> BigInt {
+ BigInt::from_biguint(Plus, self.data.lcm(&other.data))
+ }
+
+ /// Deprecated, use `is_multiple_of` instead.
+ #[inline]
+ fn divides(&self, other: &BigInt) -> bool {
+ return self.is_multiple_of(other);
+ }
+
+ /// Returns `true` if the number is a multiple of `other`.
+ #[inline]
+ fn is_multiple_of(&self, other: &BigInt) -> bool {
+ self.data.is_multiple_of(&other.data)
+ }
+
+ /// Returns `true` if the number is divisible by `2`.
+ #[inline]
+ fn is_even(&self) -> bool {
+ self.data.is_even()
+ }
+
+ /// Returns `true` if the number is not divisible by `2`.
+ #[inline]
+ fn is_odd(&self) -> bool {
+ self.data.is_odd()
+ }
+}
+
+impl Roots for BigInt {
+ fn nth_root(&self, n: u32) -> Self {
+ assert!(
+ !(self.is_negative() && n.is_even()),
+ "root of degree {} is imaginary",
+ n
+ );
+
+ BigInt::from_biguint(self.sign, self.data.nth_root(n))
+ }
+
+ fn sqrt(&self) -> Self {
+ assert!(!self.is_negative(), "square root is imaginary");
+
+ BigInt::from_biguint(self.sign, self.data.sqrt())
+ }
+
+ fn cbrt(&self) -> Self {
+ BigInt::from_biguint(self.sign, self.data.cbrt())
+ }
+}
+
+impl ToPrimitive for BigInt {
+ #[inline]
+ fn to_i64(&self) -> Option<i64> {
+ match self.sign {
+ Plus => self.data.to_i64(),
+ NoSign => Some(0),
+ Minus => self.data.to_u64().and_then(|n| {
+ let m: u64 = 1 << 63;
+ if n < m {
+ Some(-(n as i64))
+ } else if n == m {
+ Some(i64::MIN)
+ } else {
+ None
+ }
+ }),
+ }
+ }
+
+ #[inline]
+ #[cfg(has_i128)]
+ fn to_i128(&self) -> Option<i128> {
+ match self.sign {
+ Plus => self.data.to_i128(),
+ NoSign => Some(0),
+ Minus => self.data.to_u128().and_then(|n| {
+ let m: u128 = 1 << 127;
+ if n < m {
+ Some(-(n as i128))
+ } else if n == m {
+ Some(i128::MIN)
+ } else {
+ None
+ }
+ }),
+ }
+ }
+
+ #[inline]
+ fn to_u64(&self) -> Option<u64> {
+ match self.sign {
+ Plus => self.data.to_u64(),
+ NoSign => Some(0),
+ Minus => None,
+ }
+ }
+
+ #[inline]
+ #[cfg(has_i128)]
+ fn to_u128(&self) -> Option<u128> {
+ match self.sign {
+ Plus => self.data.to_u128(),
+ NoSign => Some(0),
+ Minus => None,
+ }
+ }
+
+ #[inline]
+ fn to_f32(&self) -> Option<f32> {
+ self.data
+ .to_f32()
+ .map(|n| if self.sign == Minus { -n } else { n })
+ }
+
+ #[inline]
+ fn to_f64(&self) -> Option<f64> {
+ self.data
+ .to_f64()
+ .map(|n| if self.sign == Minus { -n } else { n })
+ }
+}
+
+impl FromPrimitive for BigInt {
+ #[inline]
+ fn from_i64(n: i64) -> Option<BigInt> {
+ Some(BigInt::from(n))
+ }
+
+ #[inline]
+ #[cfg(has_i128)]
+ fn from_i128(n: i128) -> Option<BigInt> {
+ Some(BigInt::from(n))
+ }
+
+ #[inline]
+ fn from_u64(n: u64) -> Option<BigInt> {
+ Some(BigInt::from(n))
+ }
+
+ #[inline]
+ #[cfg(has_i128)]
+ fn from_u128(n: u128) -> Option<BigInt> {
+ Some(BigInt::from(n))
+ }
+
+ #[inline]
+ fn from_f64(n: f64) -> Option<BigInt> {
+ if n >= 0.0 {
+ BigUint::from_f64(n).map(|x| BigInt::from_biguint(Plus, x))
+ } else {
+ BigUint::from_f64(-n).map(|x| BigInt::from_biguint(Minus, x))
+ }
+ }
+}
+
+impl From<i64> for BigInt {
+ #[inline]
+ fn from(n: i64) -> Self {
+ if n >= 0 {
+ BigInt::from(n as u64)
+ } else {
+ let u = u64::MAX - (n as u64) + 1;
+ BigInt {
+ sign: Minus,
+ data: BigUint::from(u),
+ }
+ }
+ }
+}
+
+#[cfg(has_i128)]
+impl From<i128> for BigInt {
+ #[inline]
+ fn from(n: i128) -> Self {
+ if n >= 0 {
+ BigInt::from(n as u128)
+ } else {
+ let u = u128::MAX - (n as u128) + 1;
+ BigInt {
+ sign: Minus,
+ data: BigUint::from(u),
+ }
+ }
+ }
+}
+
+macro_rules! impl_bigint_from_int {
+ ($T:ty) => {
+ impl From<$T> for BigInt {
+ #[inline]
+ fn from(n: $T) -> Self {
+ BigInt::from(n as i64)
+ }
+ }
+ };
+}
+
+impl_bigint_from_int!(i8);
+impl_bigint_from_int!(i16);
+impl_bigint_from_int!(i32);
+impl_bigint_from_int!(isize);
+
+impl From<u64> for BigInt {
+ #[inline]
+ fn from(n: u64) -> Self {
+ if n > 0 {
+ BigInt {
+ sign: Plus,
+ data: BigUint::from(n),
+ }
+ } else {
+ BigInt::zero()
+ }
+ }
+}
+
+#[cfg(has_i128)]
+impl From<u128> for BigInt {
+ #[inline]
+ fn from(n: u128) -> Self {
+ if n > 0 {
+ BigInt {
+ sign: Plus,
+ data: BigUint::from(n),
+ }
+ } else {
+ BigInt::zero()
+ }
+ }
+}
+
+macro_rules! impl_bigint_from_uint {
+ ($T:ty) => {
+ impl From<$T> for BigInt {
+ #[inline]
+ fn from(n: $T) -> Self {
+ BigInt::from(n as u64)
+ }
+ }
+ };
+}
+
+impl_bigint_from_uint!(u8);
+impl_bigint_from_uint!(u16);
+impl_bigint_from_uint!(u32);
+impl_bigint_from_uint!(usize);
+
+impl From<BigUint> for BigInt {
+ #[inline]
+ fn from(n: BigUint) -> Self {
+ if n.is_zero() {
+ BigInt::zero()
+ } else {
+ BigInt {
+ sign: Plus,
+ data: n,
+ }
+ }
+ }
+}
+
+impl IntDigits for BigInt {
+ #[inline]
+ fn digits(&self) -> &[BigDigit] {
+ self.data.digits()
+ }
+ #[inline]
+ fn digits_mut(&mut self) -> &mut Vec<BigDigit> {
+ self.data.digits_mut()
+ }
+ #[inline]
+ fn normalize(&mut self) {
+ self.data.normalize();
+ if self.data.is_zero() {
+ self.sign = NoSign;
+ }
+ }
+ #[inline]
+ fn capacity(&self) -> usize {
+ self.data.capacity()
+ }
+ #[inline]
+ fn len(&self) -> usize {
+ self.data.len()
+ }
+}
+
+#[cfg(feature = "serde")]
+impl serde::Serialize for BigInt {
+ fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
+ where
+ S: serde::Serializer,
+ {
+ // Note: do not change the serialization format, or it may break
+ // forward and backward compatibility of serialized data!
+ (self.sign, &self.data).serialize(serializer)
+ }
+}
+
+#[cfg(feature = "serde")]
+impl<'de> serde::Deserialize<'de> for BigInt {
+ fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
+ where
+ D: serde::Deserializer<'de>,
+ {
+ let (sign, data) = serde::Deserialize::deserialize(deserializer)?;
+ Ok(BigInt::from_biguint(sign, data))
+ }
+}
+
+/// A generic trait for converting a value to a `BigInt`. This may return
+/// `None` when converting from `f32` or `f64`, and will always succeed
+/// when converting from any integer or unsigned primitive, or `BigUint`.
+pub trait ToBigInt {
+ /// Converts the value of `self` to a `BigInt`.
+ fn to_bigint(&self) -> Option<BigInt>;
+}
+
+impl ToBigInt for BigInt {
+ #[inline]
+ fn to_bigint(&self) -> Option<BigInt> {
+ Some(self.clone())
+ }
+}
+
+impl ToBigInt for BigUint {
+ #[inline]
+ fn to_bigint(&self) -> Option<BigInt> {
+ if self.is_zero() {
+ Some(Zero::zero())
+ } else {
+ Some(BigInt {
+ sign: Plus,
+ data: self.clone(),
+ })
+ }
+ }
+}
+
+impl biguint::ToBigUint for BigInt {
+ #[inline]
+ fn to_biguint(&self) -> Option<BigUint> {
+ match self.sign() {
+ Plus => Some(self.data.clone()),
+ NoSign => Some(Zero::zero()),
+ Minus => None,
+ }
+ }
+}
+
+macro_rules! impl_to_bigint {
+ ($T:ty, $from_ty:path) => {
+ impl ToBigInt for $T {
+ #[inline]
+ fn to_bigint(&self) -> Option<BigInt> {
+ $from_ty(*self)
+ }
+ }
+ };
+}
+
+impl_to_bigint!(isize, FromPrimitive::from_isize);
+impl_to_bigint!(i8, FromPrimitive::from_i8);
+impl_to_bigint!(i16, FromPrimitive::from_i16);
+impl_to_bigint!(i32, FromPrimitive::from_i32);
+impl_to_bigint!(i64, FromPrimitive::from_i64);
+#[cfg(has_i128)]
+impl_to_bigint!(i128, FromPrimitive::from_i128);
+
+impl_to_bigint!(usize, FromPrimitive::from_usize);
+impl_to_bigint!(u8, FromPrimitive::from_u8);
+impl_to_bigint!(u16, FromPrimitive::from_u16);
+impl_to_bigint!(u32, FromPrimitive::from_u32);
+impl_to_bigint!(u64, FromPrimitive::from_u64);
+#[cfg(has_i128)]
+impl_to_bigint!(u128, FromPrimitive::from_u128);
+
+impl_to_bigint!(f32, FromPrimitive::from_f32);
+impl_to_bigint!(f64, FromPrimitive::from_f64);
+
+impl BigInt {
+ /// Creates and initializes a BigInt.
+ ///
+ /// The digits are in little-endian base 2<sup>32</sup>.
+ #[inline]
+ pub fn new(sign: Sign, digits: Vec<u32>) -> BigInt {
+ BigInt::from_biguint(sign, BigUint::new(digits))
+ }
+
+ /// Creates and initializes a `BigInt`.
+ ///
+ /// The digits are in little-endian base 2<sup>32</sup>.
+ #[inline]
+ pub fn from_biguint(mut sign: Sign, mut data: BigUint) -> BigInt {
+ if sign == NoSign {
+ data.assign_from_slice(&[]);
+ } else if data.is_zero() {
+ sign = NoSign;
+ }
+
+ BigInt {
+ sign: sign,
+ data: data,
+ }
+ }
+
+ /// Creates and initializes a `BigInt`.
+ #[inline]
+ pub fn from_slice(sign: Sign, slice: &[u32]) -> BigInt {
+ BigInt::from_biguint(sign, BigUint::from_slice(slice))
+ }
+
+ /// Reinitializes a `BigInt`.
+ #[inline]
+ pub fn assign_from_slice(&mut self, sign: Sign, slice: &[u32]) {
+ if sign == NoSign {
+ self.data.assign_from_slice(&[]);
+ self.sign = NoSign;
+ } else {
+ self.data.assign_from_slice(slice);
+ self.sign = match self.data.is_zero() {
+ true => NoSign,
+ false => sign,
+ }
+ }
+ }
+
+ /// Creates and initializes a `BigInt`.
+ ///
+ /// The bytes are in big-endian byte order.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::{BigInt, Sign};
+ ///
+ /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"A"),
+ /// BigInt::parse_bytes(b"65", 10).unwrap());
+ /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"AA"),
+ /// BigInt::parse_bytes(b"16705", 10).unwrap());
+ /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"AB"),
+ /// BigInt::parse_bytes(b"16706", 10).unwrap());
+ /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"Hello world!"),
+ /// BigInt::parse_bytes(b"22405534230753963835153736737", 10).unwrap());
+ /// ```
+ #[inline]
+ pub fn from_bytes_be(sign: Sign, bytes: &[u8]) -> BigInt {
+ BigInt::from_biguint(sign, BigUint::from_bytes_be(bytes))
+ }
+
+ /// Creates and initializes a `BigInt`.
+ ///
+ /// The bytes are in little-endian byte order.
+ #[inline]
+ pub fn from_bytes_le(sign: Sign, bytes: &[u8]) -> BigInt {
+ BigInt::from_biguint(sign, BigUint::from_bytes_le(bytes))
+ }
+
+ /// Creates and initializes a `BigInt` from an array of bytes in
+ /// two's complement binary representation.
+ ///
+ /// The digits are in big-endian base 2<sup>8</sup>.
+ #[inline]
+ pub fn from_signed_bytes_be(digits: &[u8]) -> BigInt {
+ let sign = match digits.first() {
+ Some(v) if *v > 0x7f => Sign::Minus,
+ Some(_) => Sign::Plus,
+ None => return BigInt::zero(),
+ };
+
+ if sign == Sign::Minus {
+ // two's-complement the content to retrieve the magnitude
+ let mut digits = Vec::from(digits);
+ twos_complement_be(&mut digits);
+ BigInt::from_biguint(sign, BigUint::from_bytes_be(&*digits))
+ } else {
+ BigInt::from_biguint(sign, BigUint::from_bytes_be(digits))
+ }
+ }
+
+ /// Creates and initializes a `BigInt` from an array of bytes in two's complement.
+ ///
+ /// The digits are in little-endian base 2<sup>8</sup>.
+ #[inline]
+ pub fn from_signed_bytes_le(digits: &[u8]) -> BigInt {
+ let sign = match digits.last() {
+ Some(v) if *v > 0x7f => Sign::Minus,
+ Some(_) => Sign::Plus,
+ None => return BigInt::zero(),
+ };
+
+ if sign == Sign::Minus {
+ // two's-complement the content to retrieve the magnitude
+ let mut digits = Vec::from(digits);
+ twos_complement_le(&mut digits);
+ BigInt::from_biguint(sign, BigUint::from_bytes_le(&*digits))
+ } else {
+ BigInt::from_biguint(sign, BigUint::from_bytes_le(digits))
+ }
+ }
+
+ /// Creates and initializes a `BigInt`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::{BigInt, ToBigInt};
+ ///
+ /// assert_eq!(BigInt::parse_bytes(b"1234", 10), ToBigInt::to_bigint(&1234));
+ /// assert_eq!(BigInt::parse_bytes(b"ABCD", 16), ToBigInt::to_bigint(&0xABCD));
+ /// assert_eq!(BigInt::parse_bytes(b"G", 16), None);
+ /// ```
+ #[inline]
+ pub fn parse_bytes(buf: &[u8], radix: u32) -> Option<BigInt> {
+ str::from_utf8(buf)
+ .ok()
+ .and_then(|s| BigInt::from_str_radix(s, radix).ok())
+ }
+
+ /// Creates and initializes a `BigInt`. Each u8 of the input slice is
+ /// interpreted as one digit of the number
+ /// and must therefore be less than `radix`.
+ ///
+ /// The bytes are in big-endian byte order.
+ /// `radix` must be in the range `2...256`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::{BigInt, Sign};
+ ///
+ /// let inbase190 = vec![15, 33, 125, 12, 14];
+ /// let a = BigInt::from_radix_be(Sign::Minus, &inbase190, 190).unwrap();
+ /// assert_eq!(a.to_radix_be(190), (Sign:: Minus, inbase190));
+ /// ```
+ pub fn from_radix_be(sign: Sign, buf: &[u8], radix: u32) -> Option<BigInt> {
+ BigUint::from_radix_be(buf, radix).map(|u| BigInt::from_biguint(sign, u))
+ }
+
+ /// Creates and initializes a `BigInt`. Each u8 of the input slice is
+ /// interpreted as one digit of the number
+ /// and must therefore be less than `radix`.
+ ///
+ /// The bytes are in little-endian byte order.
+ /// `radix` must be in the range `2...256`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::{BigInt, Sign};
+ ///
+ /// let inbase190 = vec![14, 12, 125, 33, 15];
+ /// let a = BigInt::from_radix_be(Sign::Minus, &inbase190, 190).unwrap();
+ /// assert_eq!(a.to_radix_be(190), (Sign::Minus, inbase190));
+ /// ```
+ pub fn from_radix_le(sign: Sign, buf: &[u8], radix: u32) -> Option<BigInt> {
+ BigUint::from_radix_le(buf, radix).map(|u| BigInt::from_biguint(sign, u))
+ }
+
+ /// Returns the sign and the byte representation of the `BigInt` in big-endian byte order.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::{ToBigInt, Sign};
+ ///
+ /// let i = -1125.to_bigint().unwrap();
+ /// assert_eq!(i.to_bytes_be(), (Sign::Minus, vec![4, 101]));
+ /// ```
+ #[inline]
+ pub fn to_bytes_be(&self) -> (Sign, Vec<u8>) {
+ (self.sign, self.data.to_bytes_be())
+ }
+
+ /// Returns the sign and the byte representation of the `BigInt` in little-endian byte order.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::{ToBigInt, Sign};
+ ///
+ /// let i = -1125.to_bigint().unwrap();
+ /// assert_eq!(i.to_bytes_le(), (Sign::Minus, vec![101, 4]));
+ /// ```
+ #[inline]
+ pub fn to_bytes_le(&self) -> (Sign, Vec<u8>) {
+ (self.sign, self.data.to_bytes_le())
+ }
+
+ /// Returns the two's complement byte representation of the `BigInt` in big-endian byte order.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::ToBigInt;
+ ///
+ /// let i = -1125.to_bigint().unwrap();
+ /// assert_eq!(i.to_signed_bytes_be(), vec![251, 155]);
+ /// ```
+ #[inline]
+ pub fn to_signed_bytes_be(&self) -> Vec<u8> {
+ let mut bytes = self.data.to_bytes_be();
+ let first_byte = bytes.first().map(|v| *v).unwrap_or(0);
+ if first_byte > 0x7f
+ && !(first_byte == 0x80
+ && bytes.iter().skip(1).all(Zero::is_zero)
+ && self.sign == Sign::Minus)
+ {
+ // msb used by magnitude, extend by 1 byte
+ bytes.insert(0, 0);
+ }
+ if self.sign == Sign::Minus {
+ twos_complement_be(&mut bytes);
+ }
+ bytes
+ }
+
+ /// Returns the two's complement byte representation of the `BigInt` in little-endian byte order.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::ToBigInt;
+ ///
+ /// let i = -1125.to_bigint().unwrap();
+ /// assert_eq!(i.to_signed_bytes_le(), vec![155, 251]);
+ /// ```
+ #[inline]
+ pub fn to_signed_bytes_le(&self) -> Vec<u8> {
+ let mut bytes = self.data.to_bytes_le();
+ let last_byte = bytes.last().map(|v| *v).unwrap_or(0);
+ if last_byte > 0x7f
+ && !(last_byte == 0x80
+ && bytes.iter().rev().skip(1).all(Zero::is_zero)
+ && self.sign == Sign::Minus)
+ {
+ // msb used by magnitude, extend by 1 byte
+ bytes.push(0);
+ }
+ if self.sign == Sign::Minus {
+ twos_complement_le(&mut bytes);
+ }
+ bytes
+ }
+
+ /// Returns the integer formatted as a string in the given radix.
+ /// `radix` must be in the range `2...36`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::BigInt;
+ ///
+ /// let i = BigInt::parse_bytes(b"ff", 16).unwrap();
+ /// assert_eq!(i.to_str_radix(16), "ff");
+ /// ```
+ #[inline]
+ pub fn to_str_radix(&self, radix: u32) -> String {
+ let mut v = to_str_radix_reversed(&self.data, radix);
+
+ if self.is_negative() {
+ v.push(b'-');
+ }
+
+ v.reverse();
+ unsafe { String::from_utf8_unchecked(v) }
+ }
+
+ /// Returns the integer in the requested base in big-endian digit order.
+ /// The output is not given in a human readable alphabet but as a zero
+ /// based u8 number.
+ /// `radix` must be in the range `2...256`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::{BigInt, Sign};
+ ///
+ /// assert_eq!(BigInt::from(-0xFFFFi64).to_radix_be(159),
+ /// (Sign::Minus, vec![2, 94, 27]));
+ /// // 0xFFFF = 65535 = 2*(159^2) + 94*159 + 27
+ /// ```
+ #[inline]
+ pub fn to_radix_be(&self, radix: u32) -> (Sign, Vec<u8>) {
+ (self.sign, self.data.to_radix_be(radix))
+ }
+
+ /// Returns the integer in the requested base in little-endian digit order.
+ /// The output is not given in a human readable alphabet but as a zero
+ /// based u8 number.
+ /// `radix` must be in the range `2...256`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::{BigInt, Sign};
+ ///
+ /// assert_eq!(BigInt::from(-0xFFFFi64).to_radix_le(159),
+ /// (Sign::Minus, vec![27, 94, 2]));
+ /// // 0xFFFF = 65535 = 27 + 94*159 + 2*(159^2)
+ /// ```
+ #[inline]
+ pub fn to_radix_le(&self, radix: u32) -> (Sign, Vec<u8>) {
+ (self.sign, self.data.to_radix_le(radix))
+ }
+
+ /// Returns the sign of the `BigInt` as a `Sign`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::{ToBigInt, Sign};
+ ///
+ /// assert_eq!(ToBigInt::to_bigint(&1234).unwrap().sign(), Sign::Plus);
+ /// assert_eq!(ToBigInt::to_bigint(&-4321).unwrap().sign(), Sign::Minus);
+ /// assert_eq!(ToBigInt::to_bigint(&0).unwrap().sign(), Sign::NoSign);
+ /// ```
+ #[inline]
+ pub fn sign(&self) -> Sign {
+ self.sign
+ }
+
+ /// Determines the fewest bits necessary to express the `BigInt`,
+ /// not including the sign.
+ #[inline]
+ pub fn bits(&self) -> usize {
+ self.data.bits()
+ }
+
+ /// Converts this `BigInt` into a `BigUint`, if it's not negative.
+ #[inline]
+ pub fn to_biguint(&self) -> Option<BigUint> {
+ match self.sign {
+ Plus => Some(self.data.clone()),
+ NoSign => Some(Zero::zero()),
+ Minus => None,
+ }
+ }
+
+ #[inline]
+ pub fn checked_add(&self, v: &BigInt) -> Option<BigInt> {
+ return Some(self.add(v));
+ }
+
+ #[inline]
+ pub fn checked_sub(&self, v: &BigInt) -> Option<BigInt> {
+ return Some(self.sub(v));
+ }
+
+ #[inline]
+ pub fn checked_mul(&self, v: &BigInt) -> Option<BigInt> {
+ return Some(self.mul(v));
+ }
+
+ #[inline]
+ pub fn checked_div(&self, v: &BigInt) -> Option<BigInt> {
+ if v.is_zero() {
+ return None;
+ }
+ return Some(self.div(v));
+ }
+
+ /// Returns `(self ^ exponent) mod modulus`
+ ///
+ /// Note that this rounds like `mod_floor`, not like the `%` operator,
+ /// which makes a difference when given a negative `self` or `modulus`.
+ /// The result will be in the interval `[0, modulus)` for `modulus > 0`,
+ /// or in the interval `(modulus, 0]` for `modulus < 0`
+ ///
+ /// Panics if the exponent is negative or the modulus is zero.
+ pub fn modpow(&self, exponent: &Self, modulus: &Self) -> Self {
+ assert!(
+ !exponent.is_negative(),
+ "negative exponentiation is not supported!"
+ );
+ assert!(!modulus.is_zero(), "divide by zero!");
+
+ let result = self.data.modpow(&exponent.data, &modulus.data);
+ if result.is_zero() {
+ return BigInt::zero();
+ }
+
+ // The sign of the result follows the modulus, like `mod_floor`.
+ let (sign, mag) = match (self.is_negative(), modulus.is_negative()) {
+ (false, false) => (Plus, result),
+ (true, false) => (Plus, &modulus.data - result),
+ (false, true) => (Minus, &modulus.data - result),
+ (true, true) => (Minus, result),
+ };
+ BigInt::from_biguint(sign, mag)
+ }
+
+ /// Returns the truncated principal square root of `self` --
+ /// see [Roots::sqrt](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#method.sqrt).
+ pub fn sqrt(&self) -> Self {
+ Roots::sqrt(self)
+ }
+
+ /// Returns the truncated principal cube root of `self` --
+ /// see [Roots::cbrt](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#method.cbrt).
+ pub fn cbrt(&self) -> Self {
+ Roots::cbrt(self)
+ }
+
+ /// Returns the truncated principal `n`th root of `self` --
+ /// See [Roots::nth_root](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#tymethod.nth_root).
+ pub fn nth_root(&self, n: u32) -> Self {
+ Roots::nth_root(self, n)
+ }
+}
+
+impl_sum_iter_type!(BigInt);
+impl_product_iter_type!(BigInt);
+
+/// Perform in-place two's complement of the given binary representation,
+/// in little-endian byte order.
+#[inline]
+fn twos_complement_le(digits: &mut [u8]) {
+ twos_complement(digits)
+}
+
+/// Perform in-place two's complement of the given binary representation
+/// in big-endian byte order.
+#[inline]
+fn twos_complement_be(digits: &mut [u8]) {
+ twos_complement(digits.iter_mut().rev())
+}
+
+/// Perform in-place two's complement of the given digit iterator
+/// starting from the least significant byte.
+#[inline]
+fn twos_complement<'a, I>(digits: I)
+where
+ I: IntoIterator<Item = &'a mut u8>,
+{
+ let mut carry = true;
+ for d in digits {
+ *d = d.not();
+ if carry {
+ *d = d.wrapping_add(1);
+ carry = d.is_zero();
+ }
+ }
+}
+
+#[test]
+fn test_from_biguint() {
+ fn check(inp_s: Sign, inp_n: usize, ans_s: Sign, ans_n: usize) {
+ let inp = BigInt::from_biguint(inp_s, FromPrimitive::from_usize(inp_n).unwrap());
+ let ans = BigInt {
+ sign: ans_s,
+ data: FromPrimitive::from_usize(ans_n).unwrap(),
+ };
+ assert_eq!(inp, ans);
+ }
+ check(Plus, 1, Plus, 1);
+ check(Plus, 0, NoSign, 0);
+ check(Minus, 1, Minus, 1);
+ check(NoSign, 1, NoSign, 0);
+}
+
+#[test]
+fn test_from_slice() {
+ fn check(inp_s: Sign, inp_n: u32, ans_s: Sign, ans_n: u32) {
+ let inp = BigInt::from_slice(inp_s, &[inp_n]);
+ let ans = BigInt {
+ sign: ans_s,
+ data: FromPrimitive::from_u32(ans_n).unwrap(),
+ };
+ assert_eq!(inp, ans);
+ }
+ check(Plus, 1, Plus, 1);
+ check(Plus, 0, NoSign, 0);
+ check(Minus, 1, Minus, 1);
+ check(NoSign, 1, NoSign, 0);
+}
+
+#[test]
+fn test_assign_from_slice() {
+ fn check(inp_s: Sign, inp_n: u32, ans_s: Sign, ans_n: u32) {
+ let mut inp = BigInt::from_slice(Minus, &[2627_u32, 0_u32, 9182_u32, 42_u32]);
+ inp.assign_from_slice(inp_s, &[inp_n]);
+ let ans = BigInt {
+ sign: ans_s,
+ data: FromPrimitive::from_u32(ans_n).unwrap(),
+ };
+ assert_eq!(inp, ans);
+ }
+ check(Plus, 1, Plus, 1);
+ check(Plus, 0, NoSign, 0);
+ check(Minus, 1, Minus, 1);
+ check(NoSign, 1, NoSign, 0);
+}
diff --git a/third_party/rust/num-bigint/src/bigrand.rs b/third_party/rust/num-bigint/src/bigrand.rs
new file mode 100644
index 0000000000..4a13b29df4
--- /dev/null
+++ b/third_party/rust/num-bigint/src/bigrand.rs
@@ -0,0 +1,218 @@
+//! Randomization of big integers
+
+use rand::distributions::uniform::{SampleUniform, UniformSampler};
+use rand::prelude::*;
+use rand::AsByteSliceMut;
+
+use BigInt;
+use BigUint;
+use Sign::*;
+
+use big_digit::BigDigit;
+use bigint::{into_magnitude, magnitude};
+
+use integer::Integer;
+use traits::Zero;
+
+pub trait RandBigInt {
+ /// Generate a random `BigUint` of the given bit size.
+ fn gen_biguint(&mut self, bit_size: usize) -> BigUint;
+
+ /// Generate a random BigInt of the given bit size.
+ fn gen_bigint(&mut self, bit_size: usize) -> BigInt;
+
+ /// Generate a random `BigUint` less than the given bound. Fails
+ /// when the bound is zero.
+ fn gen_biguint_below(&mut self, bound: &BigUint) -> BigUint;
+
+ /// Generate a random `BigUint` within the given range. The lower
+ /// bound is inclusive; the upper bound is exclusive. Fails when
+ /// the upper bound is not greater than the lower bound.
+ fn gen_biguint_range(&mut self, lbound: &BigUint, ubound: &BigUint) -> BigUint;
+
+ /// Generate a random `BigInt` within the given range. The lower
+ /// bound is inclusive; the upper bound is exclusive. Fails when
+ /// the upper bound is not greater than the lower bound.
+ fn gen_bigint_range(&mut self, lbound: &BigInt, ubound: &BigInt) -> BigInt;
+}
+
+impl<R: Rng + ?Sized> RandBigInt for R {
+ fn gen_biguint(&mut self, bit_size: usize) -> BigUint {
+ use super::big_digit::BITS;
+ let (digits, rem) = bit_size.div_rem(&BITS);
+ let mut data = vec![BigDigit::default(); digits + (rem > 0) as usize];
+ // `fill_bytes` is faster than many `gen::<u32>` calls
+ self.fill_bytes(data[..].as_byte_slice_mut());
+ // Swap bytes per the `Rng::fill` source. This might be
+ // unnecessary if reproducibility across architectures is not
+ // desired.
+ data.to_le();
+ if rem > 0 {
+ data[digits] >>= BITS - rem;
+ }
+ BigUint::new(data)
+ }
+
+ fn gen_bigint(&mut self, bit_size: usize) -> BigInt {
+ loop {
+ // Generate a random BigUint...
+ let biguint = self.gen_biguint(bit_size);
+ // ...and then randomly assign it a Sign...
+ let sign = if biguint.is_zero() {
+ // ...except that if the BigUint is zero, we need to try
+ // again with probability 0.5. This is because otherwise,
+ // the probability of generating a zero BigInt would be
+ // double that of any other number.
+ if self.gen() {
+ continue;
+ } else {
+ NoSign
+ }
+ } else if self.gen() {
+ Plus
+ } else {
+ Minus
+ };
+ return BigInt::from_biguint(sign, biguint);
+ }
+ }
+
+ fn gen_biguint_below(&mut self, bound: &BigUint) -> BigUint {
+ assert!(!bound.is_zero());
+ let bits = bound.bits();
+ loop {
+ let n = self.gen_biguint(bits);
+ if n < *bound {
+ return n;
+ }
+ }
+ }
+
+ fn gen_biguint_range(&mut self, lbound: &BigUint, ubound: &BigUint) -> BigUint {
+ assert!(*lbound < *ubound);
+ if lbound.is_zero() {
+ self.gen_biguint_below(ubound)
+ } else {
+ lbound + self.gen_biguint_below(&(ubound - lbound))
+ }
+ }
+
+ fn gen_bigint_range(&mut self, lbound: &BigInt, ubound: &BigInt) -> BigInt {
+ assert!(*lbound < *ubound);
+ if lbound.is_zero() {
+ BigInt::from(self.gen_biguint_below(magnitude(&ubound)))
+ } else if ubound.is_zero() {
+ lbound + BigInt::from(self.gen_biguint_below(magnitude(&lbound)))
+ } else {
+ let delta = ubound - lbound;
+ lbound + BigInt::from(self.gen_biguint_below(magnitude(&delta)))
+ }
+ }
+}
+
+/// The back-end implementing rand's `UniformSampler` for `BigUint`.
+#[derive(Clone, Debug)]
+pub struct UniformBigUint {
+ base: BigUint,
+ len: BigUint,
+}
+
+impl UniformSampler for UniformBigUint {
+ type X = BigUint;
+
+ #[inline]
+ fn new(low: Self::X, high: Self::X) -> Self {
+ assert!(low < high);
+ UniformBigUint {
+ len: high - &low,
+ base: low,
+ }
+ }
+
+ #[inline]
+ fn new_inclusive(low: Self::X, high: Self::X) -> Self {
+ assert!(low <= high);
+ Self::new(low, high + 1u32)
+ }
+
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
+ &self.base + rng.gen_biguint_below(&self.len)
+ }
+
+ #[inline]
+ fn sample_single<R: Rng + ?Sized>(low: Self::X, high: Self::X, rng: &mut R) -> Self::X {
+ rng.gen_biguint_range(&low, &high)
+ }
+}
+
+impl SampleUniform for BigUint {
+ type Sampler = UniformBigUint;
+}
+
+/// The back-end implementing rand's `UniformSampler` for `BigInt`.
+#[derive(Clone, Debug)]
+pub struct UniformBigInt {
+ base: BigInt,
+ len: BigUint,
+}
+
+impl UniformSampler for UniformBigInt {
+ type X = BigInt;
+
+ #[inline]
+ fn new(low: Self::X, high: Self::X) -> Self {
+ assert!(low < high);
+ UniformBigInt {
+ len: into_magnitude(high - &low),
+ base: low,
+ }
+ }
+
+ #[inline]
+ fn new_inclusive(low: Self::X, high: Self::X) -> Self {
+ assert!(low <= high);
+ Self::new(low, high + 1u32)
+ }
+
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
+ &self.base + BigInt::from(rng.gen_biguint_below(&self.len))
+ }
+
+ #[inline]
+ fn sample_single<R: Rng + ?Sized>(low: Self::X, high: Self::X, rng: &mut R) -> Self::X {
+ rng.gen_bigint_range(&low, &high)
+ }
+}
+
+impl SampleUniform for BigInt {
+ type Sampler = UniformBigInt;
+}
+
+/// A random distribution for `BigUint` and `BigInt` values of a particular bit size.
+#[derive(Clone, Copy, Debug)]
+pub struct RandomBits {
+ bits: usize,
+}
+
+impl RandomBits {
+ #[inline]
+ pub fn new(bits: usize) -> RandomBits {
+ RandomBits { bits }
+ }
+}
+
+impl Distribution<BigUint> for RandomBits {
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> BigUint {
+ rng.gen_biguint(self.bits)
+ }
+}
+
+impl Distribution<BigInt> for RandomBits {
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> BigInt {
+ rng.gen_bigint(self.bits)
+ }
+}
diff --git a/third_party/rust/num-bigint/src/biguint.rs b/third_party/rust/num-bigint/src/biguint.rs
new file mode 100644
index 0000000000..e6e9fbcce5
--- /dev/null
+++ b/third_party/rust/num-bigint/src/biguint.rs
@@ -0,0 +1,3088 @@
+#[allow(deprecated, unused_imports)]
+use std::ascii::AsciiExt;
+use std::borrow::Cow;
+use std::cmp;
+use std::cmp::Ordering::{self, Equal, Greater, Less};
+use std::default::Default;
+use std::fmt;
+use std::iter::{Product, Sum};
+use std::mem;
+use std::ops::{
+ Add, AddAssign, BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Div, DivAssign,
+ Mul, MulAssign, Neg, Rem, RemAssign, Shl, ShlAssign, Shr, ShrAssign, Sub, SubAssign,
+};
+use std::str::{self, FromStr};
+use std::{f32, f64};
+use std::{u64, u8};
+
+#[cfg(feature = "serde")]
+use serde;
+
+use integer::{Integer, Roots};
+use traits::{
+ CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, Float, FromPrimitive, Num, One, Pow,
+ ToPrimitive, Unsigned, Zero,
+};
+
+use big_digit::{self, BigDigit};
+
+#[path = "algorithms.rs"]
+mod algorithms;
+#[path = "monty.rs"]
+mod monty;
+
+use self::algorithms::{__add2, __sub2rev, add2, sub2, sub2rev};
+use self::algorithms::{biguint_shl, biguint_shr};
+use self::algorithms::{cmp_slice, fls, ilog2};
+use self::algorithms::{div_rem, div_rem_digit, div_rem_ref, rem_digit};
+use self::algorithms::{mac_with_carry, mul3, scalar_mul};
+use self::monty::monty_modpow;
+
+use UsizePromotion;
+
+use ParseBigIntError;
+
+#[cfg(feature = "quickcheck")]
+use quickcheck::{Arbitrary, Gen};
+
+/// A big unsigned integer type.
+#[derive(Clone, Debug, Hash)]
+pub struct BigUint {
+ data: Vec<BigDigit>,
+}
+
+#[cfg(feature = "quickcheck")]
+impl Arbitrary for BigUint {
+ fn arbitrary<G: Gen>(g: &mut G) -> Self {
+ // Use arbitrary from Vec
+ Self::new(Vec::<u32>::arbitrary(g))
+ }
+
+ #[allow(bare_trait_objects)] // `dyn` needs Rust 1.27 to parse, even when cfg-disabled
+ fn shrink(&self) -> Box<Iterator<Item = Self>> {
+ // Use shrinker from Vec
+ Box::new(self.data.shrink().map(|x| BigUint::new(x)))
+ }
+}
+
+impl PartialEq for BigUint {
+ #[inline]
+ fn eq(&self, other: &BigUint) -> bool {
+ match self.cmp(other) {
+ Equal => true,
+ _ => false,
+ }
+ }
+}
+impl Eq for BigUint {}
+
+impl PartialOrd for BigUint {
+ #[inline]
+ fn partial_cmp(&self, other: &BigUint) -> Option<Ordering> {
+ Some(self.cmp(other))
+ }
+}
+
+impl Ord for BigUint {
+ #[inline]
+ fn cmp(&self, other: &BigUint) -> Ordering {
+ cmp_slice(&self.data[..], &other.data[..])
+ }
+}
+
+impl Default for BigUint {
+ #[inline]
+ fn default() -> BigUint {
+ Zero::zero()
+ }
+}
+
+impl fmt::Display for BigUint {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.pad_integral(true, "", &self.to_str_radix(10))
+ }
+}
+
+impl fmt::LowerHex for BigUint {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.pad_integral(true, "0x", &self.to_str_radix(16))
+ }
+}
+
+impl fmt::UpperHex for BigUint {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ let mut s = self.to_str_radix(16);
+ s.make_ascii_uppercase();
+ f.pad_integral(true, "0x", &s)
+ }
+}
+
+impl fmt::Binary for BigUint {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.pad_integral(true, "0b", &self.to_str_radix(2))
+ }
+}
+
+impl fmt::Octal for BigUint {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.pad_integral(true, "0o", &self.to_str_radix(8))
+ }
+}
+
+impl FromStr for BigUint {
+ type Err = ParseBigIntError;
+
+ #[inline]
+ fn from_str(s: &str) -> Result<BigUint, ParseBigIntError> {
+ BigUint::from_str_radix(s, 10)
+ }
+}
+
+// Convert from a power of two radix (bits == ilog2(radix)) where bits evenly divides
+// BigDigit::BITS
+fn from_bitwise_digits_le(v: &[u8], bits: usize) -> BigUint {
+ debug_assert!(!v.is_empty() && bits <= 8 && big_digit::BITS % bits == 0);
+ debug_assert!(v.iter().all(|&c| BigDigit::from(c) < (1 << bits)));
+
+ let digits_per_big_digit = big_digit::BITS / bits;
+
+ let data = v
+ .chunks(digits_per_big_digit)
+ .map(|chunk| {
+ chunk
+ .iter()
+ .rev()
+ .fold(0, |acc, &c| (acc << bits) | BigDigit::from(c))
+ })
+ .collect();
+
+ BigUint::new(data)
+}
+
+// Convert from a power of two radix (bits == ilog2(radix)) where bits doesn't evenly divide
+// BigDigit::BITS
+fn from_inexact_bitwise_digits_le(v: &[u8], bits: usize) -> BigUint {
+ debug_assert!(!v.is_empty() && bits <= 8 && big_digit::BITS % bits != 0);
+ debug_assert!(v.iter().all(|&c| BigDigit::from(c) < (1 << bits)));
+
+ let big_digits = (v.len() * bits + big_digit::BITS - 1) / big_digit::BITS;
+ let mut data = Vec::with_capacity(big_digits);
+
+ let mut d = 0;
+ let mut dbits = 0; // number of bits we currently have in d
+
+ // walk v accumululating bits in d; whenever we accumulate big_digit::BITS in d, spit out a
+ // big_digit:
+ for &c in v {
+ d |= BigDigit::from(c) << dbits;
+ dbits += bits;
+
+ if dbits >= big_digit::BITS {
+ data.push(d);
+ dbits -= big_digit::BITS;
+ // if dbits was > big_digit::BITS, we dropped some of the bits in c (they couldn't fit
+ // in d) - grab the bits we lost here:
+ d = BigDigit::from(c) >> (bits - dbits);
+ }
+ }
+
+ if dbits > 0 {
+ debug_assert!(dbits < big_digit::BITS);
+ data.push(d as BigDigit);
+ }
+
+ BigUint::new(data)
+}
+
+// Read little-endian radix digits
+fn from_radix_digits_be(v: &[u8], radix: u32) -> BigUint {
+ debug_assert!(!v.is_empty() && !radix.is_power_of_two());
+ debug_assert!(v.iter().all(|&c| u32::from(c) < radix));
+
+ // Estimate how big the result will be, so we can pre-allocate it.
+ let bits = f64::from(radix).log2() * v.len() as f64;
+ let big_digits = (bits / big_digit::BITS as f64).ceil();
+ let mut data = Vec::with_capacity(big_digits as usize);
+
+ let (base, power) = get_radix_base(radix);
+ let radix = radix as BigDigit;
+
+ let r = v.len() % power;
+ let i = if r == 0 { power } else { r };
+ let (head, tail) = v.split_at(i);
+
+ let first = head
+ .iter()
+ .fold(0, |acc, &d| acc * radix + BigDigit::from(d));
+ data.push(first);
+
+ debug_assert!(tail.len() % power == 0);
+ for chunk in tail.chunks(power) {
+ if data.last() != Some(&0) {
+ data.push(0);
+ }
+
+ let mut carry = 0;
+ for d in data.iter_mut() {
+ *d = mac_with_carry(0, *d, base, &mut carry);
+ }
+ debug_assert!(carry == 0);
+
+ let n = chunk
+ .iter()
+ .fold(0, |acc, &d| acc * radix + BigDigit::from(d));
+ add2(&mut data, &[n]);
+ }
+
+ BigUint::new(data)
+}
+
+impl Num for BigUint {
+ type FromStrRadixErr = ParseBigIntError;
+
+ /// Creates and initializes a `BigUint`.
+ fn from_str_radix(s: &str, radix: u32) -> Result<BigUint, ParseBigIntError> {
+ assert!(2 <= radix && radix <= 36, "The radix must be within 2...36");
+ let mut s = s;
+ if s.starts_with('+') {
+ let tail = &s[1..];
+ if !tail.starts_with('+') {
+ s = tail
+ }
+ }
+
+ if s.is_empty() {
+ return Err(ParseBigIntError::empty());
+ }
+
+ if s.starts_with('_') {
+ // Must lead with a real digit!
+ return Err(ParseBigIntError::invalid());
+ }
+
+ // First normalize all characters to plain digit values
+ let mut v = Vec::with_capacity(s.len());
+ for b in s.bytes() {
+ #[allow(unknown_lints, ellipsis_inclusive_range_patterns)]
+ let d = match b {
+ b'0'...b'9' => b - b'0',
+ b'a'...b'z' => b - b'a' + 10,
+ b'A'...b'Z' => b - b'A' + 10,
+ b'_' => continue,
+ _ => u8::MAX,
+ };
+ if d < radix as u8 {
+ v.push(d);
+ } else {
+ return Err(ParseBigIntError::invalid());
+ }
+ }
+
+ let res = if radix.is_power_of_two() {
+ // Powers of two can use bitwise masks and shifting instead of multiplication
+ let bits = ilog2(radix);
+ v.reverse();
+ if big_digit::BITS % bits == 0 {
+ from_bitwise_digits_le(&v, bits)
+ } else {
+ from_inexact_bitwise_digits_le(&v, bits)
+ }
+ } else {
+ from_radix_digits_be(&v, radix)
+ };
+ Ok(res)
+ }
+}
+
+forward_val_val_binop!(impl BitAnd for BigUint, bitand);
+forward_ref_val_binop!(impl BitAnd for BigUint, bitand);
+
+// do not use forward_ref_ref_binop_commutative! for bitand so that we can
+// clone the smaller value rather than the larger, avoiding over-allocation
+impl<'a, 'b> BitAnd<&'b BigUint> for &'a BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn bitand(self, other: &BigUint) -> BigUint {
+ // forward to val-ref, choosing the smaller to clone
+ if self.data.len() <= other.data.len() {
+ self.clone() & other
+ } else {
+ other.clone() & self
+ }
+ }
+}
+
+forward_val_assign!(impl BitAndAssign for BigUint, bitand_assign);
+
+impl<'a> BitAnd<&'a BigUint> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn bitand(mut self, other: &BigUint) -> BigUint {
+ self &= other;
+ self
+ }
+}
+impl<'a> BitAndAssign<&'a BigUint> for BigUint {
+ #[inline]
+ fn bitand_assign(&mut self, other: &BigUint) {
+ for (ai, &bi) in self.data.iter_mut().zip(other.data.iter()) {
+ *ai &= bi;
+ }
+ self.data.truncate(other.data.len());
+ self.normalize();
+ }
+}
+
+forward_all_binop_to_val_ref_commutative!(impl BitOr for BigUint, bitor);
+forward_val_assign!(impl BitOrAssign for BigUint, bitor_assign);
+
+impl<'a> BitOr<&'a BigUint> for BigUint {
+ type Output = BigUint;
+
+ fn bitor(mut self, other: &BigUint) -> BigUint {
+ self |= other;
+ self
+ }
+}
+impl<'a> BitOrAssign<&'a BigUint> for BigUint {
+ #[inline]
+ fn bitor_assign(&mut self, other: &BigUint) {
+ for (ai, &bi) in self.data.iter_mut().zip(other.data.iter()) {
+ *ai |= bi;
+ }
+ if other.data.len() > self.data.len() {
+ let extra = &other.data[self.data.len()..];
+ self.data.extend(extra.iter().cloned());
+ }
+ }
+}
+
+forward_all_binop_to_val_ref_commutative!(impl BitXor for BigUint, bitxor);
+forward_val_assign!(impl BitXorAssign for BigUint, bitxor_assign);
+
+impl<'a> BitXor<&'a BigUint> for BigUint {
+ type Output = BigUint;
+
+ fn bitxor(mut self, other: &BigUint) -> BigUint {
+ self ^= other;
+ self
+ }
+}
+impl<'a> BitXorAssign<&'a BigUint> for BigUint {
+ #[inline]
+ fn bitxor_assign(&mut self, other: &BigUint) {
+ for (ai, &bi) in self.data.iter_mut().zip(other.data.iter()) {
+ *ai ^= bi;
+ }
+ if other.data.len() > self.data.len() {
+ let extra = &other.data[self.data.len()..];
+ self.data.extend(extra.iter().cloned());
+ }
+ self.normalize();
+ }
+}
+
+impl Shl<usize> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn shl(self, rhs: usize) -> BigUint {
+ biguint_shl(Cow::Owned(self), rhs)
+ }
+}
+impl<'a> Shl<usize> for &'a BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn shl(self, rhs: usize) -> BigUint {
+ biguint_shl(Cow::Borrowed(self), rhs)
+ }
+}
+
+impl ShlAssign<usize> for BigUint {
+ #[inline]
+ fn shl_assign(&mut self, rhs: usize) {
+ let n = mem::replace(self, BigUint::zero());
+ *self = n << rhs;
+ }
+}
+
+impl Shr<usize> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn shr(self, rhs: usize) -> BigUint {
+ biguint_shr(Cow::Owned(self), rhs)
+ }
+}
+impl<'a> Shr<usize> for &'a BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn shr(self, rhs: usize) -> BigUint {
+ biguint_shr(Cow::Borrowed(self), rhs)
+ }
+}
+
+impl ShrAssign<usize> for BigUint {
+ #[inline]
+ fn shr_assign(&mut self, rhs: usize) {
+ let n = mem::replace(self, BigUint::zero());
+ *self = n >> rhs;
+ }
+}
+
+impl Zero for BigUint {
+ #[inline]
+ fn zero() -> BigUint {
+ BigUint::new(Vec::new())
+ }
+
+ #[inline]
+ fn set_zero(&mut self) {
+ self.data.clear();
+ }
+
+ #[inline]
+ fn is_zero(&self) -> bool {
+ self.data.is_empty()
+ }
+}
+
+impl One for BigUint {
+ #[inline]
+ fn one() -> BigUint {
+ BigUint::new(vec![1])
+ }
+
+ #[inline]
+ fn set_one(&mut self) {
+ self.data.clear();
+ self.data.push(1);
+ }
+
+ #[inline]
+ fn is_one(&self) -> bool {
+ self.data[..] == [1]
+ }
+}
+
+impl Unsigned for BigUint {}
+
+impl<'a> Pow<BigUint> for &'a BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn pow(self, exp: BigUint) -> Self::Output {
+ self.pow(&exp)
+ }
+}
+
+impl<'a, 'b> Pow<&'b BigUint> for &'a BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn pow(self, exp: &BigUint) -> Self::Output {
+ if self.is_one() || exp.is_zero() {
+ BigUint::one()
+ } else if self.is_zero() {
+ BigUint::zero()
+ } else if let Some(exp) = exp.to_u64() {
+ self.pow(exp)
+ } else {
+ // At this point, `self >= 2` and `exp >= 2⁶⁴`. The smallest possible result
+ // given `2.pow(2⁶⁴)` would take 2.3 exabytes of memory!
+ panic!("memory overflow")
+ }
+ }
+}
+
+macro_rules! pow_impl {
+ ($T:ty) => {
+ impl<'a> Pow<$T> for &'a BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn pow(self, mut exp: $T) -> Self::Output {
+ if exp == 0 {
+ return BigUint::one();
+ }
+ let mut base = self.clone();
+
+ while exp & 1 == 0 {
+ base = &base * &base;
+ exp >>= 1;
+ }
+
+ if exp == 1 {
+ return base;
+ }
+
+ let mut acc = base.clone();
+ while exp > 1 {
+ exp >>= 1;
+ base = &base * &base;
+ if exp & 1 == 1 {
+ acc = &acc * &base;
+ }
+ }
+ acc
+ }
+ }
+
+ impl<'a, 'b> Pow<&'b $T> for &'a BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn pow(self, exp: &$T) -> Self::Output {
+ self.pow(*exp)
+ }
+ }
+ };
+}
+
+pow_impl!(u8);
+pow_impl!(u16);
+pow_impl!(u32);
+pow_impl!(u64);
+pow_impl!(usize);
+#[cfg(has_i128)]
+pow_impl!(u128);
+
+forward_all_binop_to_val_ref_commutative!(impl Add for BigUint, add);
+forward_val_assign!(impl AddAssign for BigUint, add_assign);
+
+impl<'a> Add<&'a BigUint> for BigUint {
+ type Output = BigUint;
+
+ fn add(mut self, other: &BigUint) -> BigUint {
+ self += other;
+ self
+ }
+}
+impl<'a> AddAssign<&'a BigUint> for BigUint {
+ #[inline]
+ fn add_assign(&mut self, other: &BigUint) {
+ let self_len = self.data.len();
+ let carry = if self_len < other.data.len() {
+ let lo_carry = __add2(&mut self.data[..], &other.data[..self_len]);
+ self.data.extend_from_slice(&other.data[self_len..]);
+ __add2(&mut self.data[self_len..], &[lo_carry])
+ } else {
+ __add2(&mut self.data[..], &other.data[..])
+ };
+ if carry != 0 {
+ self.data.push(carry);
+ }
+ }
+}
+
+promote_unsigned_scalars!(impl Add for BigUint, add);
+promote_unsigned_scalars_assign!(impl AddAssign for BigUint, add_assign);
+forward_all_scalar_binop_to_val_val_commutative!(impl Add<u32> for BigUint, add);
+forward_all_scalar_binop_to_val_val_commutative!(impl Add<u64> for BigUint, add);
+#[cfg(has_i128)]
+forward_all_scalar_binop_to_val_val_commutative!(impl Add<u128> for BigUint, add);
+
+impl Add<u32> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn add(mut self, other: u32) -> BigUint {
+ self += other;
+ self
+ }
+}
+
+impl AddAssign<u32> for BigUint {
+ #[inline]
+ fn add_assign(&mut self, other: u32) {
+ if other != 0 {
+ if self.data.len() == 0 {
+ self.data.push(0);
+ }
+
+ let carry = __add2(&mut self.data, &[other as BigDigit]);
+ if carry != 0 {
+ self.data.push(carry);
+ }
+ }
+ }
+}
+
+impl Add<u64> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn add(mut self, other: u64) -> BigUint {
+ self += other;
+ self
+ }
+}
+
+impl AddAssign<u64> for BigUint {
+ #[inline]
+ fn add_assign(&mut self, other: u64) {
+ let (hi, lo) = big_digit::from_doublebigdigit(other);
+ if hi == 0 {
+ *self += lo;
+ } else {
+ while self.data.len() < 2 {
+ self.data.push(0);
+ }
+
+ let carry = __add2(&mut self.data, &[lo, hi]);
+ if carry != 0 {
+ self.data.push(carry);
+ }
+ }
+ }
+}
+
+#[cfg(has_i128)]
+impl Add<u128> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn add(mut self, other: u128) -> BigUint {
+ self += other;
+ self
+ }
+}
+
+#[cfg(has_i128)]
+impl AddAssign<u128> for BigUint {
+ #[inline]
+ fn add_assign(&mut self, other: u128) {
+ if other <= u128::from(u64::max_value()) {
+ *self += other as u64
+ } else {
+ let (a, b, c, d) = u32_from_u128(other);
+ let carry = if a > 0 {
+ while self.data.len() < 4 {
+ self.data.push(0);
+ }
+ __add2(&mut self.data, &[d, c, b, a])
+ } else {
+ debug_assert!(b > 0);
+ while self.data.len() < 3 {
+ self.data.push(0);
+ }
+ __add2(&mut self.data, &[d, c, b])
+ };
+
+ if carry != 0 {
+ self.data.push(carry);
+ }
+ }
+ }
+}
+
+forward_val_val_binop!(impl Sub for BigUint, sub);
+forward_ref_ref_binop!(impl Sub for BigUint, sub);
+forward_val_assign!(impl SubAssign for BigUint, sub_assign);
+
+impl<'a> Sub<&'a BigUint> for BigUint {
+ type Output = BigUint;
+
+ fn sub(mut self, other: &BigUint) -> BigUint {
+ self -= other;
+ self
+ }
+}
+impl<'a> SubAssign<&'a BigUint> for BigUint {
+ fn sub_assign(&mut self, other: &'a BigUint) {
+ sub2(&mut self.data[..], &other.data[..]);
+ self.normalize();
+ }
+}
+
+impl<'a> Sub<BigUint> for &'a BigUint {
+ type Output = BigUint;
+
+ fn sub(self, mut other: BigUint) -> BigUint {
+ let other_len = other.data.len();
+ if other_len < self.data.len() {
+ let lo_borrow = __sub2rev(&self.data[..other_len], &mut other.data);
+ other.data.extend_from_slice(&self.data[other_len..]);
+ if lo_borrow != 0 {
+ sub2(&mut other.data[other_len..], &[1])
+ }
+ } else {
+ sub2rev(&self.data[..], &mut other.data[..]);
+ }
+ other.normalized()
+ }
+}
+
+promote_unsigned_scalars!(impl Sub for BigUint, sub);
+promote_unsigned_scalars_assign!(impl SubAssign for BigUint, sub_assign);
+forward_all_scalar_binop_to_val_val!(impl Sub<u32> for BigUint, sub);
+forward_all_scalar_binop_to_val_val!(impl Sub<u64> for BigUint, sub);
+#[cfg(has_i128)]
+forward_all_scalar_binop_to_val_val!(impl Sub<u128> for BigUint, sub);
+
+impl Sub<u32> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn sub(mut self, other: u32) -> BigUint {
+ self -= other;
+ self
+ }
+}
+impl SubAssign<u32> for BigUint {
+ fn sub_assign(&mut self, other: u32) {
+ sub2(&mut self.data[..], &[other as BigDigit]);
+ self.normalize();
+ }
+}
+
+impl Sub<BigUint> for u32 {
+ type Output = BigUint;
+
+ #[inline]
+ fn sub(self, mut other: BigUint) -> BigUint {
+ if other.data.len() == 0 {
+ other.data.push(self as BigDigit);
+ } else {
+ sub2rev(&[self as BigDigit], &mut other.data[..]);
+ }
+ other.normalized()
+ }
+}
+
+impl Sub<u64> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn sub(mut self, other: u64) -> BigUint {
+ self -= other;
+ self
+ }
+}
+
+impl SubAssign<u64> for BigUint {
+ #[inline]
+ fn sub_assign(&mut self, other: u64) {
+ let (hi, lo) = big_digit::from_doublebigdigit(other);
+ sub2(&mut self.data[..], &[lo, hi]);
+ self.normalize();
+ }
+}
+
+impl Sub<BigUint> for u64 {
+ type Output = BigUint;
+
+ #[inline]
+ fn sub(self, mut other: BigUint) -> BigUint {
+ while other.data.len() < 2 {
+ other.data.push(0);
+ }
+
+ let (hi, lo) = big_digit::from_doublebigdigit(self);
+ sub2rev(&[lo, hi], &mut other.data[..]);
+ other.normalized()
+ }
+}
+
+#[cfg(has_i128)]
+impl Sub<u128> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn sub(mut self, other: u128) -> BigUint {
+ self -= other;
+ self
+ }
+}
+#[cfg(has_i128)]
+impl SubAssign<u128> for BigUint {
+ fn sub_assign(&mut self, other: u128) {
+ let (a, b, c, d) = u32_from_u128(other);
+ sub2(&mut self.data[..], &[d, c, b, a]);
+ self.normalize();
+ }
+}
+
+#[cfg(has_i128)]
+impl Sub<BigUint> for u128 {
+ type Output = BigUint;
+
+ #[inline]
+ fn sub(self, mut other: BigUint) -> BigUint {
+ while other.data.len() < 4 {
+ other.data.push(0);
+ }
+
+ let (a, b, c, d) = u32_from_u128(self);
+ sub2rev(&[d, c, b, a], &mut other.data[..]);
+ other.normalized()
+ }
+}
+
+forward_all_binop_to_ref_ref!(impl Mul for BigUint, mul);
+forward_val_assign!(impl MulAssign for BigUint, mul_assign);
+
+impl<'a, 'b> Mul<&'b BigUint> for &'a BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn mul(self, other: &BigUint) -> BigUint {
+ mul3(&self.data[..], &other.data[..])
+ }
+}
+impl<'a> MulAssign<&'a BigUint> for BigUint {
+ #[inline]
+ fn mul_assign(&mut self, other: &'a BigUint) {
+ *self = &*self * other
+ }
+}
+
+promote_unsigned_scalars!(impl Mul for BigUint, mul);
+promote_unsigned_scalars_assign!(impl MulAssign for BigUint, mul_assign);
+forward_all_scalar_binop_to_val_val_commutative!(impl Mul<u32> for BigUint, mul);
+forward_all_scalar_binop_to_val_val_commutative!(impl Mul<u64> for BigUint, mul);
+#[cfg(has_i128)]
+forward_all_scalar_binop_to_val_val_commutative!(impl Mul<u128> for BigUint, mul);
+
+impl Mul<u32> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn mul(mut self, other: u32) -> BigUint {
+ self *= other;
+ self
+ }
+}
+impl MulAssign<u32> for BigUint {
+ #[inline]
+ fn mul_assign(&mut self, other: u32) {
+ if other == 0 {
+ self.data.clear();
+ } else {
+ let carry = scalar_mul(&mut self.data[..], other as BigDigit);
+ if carry != 0 {
+ self.data.push(carry);
+ }
+ }
+ }
+}
+
+impl Mul<u64> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn mul(mut self, other: u64) -> BigUint {
+ self *= other;
+ self
+ }
+}
+impl MulAssign<u64> for BigUint {
+ #[inline]
+ fn mul_assign(&mut self, other: u64) {
+ if other == 0 {
+ self.data.clear();
+ } else if other <= u64::from(BigDigit::max_value()) {
+ *self *= other as BigDigit
+ } else {
+ let (hi, lo) = big_digit::from_doublebigdigit(other);
+ *self = mul3(&self.data[..], &[lo, hi])
+ }
+ }
+}
+
+#[cfg(has_i128)]
+impl Mul<u128> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn mul(mut self, other: u128) -> BigUint {
+ self *= other;
+ self
+ }
+}
+#[cfg(has_i128)]
+impl MulAssign<u128> for BigUint {
+ #[inline]
+ fn mul_assign(&mut self, other: u128) {
+ if other == 0 {
+ self.data.clear();
+ } else if other <= u128::from(BigDigit::max_value()) {
+ *self *= other as BigDigit
+ } else {
+ let (a, b, c, d) = u32_from_u128(other);
+ *self = mul3(&self.data[..], &[d, c, b, a])
+ }
+ }
+}
+
+forward_val_ref_binop!(impl Div for BigUint, div);
+forward_ref_val_binop!(impl Div for BigUint, div);
+forward_val_assign!(impl DivAssign for BigUint, div_assign);
+
+impl Div<BigUint> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn div(self, other: BigUint) -> BigUint {
+ let (q, _) = div_rem(self, other);
+ q
+ }
+}
+
+impl<'a, 'b> Div<&'b BigUint> for &'a BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn div(self, other: &BigUint) -> BigUint {
+ let (q, _) = self.div_rem(other);
+ q
+ }
+}
+impl<'a> DivAssign<&'a BigUint> for BigUint {
+ #[inline]
+ fn div_assign(&mut self, other: &'a BigUint) {
+ *self = &*self / other;
+ }
+}
+
+promote_unsigned_scalars!(impl Div for BigUint, div);
+promote_unsigned_scalars_assign!(impl DivAssign for BigUint, div_assign);
+forward_all_scalar_binop_to_val_val!(impl Div<u32> for BigUint, div);
+forward_all_scalar_binop_to_val_val!(impl Div<u64> for BigUint, div);
+#[cfg(has_i128)]
+forward_all_scalar_binop_to_val_val!(impl Div<u128> for BigUint, div);
+
+impl Div<u32> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn div(self, other: u32) -> BigUint {
+ let (q, _) = div_rem_digit(self, other as BigDigit);
+ q
+ }
+}
+impl DivAssign<u32> for BigUint {
+ #[inline]
+ fn div_assign(&mut self, other: u32) {
+ *self = &*self / other;
+ }
+}
+
+impl Div<BigUint> for u32 {
+ type Output = BigUint;
+
+ #[inline]
+ fn div(self, other: BigUint) -> BigUint {
+ match other.data.len() {
+ 0 => panic!(),
+ 1 => From::from(self as BigDigit / other.data[0]),
+ _ => Zero::zero(),
+ }
+ }
+}
+
+impl Div<u64> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn div(self, other: u64) -> BigUint {
+ let (q, _) = div_rem(self, From::from(other));
+ q
+ }
+}
+impl DivAssign<u64> for BigUint {
+ #[inline]
+ fn div_assign(&mut self, other: u64) {
+ // a vec of size 0 does not allocate, so this is fairly cheap
+ let temp = mem::replace(self, Zero::zero());
+ *self = temp / other;
+ }
+}
+
+impl Div<BigUint> for u64 {
+ type Output = BigUint;
+
+ #[inline]
+ fn div(self, other: BigUint) -> BigUint {
+ match other.data.len() {
+ 0 => panic!(),
+ 1 => From::from(self / u64::from(other.data[0])),
+ 2 => From::from(self / big_digit::to_doublebigdigit(other.data[1], other.data[0])),
+ _ => Zero::zero(),
+ }
+ }
+}
+
+#[cfg(has_i128)]
+impl Div<u128> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn div(self, other: u128) -> BigUint {
+ let (q, _) = div_rem(self, From::from(other));
+ q
+ }
+}
+#[cfg(has_i128)]
+impl DivAssign<u128> for BigUint {
+ #[inline]
+ fn div_assign(&mut self, other: u128) {
+ *self = &*self / other;
+ }
+}
+
+#[cfg(has_i128)]
+impl Div<BigUint> for u128 {
+ type Output = BigUint;
+
+ #[inline]
+ fn div(self, other: BigUint) -> BigUint {
+ match other.data.len() {
+ 0 => panic!(),
+ 1 => From::from(self / u128::from(other.data[0])),
+ 2 => From::from(
+ self / u128::from(big_digit::to_doublebigdigit(other.data[1], other.data[0])),
+ ),
+ 3 => From::from(self / u32_to_u128(0, other.data[2], other.data[1], other.data[0])),
+ 4 => From::from(
+ self / u32_to_u128(other.data[3], other.data[2], other.data[1], other.data[0]),
+ ),
+ _ => Zero::zero(),
+ }
+ }
+}
+
+forward_val_ref_binop!(impl Rem for BigUint, rem);
+forward_ref_val_binop!(impl Rem for BigUint, rem);
+forward_val_assign!(impl RemAssign for BigUint, rem_assign);
+
+impl Rem<BigUint> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn rem(self, other: BigUint) -> BigUint {
+ let (_, r) = div_rem(self, other);
+ r
+ }
+}
+
+impl<'a, 'b> Rem<&'b BigUint> for &'a BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn rem(self, other: &BigUint) -> BigUint {
+ let (_, r) = self.div_rem(other);
+ r
+ }
+}
+impl<'a> RemAssign<&'a BigUint> for BigUint {
+ #[inline]
+ fn rem_assign(&mut self, other: &BigUint) {
+ *self = &*self % other;
+ }
+}
+
+promote_unsigned_scalars!(impl Rem for BigUint, rem);
+promote_unsigned_scalars_assign!(impl RemAssign for BigUint, rem_assign);
+forward_all_scalar_binop_to_ref_val!(impl Rem<u32> for BigUint, rem);
+forward_all_scalar_binop_to_val_val!(impl Rem<u64> for BigUint, rem);
+#[cfg(has_i128)]
+forward_all_scalar_binop_to_val_val!(impl Rem<u128> for BigUint, rem);
+
+impl<'a> Rem<u32> for &'a BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn rem(self, other: u32) -> BigUint {
+ From::from(rem_digit(self, other as BigDigit))
+ }
+}
+impl RemAssign<u32> for BigUint {
+ #[inline]
+ fn rem_assign(&mut self, other: u32) {
+ *self = &*self % other;
+ }
+}
+
+impl<'a> Rem<&'a BigUint> for u32 {
+ type Output = BigUint;
+
+ #[inline]
+ fn rem(mut self, other: &'a BigUint) -> BigUint {
+ self %= other;
+ From::from(self)
+ }
+}
+
+macro_rules! impl_rem_assign_scalar {
+ ($scalar:ty, $to_scalar:ident) => {
+ forward_val_assign_scalar!(impl RemAssign for BigUint, $scalar, rem_assign);
+ impl<'a> RemAssign<&'a BigUint> for $scalar {
+ #[inline]
+ fn rem_assign(&mut self, other: &BigUint) {
+ *self = match other.$to_scalar() {
+ None => *self,
+ Some(0) => panic!(),
+ Some(v) => *self % v
+ };
+ }
+ }
+ }
+}
+// we can scalar %= BigUint for any scalar, including signed types
+#[cfg(has_i128)]
+impl_rem_assign_scalar!(u128, to_u128);
+impl_rem_assign_scalar!(usize, to_usize);
+impl_rem_assign_scalar!(u64, to_u64);
+impl_rem_assign_scalar!(u32, to_u32);
+impl_rem_assign_scalar!(u16, to_u16);
+impl_rem_assign_scalar!(u8, to_u8);
+#[cfg(has_i128)]
+impl_rem_assign_scalar!(i128, to_i128);
+impl_rem_assign_scalar!(isize, to_isize);
+impl_rem_assign_scalar!(i64, to_i64);
+impl_rem_assign_scalar!(i32, to_i32);
+impl_rem_assign_scalar!(i16, to_i16);
+impl_rem_assign_scalar!(i8, to_i8);
+
+impl Rem<u64> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn rem(self, other: u64) -> BigUint {
+ let (_, r) = div_rem(self, From::from(other));
+ r
+ }
+}
+impl RemAssign<u64> for BigUint {
+ #[inline]
+ fn rem_assign(&mut self, other: u64) {
+ *self = &*self % other;
+ }
+}
+
+impl Rem<BigUint> for u64 {
+ type Output = BigUint;
+
+ #[inline]
+ fn rem(mut self, other: BigUint) -> BigUint {
+ self %= other;
+ From::from(self)
+ }
+}
+
+#[cfg(has_i128)]
+impl Rem<u128> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn rem(self, other: u128) -> BigUint {
+ let (_, r) = div_rem(self, From::from(other));
+ r
+ }
+}
+#[cfg(has_i128)]
+impl RemAssign<u128> for BigUint {
+ #[inline]
+ fn rem_assign(&mut self, other: u128) {
+ *self = &*self % other;
+ }
+}
+
+#[cfg(has_i128)]
+impl Rem<BigUint> for u128 {
+ type Output = BigUint;
+
+ #[inline]
+ fn rem(mut self, other: BigUint) -> BigUint {
+ self %= other;
+ From::from(self)
+ }
+}
+
+impl Neg for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn neg(self) -> BigUint {
+ panic!()
+ }
+}
+
+impl<'a> Neg for &'a BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn neg(self) -> BigUint {
+ panic!()
+ }
+}
+
+impl CheckedAdd for BigUint {
+ #[inline]
+ fn checked_add(&self, v: &BigUint) -> Option<BigUint> {
+ return Some(self.add(v));
+ }
+}
+
+impl CheckedSub for BigUint {
+ #[inline]
+ fn checked_sub(&self, v: &BigUint) -> Option<BigUint> {
+ match self.cmp(v) {
+ Less => None,
+ Equal => Some(Zero::zero()),
+ Greater => Some(self.sub(v)),
+ }
+ }
+}
+
+impl CheckedMul for BigUint {
+ #[inline]
+ fn checked_mul(&self, v: &BigUint) -> Option<BigUint> {
+ return Some(self.mul(v));
+ }
+}
+
+impl CheckedDiv for BigUint {
+ #[inline]
+ fn checked_div(&self, v: &BigUint) -> Option<BigUint> {
+ if v.is_zero() {
+ return None;
+ }
+ return Some(self.div(v));
+ }
+}
+
+impl Integer for BigUint {
+ #[inline]
+ fn div_rem(&self, other: &BigUint) -> (BigUint, BigUint) {
+ div_rem_ref(self, other)
+ }
+
+ #[inline]
+ fn div_floor(&self, other: &BigUint) -> BigUint {
+ let (d, _) = div_rem_ref(self, other);
+ d
+ }
+
+ #[inline]
+ fn mod_floor(&self, other: &BigUint) -> BigUint {
+ let (_, m) = div_rem_ref(self, other);
+ m
+ }
+
+ #[inline]
+ fn div_mod_floor(&self, other: &BigUint) -> (BigUint, BigUint) {
+ div_rem_ref(self, other)
+ }
+
+ /// Calculates the Greatest Common Divisor (GCD) of the number and `other`.
+ ///
+ /// The result is always positive.
+ #[inline]
+ fn gcd(&self, other: &Self) -> Self {
+ #[inline]
+ fn twos(x: &BigUint) -> usize {
+ trailing_zeros(x).unwrap_or(0)
+ }
+
+ // Stein's algorithm
+ if self.is_zero() {
+ return other.clone();
+ }
+ if other.is_zero() {
+ return self.clone();
+ }
+ let mut m = self.clone();
+ let mut n = other.clone();
+
+ // find common factors of 2
+ let shift = cmp::min(twos(&n), twos(&m));
+
+ // divide m and n by 2 until odd
+ // m inside loop
+ n >>= twos(&n);
+
+ while !m.is_zero() {
+ m >>= twos(&m);
+ if n > m {
+ mem::swap(&mut n, &mut m)
+ }
+ m -= &n;
+ }
+
+ n << shift
+ }
+
+ /// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
+ #[inline]
+ fn lcm(&self, other: &BigUint) -> BigUint {
+ if self.is_zero() && other.is_zero() {
+ Self::zero()
+ } else {
+ self / self.gcd(other) * other
+ }
+ }
+
+ /// Deprecated, use `is_multiple_of` instead.
+ #[inline]
+ fn divides(&self, other: &BigUint) -> bool {
+ self.is_multiple_of(other)
+ }
+
+ /// Returns `true` if the number is a multiple of `other`.
+ #[inline]
+ fn is_multiple_of(&self, other: &BigUint) -> bool {
+ (self % other).is_zero()
+ }
+
+ /// Returns `true` if the number is divisible by `2`.
+ #[inline]
+ fn is_even(&self) -> bool {
+ // Considering only the last digit.
+ match self.data.first() {
+ Some(x) => x.is_even(),
+ None => true,
+ }
+ }
+
+ /// Returns `true` if the number is not divisible by `2`.
+ #[inline]
+ fn is_odd(&self) -> bool {
+ !self.is_even()
+ }
+}
+
+#[inline]
+fn fixpoint<F>(mut x: BigUint, max_bits: usize, f: F) -> BigUint
+where
+ F: Fn(&BigUint) -> BigUint,
+{
+ let mut xn = f(&x);
+
+ // If the value increased, then the initial guess must have been low.
+ // Repeat until we reverse course.
+ while x < xn {
+ // Sometimes an increase will go way too far, especially with large
+ // powers, and then take a long time to walk back. We know an upper
+ // bound based on bit size, so saturate on that.
+ x = if xn.bits() > max_bits {
+ BigUint::one() << max_bits
+ } else {
+ xn
+ };
+ xn = f(&x);
+ }
+
+ // Now keep repeating while the estimate is decreasing.
+ while x > xn {
+ x = xn;
+ xn = f(&x);
+ }
+ x
+}
+
+impl Roots for BigUint {
+ // nth_root, sqrt and cbrt use Newton's method to compute
+ // principal root of a given degree for a given integer.
+
+ // Reference:
+ // Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 1.14
+ fn nth_root(&self, n: u32) -> Self {
+ assert!(n > 0, "root degree n must be at least 1");
+
+ if self.is_zero() || self.is_one() {
+ return self.clone();
+ }
+
+ match n {
+ // Optimize for small n
+ 1 => return self.clone(),
+ 2 => return self.sqrt(),
+ 3 => return self.cbrt(),
+ _ => (),
+ }
+
+ // The root of non-zero values less than 2ⁿ can only be 1.
+ let bits = self.bits();
+ if bits <= n as usize {
+ return BigUint::one();
+ }
+
+ // If we fit in `u64`, compute the root that way.
+ if let Some(x) = self.to_u64() {
+ return x.nth_root(n).into();
+ }
+
+ let max_bits = bits / n as usize + 1;
+
+ let guess = if let Some(f) = self.to_f64() {
+ // We fit in `f64` (lossy), so get a better initial guess from that.
+ BigUint::from_f64((f.ln() / f64::from(n)).exp()).unwrap()
+ } else {
+ // Try to guess by scaling down such that it does fit in `f64`.
+ // With some (x * 2ⁿᵏ), its nth root ≈ (ⁿ√x * 2ᵏ)
+ let nsz = n as usize;
+ let extra_bits = bits - (f64::MAX_EXP as usize - 1);
+ let root_scale = (extra_bits + (nsz - 1)) / nsz;
+ let scale = root_scale * nsz;
+ if scale < bits && bits - scale > nsz {
+ (self >> scale).nth_root(n) << root_scale
+ } else {
+ BigUint::one() << max_bits
+ }
+ };
+
+ let n_min_1 = n - 1;
+ fixpoint(guess, max_bits, move |s| {
+ let q = self / s.pow(n_min_1);
+ let t = n_min_1 * s + q;
+ t / n
+ })
+ }
+
+ // Reference:
+ // Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 1.13
+ fn sqrt(&self) -> Self {
+ if self.is_zero() || self.is_one() {
+ return self.clone();
+ }
+
+ // If we fit in `u64`, compute the root that way.
+ if let Some(x) = self.to_u64() {
+ return x.sqrt().into();
+ }
+
+ let bits = self.bits();
+ let max_bits = bits / 2 as usize + 1;
+
+ let guess = if let Some(f) = self.to_f64() {
+ // We fit in `f64` (lossy), so get a better initial guess from that.
+ BigUint::from_f64(f.sqrt()).unwrap()
+ } else {
+ // Try to guess by scaling down such that it does fit in `f64`.
+ // With some (x * 2²ᵏ), its sqrt ≈ (√x * 2ᵏ)
+ let extra_bits = bits - (f64::MAX_EXP as usize - 1);
+ let root_scale = (extra_bits + 1) / 2;
+ let scale = root_scale * 2;
+ (self >> scale).sqrt() << root_scale
+ };
+
+ fixpoint(guess, max_bits, move |s| {
+ let q = self / s;
+ let t = s + q;
+ t >> 1
+ })
+ }
+
+ fn cbrt(&self) -> Self {
+ if self.is_zero() || self.is_one() {
+ return self.clone();
+ }
+
+ // If we fit in `u64`, compute the root that way.
+ if let Some(x) = self.to_u64() {
+ return x.cbrt().into();
+ }
+
+ let bits = self.bits();
+ let max_bits = bits / 3 as usize + 1;
+
+ let guess = if let Some(f) = self.to_f64() {
+ // We fit in `f64` (lossy), so get a better initial guess from that.
+ BigUint::from_f64(f.cbrt()).unwrap()
+ } else {
+ // Try to guess by scaling down such that it does fit in `f64`.
+ // With some (x * 2³ᵏ), its cbrt ≈ (∛x * 2ᵏ)
+ let extra_bits = bits - (f64::MAX_EXP as usize - 1);
+ let root_scale = (extra_bits + 2) / 3;
+ let scale = root_scale * 3;
+ (self >> scale).cbrt() << root_scale
+ };
+
+ fixpoint(guess, max_bits, move |s| {
+ let q = self / (s * s);
+ let t = (s << 1) + q;
+ t / 3u32
+ })
+ }
+}
+
+fn high_bits_to_u64(v: &BigUint) -> u64 {
+ match v.data.len() {
+ 0 => 0,
+ 1 => u64::from(v.data[0]),
+ _ => {
+ let mut bits = v.bits();
+ let mut ret = 0u64;
+ let mut ret_bits = 0;
+
+ for d in v.data.iter().rev() {
+ let digit_bits = (bits - 1) % big_digit::BITS + 1;
+ let bits_want = cmp::min(64 - ret_bits, digit_bits);
+
+ if bits_want != 64 {
+ ret <<= bits_want;
+ }
+ ret |= u64::from(*d) >> (digit_bits - bits_want);
+ ret_bits += bits_want;
+ bits -= bits_want;
+
+ if ret_bits == 64 {
+ break;
+ }
+ }
+
+ ret
+ }
+ }
+}
+
+impl ToPrimitive for BigUint {
+ #[inline]
+ fn to_i64(&self) -> Option<i64> {
+ self.to_u64().as_ref().and_then(u64::to_i64)
+ }
+
+ #[inline]
+ #[cfg(has_i128)]
+ fn to_i128(&self) -> Option<i128> {
+ self.to_u128().as_ref().and_then(u128::to_i128)
+ }
+
+ #[inline]
+ fn to_u64(&self) -> Option<u64> {
+ let mut ret: u64 = 0;
+ let mut bits = 0;
+
+ for i in self.data.iter() {
+ if bits >= 64 {
+ return None;
+ }
+
+ ret += u64::from(*i) << bits;
+ bits += big_digit::BITS;
+ }
+
+ Some(ret)
+ }
+
+ #[inline]
+ #[cfg(has_i128)]
+ fn to_u128(&self) -> Option<u128> {
+ let mut ret: u128 = 0;
+ let mut bits = 0;
+
+ for i in self.data.iter() {
+ if bits >= 128 {
+ return None;
+ }
+
+ ret |= u128::from(*i) << bits;
+ bits += big_digit::BITS;
+ }
+
+ Some(ret)
+ }
+
+ #[inline]
+ fn to_f32(&self) -> Option<f32> {
+ let mantissa = high_bits_to_u64(self);
+ let exponent = self.bits() - fls(mantissa);
+
+ if exponent > f32::MAX_EXP as usize {
+ None
+ } else {
+ let ret = (mantissa as f32) * 2.0f32.powi(exponent as i32);
+ if ret.is_infinite() {
+ None
+ } else {
+ Some(ret)
+ }
+ }
+ }
+
+ #[inline]
+ fn to_f64(&self) -> Option<f64> {
+ let mantissa = high_bits_to_u64(self);
+ let exponent = self.bits() - fls(mantissa);
+
+ if exponent > f64::MAX_EXP as usize {
+ None
+ } else {
+ let ret = (mantissa as f64) * 2.0f64.powi(exponent as i32);
+ if ret.is_infinite() {
+ None
+ } else {
+ Some(ret)
+ }
+ }
+ }
+}
+
+impl FromPrimitive for BigUint {
+ #[inline]
+ fn from_i64(n: i64) -> Option<BigUint> {
+ if n >= 0 {
+ Some(BigUint::from(n as u64))
+ } else {
+ None
+ }
+ }
+
+ #[inline]
+ #[cfg(has_i128)]
+ fn from_i128(n: i128) -> Option<BigUint> {
+ if n >= 0 {
+ Some(BigUint::from(n as u128))
+ } else {
+ None
+ }
+ }
+
+ #[inline]
+ fn from_u64(n: u64) -> Option<BigUint> {
+ Some(BigUint::from(n))
+ }
+
+ #[inline]
+ #[cfg(has_i128)]
+ fn from_u128(n: u128) -> Option<BigUint> {
+ Some(BigUint::from(n))
+ }
+
+ #[inline]
+ fn from_f64(mut n: f64) -> Option<BigUint> {
+ // handle NAN, INFINITY, NEG_INFINITY
+ if !n.is_finite() {
+ return None;
+ }
+
+ // match the rounding of casting from float to int
+ n = n.trunc();
+
+ // handle 0.x, -0.x
+ if n.is_zero() {
+ return Some(BigUint::zero());
+ }
+
+ let (mantissa, exponent, sign) = Float::integer_decode(n);
+
+ if sign == -1 {
+ return None;
+ }
+
+ let mut ret = BigUint::from(mantissa);
+ if exponent > 0 {
+ ret = ret << exponent as usize;
+ } else if exponent < 0 {
+ ret = ret >> (-exponent) as usize;
+ }
+ Some(ret)
+ }
+}
+
+impl From<u64> for BigUint {
+ #[inline]
+ fn from(mut n: u64) -> Self {
+ let mut ret: BigUint = Zero::zero();
+
+ while n != 0 {
+ ret.data.push(n as BigDigit);
+ // don't overflow if BITS is 64:
+ n = (n >> 1) >> (big_digit::BITS - 1);
+ }
+
+ ret
+ }
+}
+
+#[cfg(has_i128)]
+impl From<u128> for BigUint {
+ #[inline]
+ fn from(mut n: u128) -> Self {
+ let mut ret: BigUint = Zero::zero();
+
+ while n != 0 {
+ ret.data.push(n as BigDigit);
+ n >>= big_digit::BITS;
+ }
+
+ ret
+ }
+}
+
+macro_rules! impl_biguint_from_uint {
+ ($T:ty) => {
+ impl From<$T> for BigUint {
+ #[inline]
+ fn from(n: $T) -> Self {
+ BigUint::from(n as u64)
+ }
+ }
+ };
+}
+
+impl_biguint_from_uint!(u8);
+impl_biguint_from_uint!(u16);
+impl_biguint_from_uint!(u32);
+impl_biguint_from_uint!(usize);
+
+/// A generic trait for converting a value to a `BigUint`.
+pub trait ToBigUint {
+ /// Converts the value of `self` to a `BigUint`.
+ fn to_biguint(&self) -> Option<BigUint>;
+}
+
+impl ToBigUint for BigUint {
+ #[inline]
+ fn to_biguint(&self) -> Option<BigUint> {
+ Some(self.clone())
+ }
+}
+
+macro_rules! impl_to_biguint {
+ ($T:ty, $from_ty:path) => {
+ impl ToBigUint for $T {
+ #[inline]
+ fn to_biguint(&self) -> Option<BigUint> {
+ $from_ty(*self)
+ }
+ }
+ };
+}
+
+impl_to_biguint!(isize, FromPrimitive::from_isize);
+impl_to_biguint!(i8, FromPrimitive::from_i8);
+impl_to_biguint!(i16, FromPrimitive::from_i16);
+impl_to_biguint!(i32, FromPrimitive::from_i32);
+impl_to_biguint!(i64, FromPrimitive::from_i64);
+#[cfg(has_i128)]
+impl_to_biguint!(i128, FromPrimitive::from_i128);
+
+impl_to_biguint!(usize, FromPrimitive::from_usize);
+impl_to_biguint!(u8, FromPrimitive::from_u8);
+impl_to_biguint!(u16, FromPrimitive::from_u16);
+impl_to_biguint!(u32, FromPrimitive::from_u32);
+impl_to_biguint!(u64, FromPrimitive::from_u64);
+#[cfg(has_i128)]
+impl_to_biguint!(u128, FromPrimitive::from_u128);
+
+impl_to_biguint!(f32, FromPrimitive::from_f32);
+impl_to_biguint!(f64, FromPrimitive::from_f64);
+
+// Extract bitwise digits that evenly divide BigDigit
+fn to_bitwise_digits_le(u: &BigUint, bits: usize) -> Vec<u8> {
+ debug_assert!(!u.is_zero() && bits <= 8 && big_digit::BITS % bits == 0);
+
+ let last_i = u.data.len() - 1;
+ let mask: BigDigit = (1 << bits) - 1;
+ let digits_per_big_digit = big_digit::BITS / bits;
+ let digits = (u.bits() + bits - 1) / bits;
+ let mut res = Vec::with_capacity(digits);
+
+ for mut r in u.data[..last_i].iter().cloned() {
+ for _ in 0..digits_per_big_digit {
+ res.push((r & mask) as u8);
+ r >>= bits;
+ }
+ }
+
+ let mut r = u.data[last_i];
+ while r != 0 {
+ res.push((r & mask) as u8);
+ r >>= bits;
+ }
+
+ res
+}
+
+// Extract bitwise digits that don't evenly divide BigDigit
+fn to_inexact_bitwise_digits_le(u: &BigUint, bits: usize) -> Vec<u8> {
+ debug_assert!(!u.is_zero() && bits <= 8 && big_digit::BITS % bits != 0);
+
+ let mask: BigDigit = (1 << bits) - 1;
+ let digits = (u.bits() + bits - 1) / bits;
+ let mut res = Vec::with_capacity(digits);
+
+ let mut r = 0;
+ let mut rbits = 0;
+
+ for c in &u.data {
+ r |= *c << rbits;
+ rbits += big_digit::BITS;
+
+ while rbits >= bits {
+ res.push((r & mask) as u8);
+ r >>= bits;
+
+ // r had more bits than it could fit - grab the bits we lost
+ if rbits > big_digit::BITS {
+ r = *c >> (big_digit::BITS - (rbits - bits));
+ }
+
+ rbits -= bits;
+ }
+ }
+
+ if rbits != 0 {
+ res.push(r as u8);
+ }
+
+ while let Some(&0) = res.last() {
+ res.pop();
+ }
+
+ res
+}
+
+// Extract little-endian radix digits
+#[inline(always)] // forced inline to get const-prop for radix=10
+fn to_radix_digits_le(u: &BigUint, radix: u32) -> Vec<u8> {
+ debug_assert!(!u.is_zero() && !radix.is_power_of_two());
+
+ // Estimate how big the result will be, so we can pre-allocate it.
+ let radix_digits = ((u.bits() as f64) / f64::from(radix).log2()).ceil();
+ let mut res = Vec::with_capacity(radix_digits as usize);
+ let mut digits = u.clone();
+
+ let (base, power) = get_radix_base(radix);
+ let radix = radix as BigDigit;
+
+ while digits.data.len() > 1 {
+ let (q, mut r) = div_rem_digit(digits, base);
+ for _ in 0..power {
+ res.push((r % radix) as u8);
+ r /= radix;
+ }
+ digits = q;
+ }
+
+ let mut r = digits.data[0];
+ while r != 0 {
+ res.push((r % radix) as u8);
+ r /= radix;
+ }
+
+ res
+}
+
+pub fn to_radix_le(u: &BigUint, radix: u32) -> Vec<u8> {
+ if u.is_zero() {
+ vec![0]
+ } else if radix.is_power_of_two() {
+ // Powers of two can use bitwise masks and shifting instead of division
+ let bits = ilog2(radix);
+ if big_digit::BITS % bits == 0 {
+ to_bitwise_digits_le(u, bits)
+ } else {
+ to_inexact_bitwise_digits_le(u, bits)
+ }
+ } else if radix == 10 {
+ // 10 is so common that it's worth separating out for const-propagation.
+ // Optimizers can often turn constant division into a faster multiplication.
+ to_radix_digits_le(u, 10)
+ } else {
+ to_radix_digits_le(u, radix)
+ }
+}
+
+pub fn to_str_radix_reversed(u: &BigUint, radix: u32) -> Vec<u8> {
+ assert!(2 <= radix && radix <= 36, "The radix must be within 2...36");
+
+ if u.is_zero() {
+ return vec![b'0'];
+ }
+
+ let mut res = to_radix_le(u, radix);
+
+ // Now convert everything to ASCII digits.
+ for r in &mut res {
+ debug_assert!(u32::from(*r) < radix);
+ if *r < 10 {
+ *r += b'0';
+ } else {
+ *r += b'a' - 10;
+ }
+ }
+ res
+}
+
+impl BigUint {
+ /// Creates and initializes a `BigUint`.
+ ///
+ /// The digits are in little-endian base 2<sup>32</sup>.
+ #[inline]
+ pub fn new(digits: Vec<u32>) -> BigUint {
+ BigUint { data: digits }.normalized()
+ }
+
+ /// Creates and initializes a `BigUint`.
+ ///
+ /// The digits are in little-endian base 2<sup>32</sup>.
+ #[inline]
+ pub fn from_slice(slice: &[u32]) -> BigUint {
+ BigUint::new(slice.to_vec())
+ }
+
+ /// Assign a value to a `BigUint`.
+ ///
+ /// The digits are in little-endian base 2<sup>32</sup>.
+ #[inline]
+ pub fn assign_from_slice(&mut self, slice: &[u32]) {
+ self.data.resize(slice.len(), 0);
+ self.data.clone_from_slice(slice);
+ self.normalize();
+ }
+
+ /// Creates and initializes a `BigUint`.
+ ///
+ /// The bytes are in big-endian byte order.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::BigUint;
+ ///
+ /// assert_eq!(BigUint::from_bytes_be(b"A"),
+ /// BigUint::parse_bytes(b"65", 10).unwrap());
+ /// assert_eq!(BigUint::from_bytes_be(b"AA"),
+ /// BigUint::parse_bytes(b"16705", 10).unwrap());
+ /// assert_eq!(BigUint::from_bytes_be(b"AB"),
+ /// BigUint::parse_bytes(b"16706", 10).unwrap());
+ /// assert_eq!(BigUint::from_bytes_be(b"Hello world!"),
+ /// BigUint::parse_bytes(b"22405534230753963835153736737", 10).unwrap());
+ /// ```
+ #[inline]
+ pub fn from_bytes_be(bytes: &[u8]) -> BigUint {
+ if bytes.is_empty() {
+ Zero::zero()
+ } else {
+ let mut v = bytes.to_vec();
+ v.reverse();
+ BigUint::from_bytes_le(&*v)
+ }
+ }
+
+ /// Creates and initializes a `BigUint`.
+ ///
+ /// The bytes are in little-endian byte order.
+ #[inline]
+ pub fn from_bytes_le(bytes: &[u8]) -> BigUint {
+ if bytes.is_empty() {
+ Zero::zero()
+ } else {
+ from_bitwise_digits_le(bytes, 8)
+ }
+ }
+
+ /// Creates and initializes a `BigUint`. The input slice must contain
+ /// ascii/utf8 characters in [0-9a-zA-Z].
+ /// `radix` must be in the range `2...36`.
+ ///
+ /// The function `from_str_radix` from the `Num` trait provides the same logic
+ /// for `&str` buffers.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::{BigUint, ToBigUint};
+ ///
+ /// assert_eq!(BigUint::parse_bytes(b"1234", 10), ToBigUint::to_biguint(&1234));
+ /// assert_eq!(BigUint::parse_bytes(b"ABCD", 16), ToBigUint::to_biguint(&0xABCD));
+ /// assert_eq!(BigUint::parse_bytes(b"G", 16), None);
+ /// ```
+ #[inline]
+ pub fn parse_bytes(buf: &[u8], radix: u32) -> Option<BigUint> {
+ str::from_utf8(buf)
+ .ok()
+ .and_then(|s| BigUint::from_str_radix(s, radix).ok())
+ }
+
+ /// Creates and initializes a `BigUint`. Each u8 of the input slice is
+ /// interpreted as one digit of the number
+ /// and must therefore be less than `radix`.
+ ///
+ /// The bytes are in big-endian byte order.
+ /// `radix` must be in the range `2...256`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::{BigUint};
+ ///
+ /// let inbase190 = &[15, 33, 125, 12, 14];
+ /// let a = BigUint::from_radix_be(inbase190, 190).unwrap();
+ /// assert_eq!(a.to_radix_be(190), inbase190);
+ /// ```
+ pub fn from_radix_be(buf: &[u8], radix: u32) -> Option<BigUint> {
+ assert!(
+ 2 <= radix && radix <= 256,
+ "The radix must be within 2...256"
+ );
+
+ if radix != 256 && buf.iter().any(|&b| b >= radix as u8) {
+ return None;
+ }
+
+ let res = if radix.is_power_of_two() {
+ // Powers of two can use bitwise masks and shifting instead of multiplication
+ let bits = ilog2(radix);
+ let mut v = Vec::from(buf);
+ v.reverse();
+ if big_digit::BITS % bits == 0 {
+ from_bitwise_digits_le(&v, bits)
+ } else {
+ from_inexact_bitwise_digits_le(&v, bits)
+ }
+ } else {
+ from_radix_digits_be(buf, radix)
+ };
+
+ Some(res)
+ }
+
+ /// Creates and initializes a `BigUint`. Each u8 of the input slice is
+ /// interpreted as one digit of the number
+ /// and must therefore be less than `radix`.
+ ///
+ /// The bytes are in little-endian byte order.
+ /// `radix` must be in the range `2...256`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::{BigUint};
+ ///
+ /// let inbase190 = &[14, 12, 125, 33, 15];
+ /// let a = BigUint::from_radix_be(inbase190, 190).unwrap();
+ /// assert_eq!(a.to_radix_be(190), inbase190);
+ /// ```
+ pub fn from_radix_le(buf: &[u8], radix: u32) -> Option<BigUint> {
+ assert!(
+ 2 <= radix && radix <= 256,
+ "The radix must be within 2...256"
+ );
+
+ if radix != 256 && buf.iter().any(|&b| b >= radix as u8) {
+ return None;
+ }
+
+ let res = if radix.is_power_of_two() {
+ // Powers of two can use bitwise masks and shifting instead of multiplication
+ let bits = ilog2(radix);
+ if big_digit::BITS % bits == 0 {
+ from_bitwise_digits_le(buf, bits)
+ } else {
+ from_inexact_bitwise_digits_le(buf, bits)
+ }
+ } else {
+ let mut v = Vec::from(buf);
+ v.reverse();
+ from_radix_digits_be(&v, radix)
+ };
+
+ Some(res)
+ }
+
+ /// Returns the byte representation of the `BigUint` in big-endian byte order.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::BigUint;
+ ///
+ /// let i = BigUint::parse_bytes(b"1125", 10).unwrap();
+ /// assert_eq!(i.to_bytes_be(), vec![4, 101]);
+ /// ```
+ #[inline]
+ pub fn to_bytes_be(&self) -> Vec<u8> {
+ let mut v = self.to_bytes_le();
+ v.reverse();
+ v
+ }
+
+ /// Returns the byte representation of the `BigUint` in little-endian byte order.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::BigUint;
+ ///
+ /// let i = BigUint::parse_bytes(b"1125", 10).unwrap();
+ /// assert_eq!(i.to_bytes_le(), vec![101, 4]);
+ /// ```
+ #[inline]
+ pub fn to_bytes_le(&self) -> Vec<u8> {
+ if self.is_zero() {
+ vec![0]
+ } else {
+ to_bitwise_digits_le(self, 8)
+ }
+ }
+
+ /// Returns the integer formatted as a string in the given radix.
+ /// `radix` must be in the range `2...36`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::BigUint;
+ ///
+ /// let i = BigUint::parse_bytes(b"ff", 16).unwrap();
+ /// assert_eq!(i.to_str_radix(16), "ff");
+ /// ```
+ #[inline]
+ pub fn to_str_radix(&self, radix: u32) -> String {
+ let mut v = to_str_radix_reversed(self, radix);
+ v.reverse();
+ unsafe { String::from_utf8_unchecked(v) }
+ }
+
+ /// Returns the integer in the requested base in big-endian digit order.
+ /// The output is not given in a human readable alphabet but as a zero
+ /// based u8 number.
+ /// `radix` must be in the range `2...256`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::BigUint;
+ ///
+ /// assert_eq!(BigUint::from(0xFFFFu64).to_radix_be(159),
+ /// vec![2, 94, 27]);
+ /// // 0xFFFF = 65535 = 2*(159^2) + 94*159 + 27
+ /// ```
+ #[inline]
+ pub fn to_radix_be(&self, radix: u32) -> Vec<u8> {
+ let mut v = to_radix_le(self, radix);
+ v.reverse();
+ v
+ }
+
+ /// Returns the integer in the requested base in little-endian digit order.
+ /// The output is not given in a human readable alphabet but as a zero
+ /// based u8 number.
+ /// `radix` must be in the range `2...256`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_bigint::BigUint;
+ ///
+ /// assert_eq!(BigUint::from(0xFFFFu64).to_radix_le(159),
+ /// vec![27, 94, 2]);
+ /// // 0xFFFF = 65535 = 27 + 94*159 + 2*(159^2)
+ /// ```
+ #[inline]
+ pub fn to_radix_le(&self, radix: u32) -> Vec<u8> {
+ to_radix_le(self, radix)
+ }
+
+ /// Determines the fewest bits necessary to express the `BigUint`.
+ #[inline]
+ pub fn bits(&self) -> usize {
+ if self.is_zero() {
+ return 0;
+ }
+ let zeros = self.data.last().unwrap().leading_zeros();
+ return self.data.len() * big_digit::BITS - zeros as usize;
+ }
+
+ /// Strips off trailing zero bigdigits - comparisons require the last element in the vector to
+ /// be nonzero.
+ #[inline]
+ fn normalize(&mut self) {
+ while let Some(&0) = self.data.last() {
+ self.data.pop();
+ }
+ }
+
+ /// Returns a normalized `BigUint`.
+ #[inline]
+ fn normalized(mut self) -> BigUint {
+ self.normalize();
+ self
+ }
+
+ /// Returns `(self ^ exponent) % modulus`.
+ ///
+ /// Panics if the modulus is zero.
+ pub fn modpow(&self, exponent: &Self, modulus: &Self) -> Self {
+ assert!(!modulus.is_zero(), "divide by zero!");
+
+ if modulus.is_odd() {
+ // For an odd modulus, we can use Montgomery multiplication in base 2^32.
+ monty_modpow(self, exponent, modulus)
+ } else {
+ // Otherwise do basically the same as `num::pow`, but with a modulus.
+ plain_modpow(self, &exponent.data, modulus)
+ }
+ }
+
+ /// Returns the truncated principal square root of `self` --
+ /// see [Roots::sqrt](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#method.sqrt)
+ pub fn sqrt(&self) -> Self {
+ Roots::sqrt(self)
+ }
+
+ /// Returns the truncated principal cube root of `self` --
+ /// see [Roots::cbrt](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#method.cbrt).
+ pub fn cbrt(&self) -> Self {
+ Roots::cbrt(self)
+ }
+
+ /// Returns the truncated principal `n`th root of `self` --
+ /// see [Roots::nth_root](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#tymethod.nth_root).
+ pub fn nth_root(&self, n: u32) -> Self {
+ Roots::nth_root(self, n)
+ }
+}
+
+fn plain_modpow(base: &BigUint, exp_data: &[BigDigit], modulus: &BigUint) -> BigUint {
+ assert!(!modulus.is_zero(), "divide by zero!");
+
+ let i = match exp_data.iter().position(|&r| r != 0) {
+ None => return BigUint::one(),
+ Some(i) => i,
+ };
+
+ let mut base = base.clone();
+ for _ in 0..i {
+ for _ in 0..big_digit::BITS {
+ base = &base * &base % modulus;
+ }
+ }
+
+ let mut r = exp_data[i];
+ let mut b = 0usize;
+ while r.is_even() {
+ base = &base * &base % modulus;
+ r >>= 1;
+ b += 1;
+ }
+
+ let mut exp_iter = exp_data[i + 1..].iter();
+ if exp_iter.len() == 0 && r.is_one() {
+ return base;
+ }
+
+ let mut acc = base.clone();
+ r >>= 1;
+ b += 1;
+
+ {
+ let mut unit = |exp_is_odd| {
+ base = &base * &base % modulus;
+ if exp_is_odd {
+ acc = &acc * &base % modulus;
+ }
+ };
+
+ if let Some(&last) = exp_iter.next_back() {
+ // consume exp_data[i]
+ for _ in b..big_digit::BITS {
+ unit(r.is_odd());
+ r >>= 1;
+ }
+
+ // consume all other digits before the last
+ for &r in exp_iter {
+ let mut r = r;
+ for _ in 0..big_digit::BITS {
+ unit(r.is_odd());
+ r >>= 1;
+ }
+ }
+ r = last;
+ }
+
+ debug_assert_ne!(r, 0);
+ while !r.is_zero() {
+ unit(r.is_odd());
+ r >>= 1;
+ }
+ }
+ acc
+}
+
+#[test]
+fn test_plain_modpow() {
+ let two = BigUint::from(2u32);
+ let modulus = BigUint::from(0x1100u32);
+
+ let exp = vec![0, 0b1];
+ assert_eq!(
+ two.pow(0b1_00000000_u32) % &modulus,
+ plain_modpow(&two, &exp, &modulus)
+ );
+ let exp = vec![0, 0b10];
+ assert_eq!(
+ two.pow(0b10_00000000_u32) % &modulus,
+ plain_modpow(&two, &exp, &modulus)
+ );
+ let exp = vec![0, 0b110010];
+ assert_eq!(
+ two.pow(0b110010_00000000_u32) % &modulus,
+ plain_modpow(&two, &exp, &modulus)
+ );
+ let exp = vec![0b1, 0b1];
+ assert_eq!(
+ two.pow(0b1_00000001_u32) % &modulus,
+ plain_modpow(&two, &exp, &modulus)
+ );
+ let exp = vec![0b1100, 0, 0b1];
+ assert_eq!(
+ two.pow(0b1_00000000_00001100_u32) % &modulus,
+ plain_modpow(&two, &exp, &modulus)
+ );
+}
+
+/// Returns the number of least-significant bits that are zero,
+/// or `None` if the entire number is zero.
+pub fn trailing_zeros(u: &BigUint) -> Option<usize> {
+ u.data
+ .iter()
+ .enumerate()
+ .find(|&(_, &digit)| digit != 0)
+ .map(|(i, digit)| i * big_digit::BITS + digit.trailing_zeros() as usize)
+}
+
+impl_sum_iter_type!(BigUint);
+impl_product_iter_type!(BigUint);
+
+pub trait IntDigits {
+ fn digits(&self) -> &[BigDigit];
+ fn digits_mut(&mut self) -> &mut Vec<BigDigit>;
+ fn normalize(&mut self);
+ fn capacity(&self) -> usize;
+ fn len(&self) -> usize;
+}
+
+impl IntDigits for BigUint {
+ #[inline]
+ fn digits(&self) -> &[BigDigit] {
+ &self.data
+ }
+ #[inline]
+ fn digits_mut(&mut self) -> &mut Vec<BigDigit> {
+ &mut self.data
+ }
+ #[inline]
+ fn normalize(&mut self) {
+ self.normalize();
+ }
+ #[inline]
+ fn capacity(&self) -> usize {
+ self.data.capacity()
+ }
+ #[inline]
+ fn len(&self) -> usize {
+ self.data.len()
+ }
+}
+
+/// Combine four `u32`s into a single `u128`.
+#[cfg(has_i128)]
+#[inline]
+fn u32_to_u128(a: u32, b: u32, c: u32, d: u32) -> u128 {
+ u128::from(d) | (u128::from(c) << 32) | (u128::from(b) << 64) | (u128::from(a) << 96)
+}
+
+/// Split a single `u128` into four `u32`.
+#[cfg(has_i128)]
+#[inline]
+fn u32_from_u128(n: u128) -> (u32, u32, u32, u32) {
+ (
+ (n >> 96) as u32,
+ (n >> 64) as u32,
+ (n >> 32) as u32,
+ n as u32,
+ )
+}
+
+#[cfg(feature = "serde")]
+impl serde::Serialize for BigUint {
+ fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
+ where
+ S: serde::Serializer,
+ {
+ // Note: do not change the serialization format, or it may break forward
+ // and backward compatibility of serialized data! If we ever change the
+ // internal representation, we should still serialize in base-`u32`.
+ let data: &Vec<u32> = &self.data;
+ data.serialize(serializer)
+ }
+}
+
+#[cfg(feature = "serde")]
+impl<'de> serde::Deserialize<'de> for BigUint {
+ fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
+ where
+ D: serde::Deserializer<'de>,
+ {
+ let data: Vec<u32> = Vec::deserialize(deserializer)?;
+ Ok(BigUint::new(data))
+ }
+}
+
+/// Returns the greatest power of the radix <= big_digit::BASE
+#[inline]
+fn get_radix_base(radix: u32) -> (BigDigit, usize) {
+ debug_assert!(
+ 2 <= radix && radix <= 256,
+ "The radix must be within 2...256"
+ );
+ debug_assert!(!radix.is_power_of_two());
+
+ // To generate this table:
+ // for radix in 2u64..257 {
+ // let mut power = big_digit::BITS / fls(radix as u64);
+ // let mut base = radix.pow(power as u32);
+ //
+ // while let Some(b) = base.checked_mul(radix) {
+ // if b > big_digit::MAX {
+ // break;
+ // }
+ // base = b;
+ // power += 1;
+ // }
+ //
+ // println!("({:10}, {:2}), // {:2}", base, power, radix);
+ // }
+ // and
+ // for radix in 2u64..257 {
+ // let mut power = 64 / fls(radix as u64);
+ // let mut base = radix.pow(power as u32);
+ //
+ // while let Some(b) = base.checked_mul(radix) {
+ // base = b;
+ // power += 1;
+ // }
+ //
+ // println!("({:20}, {:2}), // {:2}", base, power, radix);
+ // }
+ match big_digit::BITS {
+ 32 => {
+ const BASES: [(u32, usize); 257] = [
+ (0, 0),
+ (0, 0),
+ (0, 0), // 2
+ (3486784401, 20), // 3
+ (0, 0), // 4
+ (1220703125, 13), // 5
+ (2176782336, 12), // 6
+ (1977326743, 11), // 7
+ (0, 0), // 8
+ (3486784401, 10), // 9
+ (1000000000, 9), // 10
+ (2357947691, 9), // 11
+ (429981696, 8), // 12
+ (815730721, 8), // 13
+ (1475789056, 8), // 14
+ (2562890625, 8), // 15
+ (0, 0), // 16
+ (410338673, 7), // 17
+ (612220032, 7), // 18
+ (893871739, 7), // 19
+ (1280000000, 7), // 20
+ (1801088541, 7), // 21
+ (2494357888, 7), // 22
+ (3404825447, 7), // 23
+ (191102976, 6), // 24
+ (244140625, 6), // 25
+ (308915776, 6), // 26
+ (387420489, 6), // 27
+ (481890304, 6), // 28
+ (594823321, 6), // 29
+ (729000000, 6), // 30
+ (887503681, 6), // 31
+ (0, 0), // 32
+ (1291467969, 6), // 33
+ (1544804416, 6), // 34
+ (1838265625, 6), // 35
+ (2176782336, 6), // 36
+ (2565726409, 6), // 37
+ (3010936384, 6), // 38
+ (3518743761, 6), // 39
+ (4096000000, 6), // 40
+ (115856201, 5), // 41
+ (130691232, 5), // 42
+ (147008443, 5), // 43
+ (164916224, 5), // 44
+ (184528125, 5), // 45
+ (205962976, 5), // 46
+ (229345007, 5), // 47
+ (254803968, 5), // 48
+ (282475249, 5), // 49
+ (312500000, 5), // 50
+ (345025251, 5), // 51
+ (380204032, 5), // 52
+ (418195493, 5), // 53
+ (459165024, 5), // 54
+ (503284375, 5), // 55
+ (550731776, 5), // 56
+ (601692057, 5), // 57
+ (656356768, 5), // 58
+ (714924299, 5), // 59
+ (777600000, 5), // 60
+ (844596301, 5), // 61
+ (916132832, 5), // 62
+ (992436543, 5), // 63
+ (0, 0), // 64
+ (1160290625, 5), // 65
+ (1252332576, 5), // 66
+ (1350125107, 5), // 67
+ (1453933568, 5), // 68
+ (1564031349, 5), // 69
+ (1680700000, 5), // 70
+ (1804229351, 5), // 71
+ (1934917632, 5), // 72
+ (2073071593, 5), // 73
+ (2219006624, 5), // 74
+ (2373046875, 5), // 75
+ (2535525376, 5), // 76
+ (2706784157, 5), // 77
+ (2887174368, 5), // 78
+ (3077056399, 5), // 79
+ (3276800000, 5), // 80
+ (3486784401, 5), // 81
+ (3707398432, 5), // 82
+ (3939040643, 5), // 83
+ (4182119424, 5), // 84
+ (52200625, 4), // 85
+ (54700816, 4), // 86
+ (57289761, 4), // 87
+ (59969536, 4), // 88
+ (62742241, 4), // 89
+ (65610000, 4), // 90
+ (68574961, 4), // 91
+ (71639296, 4), // 92
+ (74805201, 4), // 93
+ (78074896, 4), // 94
+ (81450625, 4), // 95
+ (84934656, 4), // 96
+ (88529281, 4), // 97
+ (92236816, 4), // 98
+ (96059601, 4), // 99
+ (100000000, 4), // 100
+ (104060401, 4), // 101
+ (108243216, 4), // 102
+ (112550881, 4), // 103
+ (116985856, 4), // 104
+ (121550625, 4), // 105
+ (126247696, 4), // 106
+ (131079601, 4), // 107
+ (136048896, 4), // 108
+ (141158161, 4), // 109
+ (146410000, 4), // 110
+ (151807041, 4), // 111
+ (157351936, 4), // 112
+ (163047361, 4), // 113
+ (168896016, 4), // 114
+ (174900625, 4), // 115
+ (181063936, 4), // 116
+ (187388721, 4), // 117
+ (193877776, 4), // 118
+ (200533921, 4), // 119
+ (207360000, 4), // 120
+ (214358881, 4), // 121
+ (221533456, 4), // 122
+ (228886641, 4), // 123
+ (236421376, 4), // 124
+ (244140625, 4), // 125
+ (252047376, 4), // 126
+ (260144641, 4), // 127
+ (0, 0), // 128
+ (276922881, 4), // 129
+ (285610000, 4), // 130
+ (294499921, 4), // 131
+ (303595776, 4), // 132
+ (312900721, 4), // 133
+ (322417936, 4), // 134
+ (332150625, 4), // 135
+ (342102016, 4), // 136
+ (352275361, 4), // 137
+ (362673936, 4), // 138
+ (373301041, 4), // 139
+ (384160000, 4), // 140
+ (395254161, 4), // 141
+ (406586896, 4), // 142
+ (418161601, 4), // 143
+ (429981696, 4), // 144
+ (442050625, 4), // 145
+ (454371856, 4), // 146
+ (466948881, 4), // 147
+ (479785216, 4), // 148
+ (492884401, 4), // 149
+ (506250000, 4), // 150
+ (519885601, 4), // 151
+ (533794816, 4), // 152
+ (547981281, 4), // 153
+ (562448656, 4), // 154
+ (577200625, 4), // 155
+ (592240896, 4), // 156
+ (607573201, 4), // 157
+ (623201296, 4), // 158
+ (639128961, 4), // 159
+ (655360000, 4), // 160
+ (671898241, 4), // 161
+ (688747536, 4), // 162
+ (705911761, 4), // 163
+ (723394816, 4), // 164
+ (741200625, 4), // 165
+ (759333136, 4), // 166
+ (777796321, 4), // 167
+ (796594176, 4), // 168
+ (815730721, 4), // 169
+ (835210000, 4), // 170
+ (855036081, 4), // 171
+ (875213056, 4), // 172
+ (895745041, 4), // 173
+ (916636176, 4), // 174
+ (937890625, 4), // 175
+ (959512576, 4), // 176
+ (981506241, 4), // 177
+ (1003875856, 4), // 178
+ (1026625681, 4), // 179
+ (1049760000, 4), // 180
+ (1073283121, 4), // 181
+ (1097199376, 4), // 182
+ (1121513121, 4), // 183
+ (1146228736, 4), // 184
+ (1171350625, 4), // 185
+ (1196883216, 4), // 186
+ (1222830961, 4), // 187
+ (1249198336, 4), // 188
+ (1275989841, 4), // 189
+ (1303210000, 4), // 190
+ (1330863361, 4), // 191
+ (1358954496, 4), // 192
+ (1387488001, 4), // 193
+ (1416468496, 4), // 194
+ (1445900625, 4), // 195
+ (1475789056, 4), // 196
+ (1506138481, 4), // 197
+ (1536953616, 4), // 198
+ (1568239201, 4), // 199
+ (1600000000, 4), // 200
+ (1632240801, 4), // 201
+ (1664966416, 4), // 202
+ (1698181681, 4), // 203
+ (1731891456, 4), // 204
+ (1766100625, 4), // 205
+ (1800814096, 4), // 206
+ (1836036801, 4), // 207
+ (1871773696, 4), // 208
+ (1908029761, 4), // 209
+ (1944810000, 4), // 210
+ (1982119441, 4), // 211
+ (2019963136, 4), // 212
+ (2058346161, 4), // 213
+ (2097273616, 4), // 214
+ (2136750625, 4), // 215
+ (2176782336, 4), // 216
+ (2217373921, 4), // 217
+ (2258530576, 4), // 218
+ (2300257521, 4), // 219
+ (2342560000, 4), // 220
+ (2385443281, 4), // 221
+ (2428912656, 4), // 222
+ (2472973441, 4), // 223
+ (2517630976, 4), // 224
+ (2562890625, 4), // 225
+ (2608757776, 4), // 226
+ (2655237841, 4), // 227
+ (2702336256, 4), // 228
+ (2750058481, 4), // 229
+ (2798410000, 4), // 230
+ (2847396321, 4), // 231
+ (2897022976, 4), // 232
+ (2947295521, 4), // 233
+ (2998219536, 4), // 234
+ (3049800625, 4), // 235
+ (3102044416, 4), // 236
+ (3154956561, 4), // 237
+ (3208542736, 4), // 238
+ (3262808641, 4), // 239
+ (3317760000, 4), // 240
+ (3373402561, 4), // 241
+ (3429742096, 4), // 242
+ (3486784401, 4), // 243
+ (3544535296, 4), // 244
+ (3603000625, 4), // 245
+ (3662186256, 4), // 246
+ (3722098081, 4), // 247
+ (3782742016, 4), // 248
+ (3844124001, 4), // 249
+ (3906250000, 4), // 250
+ (3969126001, 4), // 251
+ (4032758016, 4), // 252
+ (4097152081, 4), // 253
+ (4162314256, 4), // 254
+ (4228250625, 4), // 255
+ (0, 0), // 256
+ ];
+
+ let (base, power) = BASES[radix as usize];
+ (base as BigDigit, power)
+ }
+ 64 => {
+ const BASES: [(u64, usize); 257] = [
+ (0, 0),
+ (0, 0),
+ (9223372036854775808, 63), // 2
+ (12157665459056928801, 40), // 3
+ (4611686018427387904, 31), // 4
+ (7450580596923828125, 27), // 5
+ (4738381338321616896, 24), // 6
+ (3909821048582988049, 22), // 7
+ (9223372036854775808, 21), // 8
+ (12157665459056928801, 20), // 9
+ (10000000000000000000, 19), // 10
+ (5559917313492231481, 18), // 11
+ (2218611106740436992, 17), // 12
+ (8650415919381337933, 17), // 13
+ (2177953337809371136, 16), // 14
+ (6568408355712890625, 16), // 15
+ (1152921504606846976, 15), // 16
+ (2862423051509815793, 15), // 17
+ (6746640616477458432, 15), // 18
+ (15181127029874798299, 15), // 19
+ (1638400000000000000, 14), // 20
+ (3243919932521508681, 14), // 21
+ (6221821273427820544, 14), // 22
+ (11592836324538749809, 14), // 23
+ (876488338465357824, 13), // 24
+ (1490116119384765625, 13), // 25
+ (2481152873203736576, 13), // 26
+ (4052555153018976267, 13), // 27
+ (6502111422497947648, 13), // 28
+ (10260628712958602189, 13), // 29
+ (15943230000000000000, 13), // 30
+ (787662783788549761, 12), // 31
+ (1152921504606846976, 12), // 32
+ (1667889514952984961, 12), // 33
+ (2386420683693101056, 12), // 34
+ (3379220508056640625, 12), // 35
+ (4738381338321616896, 12), // 36
+ (6582952005840035281, 12), // 37
+ (9065737908494995456, 12), // 38
+ (12381557655576425121, 12), // 39
+ (16777216000000000000, 12), // 40
+ (550329031716248441, 11), // 41
+ (717368321110468608, 11), // 42
+ (929293739471222707, 11), // 43
+ (1196683881290399744, 11), // 44
+ (1532278301220703125, 11), // 45
+ (1951354384207722496, 11), // 46
+ (2472159215084012303, 11), // 47
+ (3116402981210161152, 11), // 48
+ (3909821048582988049, 11), // 49
+ (4882812500000000000, 11), // 50
+ (6071163615208263051, 11), // 51
+ (7516865509350965248, 11), // 52
+ (9269035929372191597, 11), // 53
+ (11384956040305711104, 11), // 54
+ (13931233916552734375, 11), // 55
+ (16985107389382393856, 11), // 56
+ (362033331456891249, 10), // 57
+ (430804206899405824, 10), // 58
+ (511116753300641401, 10), // 59
+ (604661760000000000, 10), // 60
+ (713342911662882601, 10), // 61
+ (839299365868340224, 10), // 62
+ (984930291881790849, 10), // 63
+ (1152921504606846976, 10), // 64
+ (1346274334462890625, 10), // 65
+ (1568336880910795776, 10), // 66
+ (1822837804551761449, 10), // 67
+ (2113922820157210624, 10), // 68
+ (2446194060654759801, 10), // 69
+ (2824752490000000000, 10), // 70
+ (3255243551009881201, 10), // 71
+ (3743906242624487424, 10), // 72
+ (4297625829703557649, 10), // 73
+ (4923990397355877376, 10), // 74
+ (5631351470947265625, 10), // 75
+ (6428888932339941376, 10), // 76
+ (7326680472586200649, 10), // 77
+ (8335775831236199424, 10), // 78
+ (9468276082626847201, 10), // 79
+ (10737418240000000000, 10), // 80
+ (12157665459056928801, 10), // 81
+ (13744803133596058624, 10), // 82
+ (15516041187205853449, 10), // 83
+ (17490122876598091776, 10), // 84
+ (231616946283203125, 9), // 85
+ (257327417311663616, 9), // 86
+ (285544154243029527, 9), // 87
+ (316478381828866048, 9), // 88
+ (350356403707485209, 9), // 89
+ (387420489000000000, 9), // 90
+ (427929800129788411, 9), // 91
+ (472161363286556672, 9), // 92
+ (520411082988487293, 9), // 93
+ (572994802228616704, 9), // 94
+ (630249409724609375, 9), // 95
+ (692533995824480256, 9), // 96
+ (760231058654565217, 9), // 97
+ (833747762130149888, 9), // 98
+ (913517247483640899, 9), // 99
+ (1000000000000000000, 9), // 100
+ (1093685272684360901, 9), // 101
+ (1195092568622310912, 9), // 102
+ (1304773183829244583, 9), // 103
+ (1423311812421484544, 9), // 104
+ (1551328215978515625, 9), // 105
+ (1689478959002692096, 9), // 106
+ (1838459212420154507, 9), // 107
+ (1999004627104432128, 9), // 108
+ (2171893279442309389, 9), // 109
+ (2357947691000000000, 9), // 110
+ (2558036924386500591, 9), // 111
+ (2773078757450186752, 9), // 112
+ (3004041937984268273, 9), // 113
+ (3251948521156637184, 9), // 114
+ (3517876291919921875, 9), // 115
+ (3802961274698203136, 9), // 116
+ (4108400332687853397, 9), // 117
+ (4435453859151328768, 9), // 118
+ (4785448563124474679, 9), // 119
+ (5159780352000000000, 9), // 120
+ (5559917313492231481, 9), // 121
+ (5987402799531080192, 9), // 122
+ (6443858614676334363, 9), // 123
+ (6930988311686938624, 9), // 124
+ (7450580596923828125, 9), // 125
+ (8004512848309157376, 9), // 126
+ (8594754748609397887, 9), // 127
+ (9223372036854775808, 9), // 128
+ (9892530380752880769, 9), // 129
+ (10604499373000000000, 9), // 130
+ (11361656654439817571, 9), // 131
+ (12166492167065567232, 9), // 132
+ (13021612539908538853, 9), // 133
+ (13929745610903012864, 9), // 134
+ (14893745087865234375, 9), // 135
+ (15916595351771938816, 9), // 136
+ (17001416405572203977, 9), // 137
+ (18151468971815029248, 9), // 138
+ (139353667211683681, 8), // 139
+ (147578905600000000, 8), // 140
+ (156225851787813921, 8), // 141
+ (165312903998914816, 8), // 142
+ (174859124550883201, 8), // 143
+ (184884258895036416, 8), // 144
+ (195408755062890625, 8), // 145
+ (206453783524884736, 8), // 146
+ (218041257467152161, 8), // 147
+ (230193853492166656, 8), // 148
+ (242935032749128801, 8), // 149
+ (256289062500000000, 8), // 150
+ (270281038127131201, 8), // 151
+ (284936905588473856, 8), // 152
+ (300283484326400961, 8), // 153
+ (316348490636206336, 8), // 154
+ (333160561500390625, 8), // 155
+ (350749278894882816, 8), // 156
+ (369145194573386401, 8), // 157
+ (388379855336079616, 8), // 158
+ (408485828788939521, 8), // 159
+ (429496729600000000, 8), // 160
+ (451447246258894081, 8), // 161
+ (474373168346071296, 8), // 162
+ (498311414318121121, 8), // 163
+ (523300059815673856, 8), // 164
+ (549378366500390625, 8), // 165
+ (576586811427594496, 8), // 166
+ (604967116961135041, 8), // 167
+ (634562281237118976, 8), // 168
+ (665416609183179841, 8), // 169
+ (697575744100000000, 8), // 170
+ (731086699811838561, 8), // 171
+ (765997893392859136, 8), // 172
+ (802359178476091681, 8), // 173
+ (840221879151902976, 8), // 174
+ (879638824462890625, 8), // 175
+ (920664383502155776, 8), // 176
+ (963354501121950081, 8), // 177
+ (1007766734259732736, 8), // 178
+ (1053960288888713761, 8), // 179
+ (1101996057600000000, 8), // 180
+ (1151936657823500641, 8), // 181
+ (1203846470694789376, 8), // 182
+ (1257791680575160641, 8), // 183
+ (1313840315232157696, 8), // 184
+ (1372062286687890625, 8), // 185
+ (1432529432742502656, 8), // 186
+ (1495315559180183521, 8), // 187
+ (1560496482665168896, 8), // 188
+ (1628150074335205281, 8), // 189
+ (1698356304100000000, 8), // 190
+ (1771197285652216321, 8), // 191
+ (1846757322198614016, 8), // 192
+ (1925122952918976001, 8), // 193
+ (2006383000160502016, 8), // 194
+ (2090628617375390625, 8), // 195
+ (2177953337809371136, 8), // 196
+ (2268453123948987361, 8), // 197
+ (2362226417735475456, 8), // 198
+ (2459374191553118401, 8), // 199
+ (2560000000000000000, 8), // 200
+ (2664210032449121601, 8), // 201
+ (2772113166407885056, 8), // 202
+ (2883821021683985761, 8), // 203
+ (2999448015365799936, 8), // 204
+ (3119111417625390625, 8), // 205
+ (3242931408352297216, 8), // 206
+ (3371031134626313601, 8), // 207
+ (3503536769037500416, 8), // 208
+ (3640577568861717121, 8), // 209
+ (3782285936100000000, 8), // 210
+ (3928797478390152481, 8), // 211
+ (4080251070798954496, 8), // 212
+ (4236788918503437921, 8), // 213
+ (4398556620369715456, 8), // 214
+ (4565703233437890625, 8), // 215
+ (4738381338321616896, 8), // 216
+ (4916747105530914241, 8), // 217
+ (5100960362726891776, 8), // 218
+ (5291184662917065441, 8), // 219
+ (5487587353600000000, 8), // 220
+ (5690339646868044961, 8), // 221
+ (5899616690476974336, 8), // 222
+ (6115597639891380481, 8), // 223
+ (6338465731314712576, 8), // 224
+ (6568408355712890625, 8), // 225
+ (6805617133840466176, 8), // 226
+ (7050287992278341281, 8), // 227
+ (7302621240492097536, 8), // 228
+ (7562821648920027361, 8), // 229
+ (7831098528100000000, 8), // 230
+ (8107665808844335041, 8), // 231
+ (8392742123471896576, 8), // 232
+ (8686550888106661441, 8), // 233
+ (8989320386052055296, 8), // 234
+ (9301283852250390625, 8), // 235
+ (9622679558836781056, 8), // 236
+ (9953750901796946721, 8), // 237
+ (10294746488738365696, 8), // 238
+ (10645920227784266881, 8), // 239
+ (11007531417600000000, 8), // 240
+ (11379844838561358721, 8), // 241
+ (11763130845074473216, 8), // 242
+ (12157665459056928801, 8), // 243
+ (12563730464589807616, 8), // 244
+ (12981613503750390625, 8), // 245
+ (13411608173635297536, 8), // 246
+ (13854014124583882561, 8), // 247
+ (14309137159611744256, 8), // 248
+ (14777289335064248001, 8), // 249
+ (15258789062500000000, 8), // 250
+ (15753961211814252001, 8), // 251
+ (16263137215612256256, 8), // 252
+ (16786655174842630561, 8), // 253
+ (17324859965700833536, 8), // 254
+ (17878103347812890625, 8), // 255
+ (72057594037927936, 7), // 256
+ ];
+
+ let (base, power) = BASES[radix as usize];
+ (base as BigDigit, power)
+ }
+ _ => panic!("Invalid bigdigit size"),
+ }
+}
+
+#[test]
+fn test_from_slice() {
+ fn check(slice: &[BigDigit], data: &[BigDigit]) {
+ assert!(BigUint::from_slice(slice).data == data);
+ }
+ check(&[1], &[1]);
+ check(&[0, 0, 0], &[]);
+ check(&[1, 2, 0, 0], &[1, 2]);
+ check(&[0, 0, 1, 2], &[0, 0, 1, 2]);
+ check(&[0, 0, 1, 2, 0, 0], &[0, 0, 1, 2]);
+ check(&[-1i32 as BigDigit], &[-1i32 as BigDigit]);
+}
+
+#[test]
+fn test_assign_from_slice() {
+ fn check(slice: &[BigDigit], data: &[BigDigit]) {
+ let mut p = BigUint::from_slice(&[2627_u32, 0_u32, 9182_u32, 42_u32]);
+ p.assign_from_slice(slice);
+ assert!(p.data == data);
+ }
+ check(&[1], &[1]);
+ check(&[0, 0, 0], &[]);
+ check(&[1, 2, 0, 0], &[1, 2]);
+ check(&[0, 0, 1, 2], &[0, 0, 1, 2]);
+ check(&[0, 0, 1, 2, 0, 0], &[0, 0, 1, 2]);
+ check(&[-1i32 as BigDigit], &[-1i32 as BigDigit]);
+}
+
+#[cfg(has_i128)]
+#[test]
+fn test_u32_u128() {
+ assert_eq!(u32_from_u128(0u128), (0, 0, 0, 0));
+ assert_eq!(
+ u32_from_u128(u128::max_value()),
+ (
+ u32::max_value(),
+ u32::max_value(),
+ u32::max_value(),
+ u32::max_value()
+ )
+ );
+
+ assert_eq!(
+ u32_from_u128(u32::max_value() as u128),
+ (0, 0, 0, u32::max_value())
+ );
+
+ assert_eq!(
+ u32_from_u128(u64::max_value() as u128),
+ (0, 0, u32::max_value(), u32::max_value())
+ );
+
+ assert_eq!(
+ u32_from_u128((u64::max_value() as u128) + u32::max_value() as u128),
+ (0, 1, 0, u32::max_value() - 1)
+ );
+
+ assert_eq!(u32_from_u128(36_893_488_151_714_070_528), (0, 2, 1, 0));
+}
+
+#[cfg(has_i128)]
+#[test]
+fn test_u128_u32_roundtrip() {
+ // roundtrips
+ let values = vec![
+ 0u128,
+ 1u128,
+ u64::max_value() as u128 * 3,
+ u32::max_value() as u128,
+ u64::max_value() as u128,
+ (u64::max_value() as u128) + u32::max_value() as u128,
+ u128::max_value(),
+ ];
+
+ for val in &values {
+ let (a, b, c, d) = u32_from_u128(*val);
+ assert_eq!(u32_to_u128(a, b, c, d), *val);
+ }
+}
+
+#[test]
+fn test_pow_biguint() {
+ let base = BigUint::from(5u8);
+ let exponent = BigUint::from(3u8);
+
+ assert_eq!(BigUint::from(125u8), base.pow(exponent));
+}
diff --git a/third_party/rust/num-bigint/src/lib.rs b/third_party/rust/num-bigint/src/lib.rs
new file mode 100644
index 0000000000..dece7bab00
--- /dev/null
+++ b/third_party/rust/num-bigint/src/lib.rs
@@ -0,0 +1,206 @@
+// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! A Big integer (signed version: `BigInt`, unsigned version: `BigUint`).
+//!
+//! A `BigUint` is represented as a vector of `BigDigit`s.
+//! A `BigInt` is a combination of `BigUint` and `Sign`.
+//!
+//! Common numerical operations are overloaded, so we can treat them
+//! the same way we treat other numbers.
+//!
+//! ## Example
+//!
+//! ```rust
+//! extern crate num_bigint;
+//! extern crate num_traits;
+//!
+//! # fn main() {
+//! use num_bigint::BigUint;
+//! use num_traits::{Zero, One};
+//! use std::mem::replace;
+//!
+//! // Calculate large fibonacci numbers.
+//! fn fib(n: usize) -> BigUint {
+//! let mut f0: BigUint = Zero::zero();
+//! let mut f1: BigUint = One::one();
+//! for _ in 0..n {
+//! let f2 = f0 + &f1;
+//! // This is a low cost way of swapping f0 with f1 and f1 with f2.
+//! f0 = replace(&mut f1, f2);
+//! }
+//! f0
+//! }
+//!
+//! // This is a very large number.
+//! println!("fib(1000) = {}", fib(1000));
+//! # }
+//! ```
+//!
+//! It's easy to generate large random numbers:
+//!
+//! ```rust
+//! # #[cfg(feature = "rand")]
+//! extern crate rand;
+//! extern crate num_bigint as bigint;
+//!
+//! # #[cfg(feature = "rand")]
+//! # fn main() {
+//! use bigint::{ToBigInt, RandBigInt};
+//!
+//! let mut rng = rand::thread_rng();
+//! let a = rng.gen_bigint(1000);
+//!
+//! let low = -10000.to_bigint().unwrap();
+//! let high = 10000.to_bigint().unwrap();
+//! let b = rng.gen_bigint_range(&low, &high);
+//!
+//! // Probably an even larger number.
+//! println!("{}", a * b);
+//! # }
+//!
+//! # #[cfg(not(feature = "rand"))]
+//! # fn main() {
+//! # }
+//! ```
+//!
+//! ## Compatibility
+//!
+//! The `num-bigint` crate is tested for rustc 1.15 and greater.
+
+#![doc(html_root_url = "https://docs.rs/num-bigint/0.2")]
+// We don't actually support `no_std` yet, and probably won't until `alloc` is stable. We're just
+// reserving this ability with the "std" feature now, and compilation will fail without.
+#![cfg_attr(not(feature = "std"), no_std)]
+
+#[cfg(feature = "rand")]
+extern crate rand;
+#[cfg(feature = "serde")]
+extern crate serde;
+
+extern crate num_integer as integer;
+extern crate num_traits as traits;
+#[cfg(feature = "quickcheck")]
+extern crate quickcheck;
+
+use std::error::Error;
+use std::fmt;
+
+#[macro_use]
+mod macros;
+
+mod bigint;
+mod biguint;
+
+#[cfg(feature = "rand")]
+mod bigrand;
+
+#[cfg(target_pointer_width = "32")]
+type UsizePromotion = u32;
+#[cfg(target_pointer_width = "64")]
+type UsizePromotion = u64;
+
+#[cfg(target_pointer_width = "32")]
+type IsizePromotion = i32;
+#[cfg(target_pointer_width = "64")]
+type IsizePromotion = i64;
+
+#[derive(Debug, Clone, PartialEq, Eq)]
+pub struct ParseBigIntError {
+ kind: BigIntErrorKind,
+}
+
+#[derive(Debug, Clone, PartialEq, Eq)]
+enum BigIntErrorKind {
+ Empty,
+ InvalidDigit,
+}
+
+impl ParseBigIntError {
+ fn __description(&self) -> &str {
+ use BigIntErrorKind::*;
+ match self.kind {
+ Empty => "cannot parse integer from empty string",
+ InvalidDigit => "invalid digit found in string",
+ }
+ }
+
+ fn empty() -> Self {
+ ParseBigIntError {
+ kind: BigIntErrorKind::Empty,
+ }
+ }
+
+ fn invalid() -> Self {
+ ParseBigIntError {
+ kind: BigIntErrorKind::InvalidDigit,
+ }
+ }
+}
+
+impl fmt::Display for ParseBigIntError {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ self.__description().fmt(f)
+ }
+}
+
+impl Error for ParseBigIntError {
+ fn description(&self) -> &str {
+ self.__description()
+ }
+}
+
+pub use biguint::BigUint;
+pub use biguint::ToBigUint;
+
+pub use bigint::BigInt;
+pub use bigint::Sign;
+pub use bigint::ToBigInt;
+
+#[cfg(feature = "rand")]
+pub use bigrand::{RandBigInt, RandomBits, UniformBigInt, UniformBigUint};
+
+mod big_digit {
+ /// A `BigDigit` is a `BigUint`'s composing element.
+ pub type BigDigit = u32;
+
+ /// A `DoubleBigDigit` is the internal type used to do the computations. Its
+ /// size is the double of the size of `BigDigit`.
+ pub type DoubleBigDigit = u64;
+
+ /// A `SignedDoubleBigDigit` is the signed version of `DoubleBigDigit`.
+ pub type SignedDoubleBigDigit = i64;
+
+ // `DoubleBigDigit` size dependent
+ pub const BITS: usize = 32;
+
+ const LO_MASK: DoubleBigDigit = (-1i32 as DoubleBigDigit) >> BITS;
+
+ #[inline]
+ fn get_hi(n: DoubleBigDigit) -> BigDigit {
+ (n >> BITS) as BigDigit
+ }
+ #[inline]
+ fn get_lo(n: DoubleBigDigit) -> BigDigit {
+ (n & LO_MASK) as BigDigit
+ }
+
+ /// Split one `DoubleBigDigit` into two `BigDigit`s.
+ #[inline]
+ pub fn from_doublebigdigit(n: DoubleBigDigit) -> (BigDigit, BigDigit) {
+ (get_hi(n), get_lo(n))
+ }
+
+ /// Join two `BigDigit`s into one `DoubleBigDigit`
+ #[inline]
+ pub fn to_doublebigdigit(hi: BigDigit, lo: BigDigit) -> DoubleBigDigit {
+ DoubleBigDigit::from(lo) | (DoubleBigDigit::from(hi) << BITS)
+ }
+}
diff --git a/third_party/rust/num-bigint/src/macros.rs b/third_party/rust/num-bigint/src/macros.rs
new file mode 100644
index 0000000000..0ba6e48c72
--- /dev/null
+++ b/third_party/rust/num-bigint/src/macros.rs
@@ -0,0 +1,445 @@
+#![allow(unknown_lints)] // older rustc doesn't know `unused_macros`
+#![allow(unused_macros)]
+
+macro_rules! forward_val_val_binop {
+ (impl $imp:ident for $res:ty, $method:ident) => {
+ impl $imp<$res> for $res {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: $res) -> $res {
+ // forward to val-ref
+ $imp::$method(self, &other)
+ }
+ }
+ };
+}
+
+macro_rules! forward_val_val_binop_commutative {
+ (impl $imp:ident for $res:ty, $method:ident) => {
+ impl $imp<$res> for $res {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: $res) -> $res {
+ // forward to val-ref, with the larger capacity as val
+ if self.capacity() >= other.capacity() {
+ $imp::$method(self, &other)
+ } else {
+ $imp::$method(other, &self)
+ }
+ }
+ }
+ };
+}
+
+macro_rules! forward_ref_val_binop {
+ (impl $imp:ident for $res:ty, $method:ident) => {
+ impl<'a> $imp<$res> for &'a $res {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: $res) -> $res {
+ // forward to ref-ref
+ $imp::$method(self, &other)
+ }
+ }
+ };
+}
+
+macro_rules! forward_ref_val_binop_commutative {
+ (impl $imp:ident for $res:ty, $method:ident) => {
+ impl<'a> $imp<$res> for &'a $res {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: $res) -> $res {
+ // reverse, forward to val-ref
+ $imp::$method(other, self)
+ }
+ }
+ };
+}
+
+macro_rules! forward_val_ref_binop {
+ (impl $imp:ident for $res:ty, $method:ident) => {
+ impl<'a> $imp<&'a $res> for $res {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: &$res) -> $res {
+ // forward to ref-ref
+ $imp::$method(&self, other)
+ }
+ }
+ };
+}
+
+macro_rules! forward_ref_ref_binop {
+ (impl $imp:ident for $res:ty, $method:ident) => {
+ impl<'a, 'b> $imp<&'b $res> for &'a $res {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: &$res) -> $res {
+ // forward to val-ref
+ $imp::$method(self.clone(), other)
+ }
+ }
+ };
+}
+
+macro_rules! forward_ref_ref_binop_commutative {
+ (impl $imp:ident for $res:ty, $method:ident) => {
+ impl<'a, 'b> $imp<&'b $res> for &'a $res {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: &$res) -> $res {
+ // forward to val-ref, choosing the larger to clone
+ if self.len() >= other.len() {
+ $imp::$method(self.clone(), other)
+ } else {
+ $imp::$method(other.clone(), self)
+ }
+ }
+ }
+ };
+}
+
+macro_rules! forward_val_assign {
+ (impl $imp:ident for $res:ty, $method:ident) => {
+ impl $imp<$res> for $res {
+ #[inline]
+ fn $method(&mut self, other: $res) {
+ self.$method(&other);
+ }
+ }
+ };
+}
+
+macro_rules! forward_val_assign_scalar {
+ (impl $imp:ident for $res:ty, $scalar:ty, $method:ident) => {
+ impl $imp<$res> for $scalar {
+ #[inline]
+ fn $method(&mut self, other: $res) {
+ self.$method(&other);
+ }
+ }
+ };
+}
+
+/// use this if val_val_binop is already implemented and the reversed order is required
+macro_rules! forward_scalar_val_val_binop_commutative {
+ (impl $imp:ident < $scalar:ty > for $res:ty, $method:ident) => {
+ impl $imp<$res> for $scalar {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: $res) -> $res {
+ $imp::$method(other, self)
+ }
+ }
+ };
+}
+
+// Forward scalar to ref-val, when reusing storage is not helpful
+macro_rules! forward_scalar_val_val_binop_to_ref_val {
+ (impl $imp:ident<$scalar:ty> for $res:ty, $method:ident) => {
+ impl $imp<$scalar> for $res {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: $scalar) -> $res {
+ $imp::$method(&self, other)
+ }
+ }
+
+ impl $imp<$res> for $scalar {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: $res) -> $res {
+ $imp::$method(self, &other)
+ }
+ }
+ };
+}
+
+macro_rules! forward_scalar_ref_ref_binop_to_ref_val {
+ (impl $imp:ident<$scalar:ty> for $res:ty, $method:ident) => {
+ impl<'a, 'b> $imp<&'b $scalar> for &'a $res {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: &$scalar) -> $res {
+ $imp::$method(self, *other)
+ }
+ }
+
+ impl<'a, 'b> $imp<&'a $res> for &'b $scalar {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: &$res) -> $res {
+ $imp::$method(*self, other)
+ }
+ }
+ };
+}
+
+macro_rules! forward_scalar_val_ref_binop_to_ref_val {
+ (impl $imp:ident<$scalar:ty> for $res:ty, $method:ident) => {
+ impl<'a> $imp<&'a $scalar> for $res {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: &$scalar) -> $res {
+ $imp::$method(&self, *other)
+ }
+ }
+
+ impl<'a> $imp<$res> for &'a $scalar {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: $res) -> $res {
+ $imp::$method(*self, &other)
+ }
+ }
+ };
+}
+
+macro_rules! forward_scalar_val_ref_binop_to_val_val {
+ (impl $imp:ident<$scalar:ty> for $res:ty, $method:ident) => {
+ impl<'a> $imp<&'a $scalar> for $res {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: &$scalar) -> $res {
+ $imp::$method(self, *other)
+ }
+ }
+
+ impl<'a> $imp<$res> for &'a $scalar {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: $res) -> $res {
+ $imp::$method(*self, other)
+ }
+ }
+ };
+}
+
+macro_rules! forward_scalar_ref_val_binop_to_val_val {
+ (impl $imp:ident < $scalar:ty > for $res:ty, $method:ident) => {
+ impl<'a> $imp<$scalar> for &'a $res {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: $scalar) -> $res {
+ $imp::$method(self.clone(), other)
+ }
+ }
+
+ impl<'a> $imp<&'a $res> for $scalar {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: &$res) -> $res {
+ $imp::$method(self, other.clone())
+ }
+ }
+ };
+}
+
+macro_rules! forward_scalar_ref_ref_binop_to_val_val {
+ (impl $imp:ident<$scalar:ty> for $res:ty, $method:ident) => {
+ impl<'a, 'b> $imp<&'b $scalar> for &'a $res {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: &$scalar) -> $res {
+ $imp::$method(self.clone(), *other)
+ }
+ }
+
+ impl<'a, 'b> $imp<&'a $res> for &'b $scalar {
+ type Output = $res;
+
+ #[inline]
+ fn $method(self, other: &$res) -> $res {
+ $imp::$method(*self, other.clone())
+ }
+ }
+ };
+}
+
+macro_rules! promote_scalars {
+ (impl $imp:ident<$promo:ty> for $res:ty, $method:ident, $( $scalar:ty ),*) => {
+ $(
+ forward_all_scalar_binop_to_val_val!(impl $imp<$scalar> for $res, $method);
+
+ impl $imp<$scalar> for $res {
+ type Output = $res;
+
+ #[cfg_attr(feature = "cargo-clippy", allow(renamed_and_removed_lints))]
+ #[cfg_attr(feature = "cargo-clippy", allow(cast_lossless))]
+ #[inline]
+ fn $method(self, other: $scalar) -> $res {
+ $imp::$method(self, other as $promo)
+ }
+ }
+
+ impl $imp<$res> for $scalar {
+ type Output = $res;
+
+ #[cfg_attr(feature = "cargo-clippy", allow(renamed_and_removed_lints))]
+ #[cfg_attr(feature = "cargo-clippy", allow(cast_lossless))]
+ #[inline]
+ fn $method(self, other: $res) -> $res {
+ $imp::$method(self as $promo, other)
+ }
+ }
+ )*
+ }
+}
+macro_rules! promote_scalars_assign {
+ (impl $imp:ident<$promo:ty> for $res:ty, $method:ident, $( $scalar:ty ),*) => {
+ $(
+ impl $imp<$scalar> for $res {
+ #[cfg_attr(feature = "cargo-clippy", allow(renamed_and_removed_lints))]
+ #[cfg_attr(feature = "cargo-clippy", allow(cast_lossless))]
+ #[inline]
+ fn $method(&mut self, other: $scalar) {
+ self.$method(other as $promo);
+ }
+ }
+ )*
+ }
+}
+
+macro_rules! promote_unsigned_scalars {
+ (impl $imp:ident for $res:ty, $method:ident) => {
+ promote_scalars!(impl $imp<u32> for $res, $method, u8, u16);
+ promote_scalars!(impl $imp<UsizePromotion> for $res, $method, usize);
+ }
+}
+
+macro_rules! promote_unsigned_scalars_assign {
+ (impl $imp:ident for $res:ty, $method:ident) => {
+ promote_scalars_assign!(impl $imp<u32> for $res, $method, u8, u16);
+ promote_scalars_assign!(impl $imp<UsizePromotion> for $res, $method, usize);
+ }
+}
+
+macro_rules! promote_signed_scalars {
+ (impl $imp:ident for $res:ty, $method:ident) => {
+ promote_scalars!(impl $imp<i32> for $res, $method, i8, i16);
+ promote_scalars!(impl $imp<IsizePromotion> for $res, $method, isize);
+ }
+}
+
+macro_rules! promote_signed_scalars_assign {
+ (impl $imp:ident for $res:ty, $method:ident) => {
+ promote_scalars_assign!(impl $imp<i32> for $res, $method, i8, i16);
+ promote_scalars_assign!(impl $imp<UsizePromotion> for $res, $method, isize);
+ }
+}
+
+// Forward everything to ref-ref, when reusing storage is not helpful
+macro_rules! forward_all_binop_to_ref_ref {
+ (impl $imp:ident for $res:ty, $method:ident) => {
+ forward_val_val_binop!(impl $imp for $res, $method);
+ forward_val_ref_binop!(impl $imp for $res, $method);
+ forward_ref_val_binop!(impl $imp for $res, $method);
+ };
+}
+
+// Forward everything to val-ref, so LHS storage can be reused
+macro_rules! forward_all_binop_to_val_ref {
+ (impl $imp:ident for $res:ty, $method:ident) => {
+ forward_val_val_binop!(impl $imp for $res, $method);
+ forward_ref_val_binop!(impl $imp for $res, $method);
+ forward_ref_ref_binop!(impl $imp for $res, $method);
+ };
+}
+
+// Forward everything to val-ref, commutatively, so either LHS or RHS storage can be reused
+macro_rules! forward_all_binop_to_val_ref_commutative {
+ (impl $imp:ident for $res:ty, $method:ident) => {
+ forward_val_val_binop_commutative!(impl $imp for $res, $method);
+ forward_ref_val_binop_commutative!(impl $imp for $res, $method);
+ forward_ref_ref_binop_commutative!(impl $imp for $res, $method);
+ };
+}
+
+macro_rules! forward_all_scalar_binop_to_ref_val {
+ (impl $imp:ident<$scalar:ty> for $res:ty, $method:ident) => {
+ forward_scalar_val_val_binop_to_ref_val!(impl $imp<$scalar> for $res, $method);
+ forward_scalar_val_ref_binop_to_ref_val!(impl $imp<$scalar> for $res, $method);
+ forward_scalar_ref_ref_binop_to_ref_val!(impl $imp<$scalar> for $res, $method);
+ }
+}
+
+macro_rules! forward_all_scalar_binop_to_val_val {
+ (impl $imp:ident<$scalar:ty> for $res:ty, $method:ident) => {
+ forward_scalar_val_ref_binop_to_val_val!(impl $imp<$scalar> for $res, $method);
+ forward_scalar_ref_val_binop_to_val_val!(impl $imp<$scalar> for $res, $method);
+ forward_scalar_ref_ref_binop_to_val_val!(impl $imp<$scalar> for $res, $method);
+ }
+}
+
+macro_rules! forward_all_scalar_binop_to_val_val_commutative {
+ (impl $imp:ident<$scalar:ty> for $res:ty, $method:ident) => {
+ forward_scalar_val_val_binop_commutative!(impl $imp<$scalar> for $res, $method);
+ forward_all_scalar_binop_to_val_val!(impl $imp<$scalar> for $res, $method);
+ }
+}
+
+macro_rules! promote_all_scalars {
+ (impl $imp:ident for $res:ty, $method:ident) => {
+ promote_unsigned_scalars!(impl $imp for $res, $method);
+ promote_signed_scalars!(impl $imp for $res, $method);
+ }
+}
+
+macro_rules! promote_all_scalars_assign {
+ (impl $imp:ident for $res:ty, $method:ident) => {
+ promote_unsigned_scalars_assign!(impl $imp for $res, $method);
+ promote_signed_scalars_assign!(impl $imp for $res, $method);
+ }
+}
+
+macro_rules! impl_sum_iter_type {
+ ($res:ty) => {
+ impl<T> Sum<T> for $res
+ where
+ $res: Add<T, Output = $res>,
+ {
+ fn sum<I>(iter: I) -> Self
+ where
+ I: Iterator<Item = T>,
+ {
+ iter.fold(Zero::zero(), <$res>::add)
+ }
+ }
+ };
+}
+
+macro_rules! impl_product_iter_type {
+ ($res:ty) => {
+ impl<T> Product<T> for $res
+ where
+ $res: Mul<T, Output = $res>,
+ {
+ fn product<I>(iter: I) -> Self
+ where
+ I: Iterator<Item = T>,
+ {
+ iter.fold(One::one(), <$res>::mul)
+ }
+ }
+ };
+}
diff --git a/third_party/rust/num-bigint/src/monty.rs b/third_party/rust/num-bigint/src/monty.rs
new file mode 100644
index 0000000000..72a4ab53eb
--- /dev/null
+++ b/third_party/rust/num-bigint/src/monty.rs
@@ -0,0 +1,129 @@
+use integer::Integer;
+use traits::Zero;
+
+use biguint::BigUint;
+
+struct MontyReducer<'a> {
+ n: &'a BigUint,
+ n0inv: u32,
+}
+
+// Calculate the modular inverse of `num`, using Extended GCD.
+//
+// Reference:
+// Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 1.20
+fn inv_mod_u32(num: u32) -> u32 {
+ // num needs to be relatively prime to 2**32 -- i.e. it must be odd.
+ assert!(num % 2 != 0);
+
+ let mut a: i64 = i64::from(num);
+ let mut b: i64 = i64::from(u32::max_value()) + 1;
+
+ // ExtendedGcd
+ // Input: positive integers a and b
+ // Output: integers (g, u, v) such that g = gcd(a, b) = ua + vb
+ // As we don't need v for modular inverse, we don't calculate it.
+
+ // 1: (u, w) <- (1, 0)
+ let mut u = 1;
+ let mut w = 0;
+ // 3: while b != 0
+ while b != 0 {
+ // 4: (q, r) <- DivRem(a, b)
+ let q = a / b;
+ let r = a % b;
+ // 5: (a, b) <- (b, r)
+ a = b;
+ b = r;
+ // 6: (u, w) <- (w, u - qw)
+ let m = u - w * q;
+ u = w;
+ w = m;
+ }
+
+ assert!(a == 1);
+ // Downcasting acts like a mod 2^32 too.
+ u as u32
+}
+
+impl<'a> MontyReducer<'a> {
+ fn new(n: &'a BigUint) -> Self {
+ let n0inv = inv_mod_u32(n.data[0]);
+ MontyReducer { n: n, n0inv: n0inv }
+ }
+}
+
+// Montgomery Reduction
+//
+// Reference:
+// Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 2.6
+fn monty_redc(a: BigUint, mr: &MontyReducer) -> BigUint {
+ let mut c = a.data;
+ let n = &mr.n.data;
+ let n_size = n.len();
+
+ // Allocate sufficient work space
+ c.resize(2 * n_size + 2, 0);
+
+ // β is the size of a word, in this case 32 bits. So "a mod β" is
+ // equivalent to masking a to 32 bits.
+ // mu <- -N^(-1) mod β
+ let mu = 0u32.wrapping_sub(mr.n0inv);
+
+ // 1: for i = 0 to (n-1)
+ for i in 0..n_size {
+ // 2: q_i <- mu*c_i mod β
+ let q_i = c[i].wrapping_mul(mu);
+
+ // 3: C <- C + q_i * N * β^i
+ super::algorithms::mac_digit(&mut c[i..], n, q_i);
+ }
+
+ // 4: R <- C * β^(-n)
+ // This is an n-word bitshift, equivalent to skipping n words.
+ let ret = BigUint::new(c[n_size..].to_vec());
+
+ // 5: if R >= β^n then return R-N else return R.
+ if &ret < mr.n {
+ ret
+ } else {
+ ret - mr.n
+ }
+}
+
+// Montgomery Multiplication
+fn monty_mult(a: BigUint, b: &BigUint, mr: &MontyReducer) -> BigUint {
+ monty_redc(a * b, mr)
+}
+
+// Montgomery Squaring
+fn monty_sqr(a: BigUint, mr: &MontyReducer) -> BigUint {
+ // TODO: Replace with an optimised squaring function
+ monty_redc(&a * &a, mr)
+}
+
+pub fn monty_modpow(a: &BigUint, exp: &BigUint, modulus: &BigUint) -> BigUint {
+ let mr = MontyReducer::new(modulus);
+
+ // Calculate the Montgomery parameter
+ let mut v = vec![0; modulus.data.len()];
+ v.push(1);
+ let r = BigUint::new(v);
+
+ // Map the base to the Montgomery domain
+ let mut apri = a * &r % modulus;
+
+ // Binary exponentiation
+ let mut ans = &r % modulus;
+ let mut e = exp.clone();
+ while !e.is_zero() {
+ if e.is_odd() {
+ ans = monty_mult(ans, &apri, &mr);
+ }
+ apri = monty_sqr(apri, &mr);
+ e = e >> 1;
+ }
+
+ // Map the result back to the residues domain
+ monty_redc(ans, &mr)
+}
diff --git a/third_party/rust/num-bigint/tests/bigint.rs b/third_party/rust/num-bigint/tests/bigint.rs
new file mode 100644
index 0000000000..911bff0020
--- /dev/null
+++ b/third_party/rust/num-bigint/tests/bigint.rs
@@ -0,0 +1,1193 @@
+extern crate num_bigint;
+extern crate num_integer;
+extern crate num_traits;
+#[cfg(feature = "rand")]
+extern crate rand;
+
+use num_bigint::BigUint;
+use num_bigint::Sign::{Minus, NoSign, Plus};
+use num_bigint::{BigInt, ToBigInt};
+
+use std::cmp::Ordering::{Equal, Greater, Less};
+use std::collections::hash_map::RandomState;
+use std::hash::{BuildHasher, Hash, Hasher};
+use std::iter::repeat;
+use std::ops::Neg;
+use std::{f32, f64};
+#[cfg(has_i128)]
+use std::{i128, u128};
+use std::{i16, i32, i64, i8, isize};
+use std::{u16, u32, u64, u8, usize};
+
+use num_integer::Integer;
+use num_traits::{Float, FromPrimitive, Num, One, Pow, Signed, ToPrimitive, Zero};
+
+mod consts;
+use consts::*;
+
+#[macro_use]
+mod macros;
+
+#[test]
+fn test_from_bytes_be() {
+ fn check(s: &str, result: &str) {
+ assert_eq!(
+ BigInt::from_bytes_be(Plus, s.as_bytes()),
+ BigInt::parse_bytes(result.as_bytes(), 10).unwrap()
+ );
+ }
+ check("A", "65");
+ check("AA", "16705");
+ check("AB", "16706");
+ check("Hello world!", "22405534230753963835153736737");
+ assert_eq!(BigInt::from_bytes_be(Plus, &[]), Zero::zero());
+ assert_eq!(BigInt::from_bytes_be(Minus, &[]), Zero::zero());
+}
+
+#[test]
+fn test_to_bytes_be() {
+ fn check(s: &str, result: &str) {
+ let b = BigInt::parse_bytes(result.as_bytes(), 10).unwrap();
+ let (sign, v) = b.to_bytes_be();
+ assert_eq!((Plus, s.as_bytes()), (sign, &*v));
+ }
+ check("A", "65");
+ check("AA", "16705");
+ check("AB", "16706");
+ check("Hello world!", "22405534230753963835153736737");
+ let b: BigInt = Zero::zero();
+ assert_eq!(b.to_bytes_be(), (NoSign, vec![0]));
+
+ // Test with leading/trailing zero bytes and a full BigDigit of value 0
+ let b = BigInt::from_str_radix("00010000000000000200", 16).unwrap();
+ assert_eq!(b.to_bytes_be(), (Plus, vec![1, 0, 0, 0, 0, 0, 0, 2, 0]));
+}
+
+#[test]
+fn test_from_bytes_le() {
+ fn check(s: &str, result: &str) {
+ assert_eq!(
+ BigInt::from_bytes_le(Plus, s.as_bytes()),
+ BigInt::parse_bytes(result.as_bytes(), 10).unwrap()
+ );
+ }
+ check("A", "65");
+ check("AA", "16705");
+ check("BA", "16706");
+ check("!dlrow olleH", "22405534230753963835153736737");
+ assert_eq!(BigInt::from_bytes_le(Plus, &[]), Zero::zero());
+ assert_eq!(BigInt::from_bytes_le(Minus, &[]), Zero::zero());
+}
+
+#[test]
+fn test_to_bytes_le() {
+ fn check(s: &str, result: &str) {
+ let b = BigInt::parse_bytes(result.as_bytes(), 10).unwrap();
+ let (sign, v) = b.to_bytes_le();
+ assert_eq!((Plus, s.as_bytes()), (sign, &*v));
+ }
+ check("A", "65");
+ check("AA", "16705");
+ check("BA", "16706");
+ check("!dlrow olleH", "22405534230753963835153736737");
+ let b: BigInt = Zero::zero();
+ assert_eq!(b.to_bytes_le(), (NoSign, vec![0]));
+
+ // Test with leading/trailing zero bytes and a full BigDigit of value 0
+ let b = BigInt::from_str_radix("00010000000000000200", 16).unwrap();
+ assert_eq!(b.to_bytes_le(), (Plus, vec![0, 2, 0, 0, 0, 0, 0, 0, 1]));
+}
+
+#[test]
+fn test_to_signed_bytes_le() {
+ fn check(s: &str, result: Vec<u8>) {
+ assert_eq!(
+ BigInt::parse_bytes(s.as_bytes(), 10)
+ .unwrap()
+ .to_signed_bytes_le(),
+ result
+ );
+ }
+
+ check("0", vec![0]);
+ check("32767", vec![0xff, 0x7f]);
+ check("-1", vec![0xff]);
+ check("16777216", vec![0, 0, 0, 1]);
+ check("-100", vec![156]);
+ check("-8388608", vec![0, 0, 0x80]);
+ check("-192", vec![0x40, 0xff]);
+ check("128", vec![0x80, 0])
+}
+
+#[test]
+fn test_from_signed_bytes_le() {
+ fn check(s: &[u8], result: &str) {
+ assert_eq!(
+ BigInt::from_signed_bytes_le(s),
+ BigInt::parse_bytes(result.as_bytes(), 10).unwrap()
+ );
+ }
+
+ check(&[], "0");
+ check(&[0], "0");
+ check(&[0; 10], "0");
+ check(&[0xff, 0x7f], "32767");
+ check(&[0xff], "-1");
+ check(&[0, 0, 0, 1], "16777216");
+ check(&[156], "-100");
+ check(&[0, 0, 0x80], "-8388608");
+ check(&[0xff; 10], "-1");
+ check(&[0x40, 0xff], "-192");
+}
+
+#[test]
+fn test_to_signed_bytes_be() {
+ fn check(s: &str, result: Vec<u8>) {
+ assert_eq!(
+ BigInt::parse_bytes(s.as_bytes(), 10)
+ .unwrap()
+ .to_signed_bytes_be(),
+ result
+ );
+ }
+
+ check("0", vec![0]);
+ check("32767", vec![0x7f, 0xff]);
+ check("-1", vec![255]);
+ check("16777216", vec![1, 0, 0, 0]);
+ check("-100", vec![156]);
+ check("-8388608", vec![128, 0, 0]);
+ check("-192", vec![0xff, 0x40]);
+ check("128", vec![0, 0x80]);
+}
+
+#[test]
+fn test_from_signed_bytes_be() {
+ fn check(s: &[u8], result: &str) {
+ assert_eq!(
+ BigInt::from_signed_bytes_be(s),
+ BigInt::parse_bytes(result.as_bytes(), 10).unwrap()
+ );
+ }
+
+ check(&[], "0");
+ check(&[0], "0");
+ check(&[0; 10], "0");
+ check(&[127, 255], "32767");
+ check(&[255], "-1");
+ check(&[1, 0, 0, 0], "16777216");
+ check(&[156], "-100");
+ check(&[128, 0, 0], "-8388608");
+ check(&[255; 10], "-1");
+ check(&[0xff, 0x40], "-192");
+}
+
+#[test]
+fn test_signed_bytes_be_round_trip() {
+ for i in -0x1FFFF..0x20000 {
+ let n = BigInt::from(i);
+ assert_eq!(n, BigInt::from_signed_bytes_be(&n.to_signed_bytes_be()));
+ }
+}
+
+#[test]
+fn test_signed_bytes_le_round_trip() {
+ for i in -0x1FFFF..0x20000 {
+ let n = BigInt::from(i);
+ assert_eq!(n, BigInt::from_signed_bytes_le(&n.to_signed_bytes_le()));
+ }
+}
+
+#[test]
+fn test_cmp() {
+ let vs: [&[u32]; 4] = [&[2 as u32], &[1, 1], &[2, 1], &[1, 1, 1]];
+ let mut nums = Vec::new();
+ for s in vs.iter().rev() {
+ nums.push(BigInt::from_slice(Minus, *s));
+ }
+ nums.push(Zero::zero());
+ nums.extend(vs.iter().map(|s| BigInt::from_slice(Plus, *s)));
+
+ for (i, ni) in nums.iter().enumerate() {
+ for (j0, nj) in nums[i..].iter().enumerate() {
+ let j = i + j0;
+ if i == j {
+ assert_eq!(ni.cmp(nj), Equal);
+ assert_eq!(nj.cmp(ni), Equal);
+ assert_eq!(ni, nj);
+ assert!(!(ni != nj));
+ assert!(ni <= nj);
+ assert!(ni >= nj);
+ assert!(!(ni < nj));
+ assert!(!(ni > nj));
+ } else {
+ assert_eq!(ni.cmp(nj), Less);
+ assert_eq!(nj.cmp(ni), Greater);
+
+ assert!(!(ni == nj));
+ assert!(ni != nj);
+
+ assert!(ni <= nj);
+ assert!(!(ni >= nj));
+ assert!(ni < nj);
+ assert!(!(ni > nj));
+
+ assert!(!(nj <= ni));
+ assert!(nj >= ni);
+ assert!(!(nj < ni));
+ assert!(nj > ni);
+ }
+ }
+ }
+}
+
+fn hash<T: Hash>(x: &T) -> u64 {
+ let mut hasher = <RandomState as BuildHasher>::Hasher::new();
+ x.hash(&mut hasher);
+ hasher.finish()
+}
+
+#[test]
+fn test_hash() {
+ let a = BigInt::new(NoSign, vec![]);
+ let b = BigInt::new(NoSign, vec![0]);
+ let c = BigInt::new(Plus, vec![1]);
+ let d = BigInt::new(Plus, vec![1, 0, 0, 0, 0, 0]);
+ let e = BigInt::new(Plus, vec![0, 0, 0, 0, 0, 1]);
+ let f = BigInt::new(Minus, vec![1]);
+ assert!(hash(&a) == hash(&b));
+ assert!(hash(&b) != hash(&c));
+ assert!(hash(&c) == hash(&d));
+ assert!(hash(&d) != hash(&e));
+ assert!(hash(&c) != hash(&f));
+}
+
+#[test]
+fn test_convert_i64() {
+ fn check(b1: BigInt, i: i64) {
+ let b2: BigInt = FromPrimitive::from_i64(i).unwrap();
+ assert!(b1 == b2);
+ assert!(b1.to_i64().unwrap() == i);
+ }
+
+ check(Zero::zero(), 0);
+ check(One::one(), 1);
+ check(i64::MIN.to_bigint().unwrap(), i64::MIN);
+ check(i64::MAX.to_bigint().unwrap(), i64::MAX);
+
+ assert_eq!((i64::MAX as u64 + 1).to_bigint().unwrap().to_i64(), None);
+
+ assert_eq!(
+ BigInt::from_biguint(Plus, BigUint::new(vec![1, 2, 3, 4, 5])).to_i64(),
+ None
+ );
+
+ assert_eq!(
+ BigInt::from_biguint(Minus, BigUint::new(vec![1, 0, 0, 1 << 31])).to_i64(),
+ None
+ );
+
+ assert_eq!(
+ BigInt::from_biguint(Minus, BigUint::new(vec![1, 2, 3, 4, 5])).to_i64(),
+ None
+ );
+}
+
+#[test]
+#[cfg(has_i128)]
+fn test_convert_i128() {
+ fn check(b1: BigInt, i: i128) {
+ let b2: BigInt = FromPrimitive::from_i128(i).unwrap();
+ assert!(b1 == b2);
+ assert!(b1.to_i128().unwrap() == i);
+ }
+
+ check(Zero::zero(), 0);
+ check(One::one(), 1);
+ check(i128::MIN.to_bigint().unwrap(), i128::MIN);
+ check(i128::MAX.to_bigint().unwrap(), i128::MAX);
+
+ assert_eq!((i128::MAX as u128 + 1).to_bigint().unwrap().to_i128(), None);
+
+ assert_eq!(
+ BigInt::from_biguint(Plus, BigUint::new(vec![1, 2, 3, 4, 5])).to_i128(),
+ None
+ );
+
+ assert_eq!(
+ BigInt::from_biguint(Minus, BigUint::new(vec![1, 0, 0, 1 << 31])).to_i128(),
+ None
+ );
+
+ assert_eq!(
+ BigInt::from_biguint(Minus, BigUint::new(vec![1, 2, 3, 4, 5])).to_i128(),
+ None
+ );
+}
+
+#[test]
+fn test_convert_u64() {
+ fn check(b1: BigInt, u: u64) {
+ let b2: BigInt = FromPrimitive::from_u64(u).unwrap();
+ assert!(b1 == b2);
+ assert!(b1.to_u64().unwrap() == u);
+ }
+
+ check(Zero::zero(), 0);
+ check(One::one(), 1);
+ check(u64::MIN.to_bigint().unwrap(), u64::MIN);
+ check(u64::MAX.to_bigint().unwrap(), u64::MAX);
+
+ assert_eq!(
+ BigInt::from_biguint(Plus, BigUint::new(vec![1, 2, 3, 4, 5])).to_u64(),
+ None
+ );
+
+ let max_value: BigUint = FromPrimitive::from_u64(u64::MAX).unwrap();
+ assert_eq!(BigInt::from_biguint(Minus, max_value).to_u64(), None);
+ assert_eq!(
+ BigInt::from_biguint(Minus, BigUint::new(vec![1, 2, 3, 4, 5])).to_u64(),
+ None
+ );
+}
+
+#[test]
+#[cfg(has_i128)]
+fn test_convert_u128() {
+ fn check(b1: BigInt, u: u128) {
+ let b2: BigInt = FromPrimitive::from_u128(u).unwrap();
+ assert!(b1 == b2);
+ assert!(b1.to_u128().unwrap() == u);
+ }
+
+ check(Zero::zero(), 0);
+ check(One::one(), 1);
+ check(u128::MIN.to_bigint().unwrap(), u128::MIN);
+ check(u128::MAX.to_bigint().unwrap(), u128::MAX);
+
+ assert_eq!(
+ BigInt::from_biguint(Plus, BigUint::new(vec![1, 2, 3, 4, 5])).to_u128(),
+ None
+ );
+
+ let max_value: BigUint = FromPrimitive::from_u128(u128::MAX).unwrap();
+ assert_eq!(BigInt::from_biguint(Minus, max_value).to_u128(), None);
+ assert_eq!(
+ BigInt::from_biguint(Minus, BigUint::new(vec![1, 2, 3, 4, 5])).to_u128(),
+ None
+ );
+}
+
+#[test]
+fn test_convert_f32() {
+ fn check(b1: &BigInt, f: f32) {
+ let b2 = BigInt::from_f32(f).unwrap();
+ assert_eq!(b1, &b2);
+ assert_eq!(b1.to_f32().unwrap(), f);
+ let neg_b1 = -b1;
+ let neg_b2 = BigInt::from_f32(-f).unwrap();
+ assert_eq!(neg_b1, neg_b2);
+ assert_eq!(neg_b1.to_f32().unwrap(), -f);
+ }
+
+ check(&BigInt::zero(), 0.0);
+ check(&BigInt::one(), 1.0);
+ check(&BigInt::from(u16::MAX), 2.0.powi(16) - 1.0);
+ check(&BigInt::from(1u64 << 32), 2.0.powi(32));
+ check(&BigInt::from_slice(Plus, &[0, 0, 1]), 2.0.powi(64));
+ check(
+ &((BigInt::one() << 100) + (BigInt::one() << 123)),
+ 2.0.powi(100) + 2.0.powi(123),
+ );
+ check(&(BigInt::one() << 127), 2.0.powi(127));
+ check(&(BigInt::from((1u64 << 24) - 1) << (128 - 24)), f32::MAX);
+
+ // keeping all 24 digits with the bits at different offsets to the BigDigits
+ let x: u32 = 0b00000000101111011111011011011101;
+ let mut f = x as f32;
+ let mut b = BigInt::from(x);
+ for _ in 0..64 {
+ check(&b, f);
+ f *= 2.0;
+ b = b << 1;
+ }
+
+ // this number when rounded to f64 then f32 isn't the same as when rounded straight to f32
+ let mut n: i64 = 0b0000000000111111111111111111111111011111111111111111111111111111;
+ assert!((n as f64) as f32 != n as f32);
+ assert_eq!(BigInt::from(n).to_f32(), Some(n as f32));
+ n = -n;
+ assert!((n as f64) as f32 != n as f32);
+ assert_eq!(BigInt::from(n).to_f32(), Some(n as f32));
+
+ // test rounding up with the bits at different offsets to the BigDigits
+ let mut f = ((1u64 << 25) - 1) as f32;
+ let mut b = BigInt::from(1u64 << 25);
+ for _ in 0..64 {
+ assert_eq!(b.to_f32(), Some(f));
+ f *= 2.0;
+ b = b << 1;
+ }
+
+ // rounding
+ assert_eq!(
+ BigInt::from_f32(-f32::consts::PI),
+ Some(BigInt::from(-3i32))
+ );
+ assert_eq!(BigInt::from_f32(-f32::consts::E), Some(BigInt::from(-2i32)));
+ assert_eq!(BigInt::from_f32(-0.99999), Some(BigInt::zero()));
+ assert_eq!(BigInt::from_f32(-0.5), Some(BigInt::zero()));
+ assert_eq!(BigInt::from_f32(-0.0), Some(BigInt::zero()));
+ assert_eq!(
+ BigInt::from_f32(f32::MIN_POSITIVE / 2.0),
+ Some(BigInt::zero())
+ );
+ assert_eq!(BigInt::from_f32(f32::MIN_POSITIVE), Some(BigInt::zero()));
+ assert_eq!(BigInt::from_f32(0.5), Some(BigInt::zero()));
+ assert_eq!(BigInt::from_f32(0.99999), Some(BigInt::zero()));
+ assert_eq!(BigInt::from_f32(f32::consts::E), Some(BigInt::from(2u32)));
+ assert_eq!(BigInt::from_f32(f32::consts::PI), Some(BigInt::from(3u32)));
+
+ // special float values
+ assert_eq!(BigInt::from_f32(f32::NAN), None);
+ assert_eq!(BigInt::from_f32(f32::INFINITY), None);
+ assert_eq!(BigInt::from_f32(f32::NEG_INFINITY), None);
+
+ // largest BigInt that will round to a finite f32 value
+ let big_num = (BigInt::one() << 128) - BigInt::one() - (BigInt::one() << (128 - 25));
+ assert_eq!(big_num.to_f32(), Some(f32::MAX));
+ assert_eq!((&big_num + BigInt::one()).to_f32(), None);
+ assert_eq!((-&big_num).to_f32(), Some(f32::MIN));
+ assert_eq!(((-&big_num) - BigInt::one()).to_f32(), None);
+
+ assert_eq!(((BigInt::one() << 128) - BigInt::one()).to_f32(), None);
+ assert_eq!((BigInt::one() << 128).to_f32(), None);
+ assert_eq!((-((BigInt::one() << 128) - BigInt::one())).to_f32(), None);
+ assert_eq!((-(BigInt::one() << 128)).to_f32(), None);
+}
+
+#[test]
+fn test_convert_f64() {
+ fn check(b1: &BigInt, f: f64) {
+ let b2 = BigInt::from_f64(f).unwrap();
+ assert_eq!(b1, &b2);
+ assert_eq!(b1.to_f64().unwrap(), f);
+ let neg_b1 = -b1;
+ let neg_b2 = BigInt::from_f64(-f).unwrap();
+ assert_eq!(neg_b1, neg_b2);
+ assert_eq!(neg_b1.to_f64().unwrap(), -f);
+ }
+
+ check(&BigInt::zero(), 0.0);
+ check(&BigInt::one(), 1.0);
+ check(&BigInt::from(u32::MAX), 2.0.powi(32) - 1.0);
+ check(&BigInt::from(1u64 << 32), 2.0.powi(32));
+ check(&BigInt::from_slice(Plus, &[0, 0, 1]), 2.0.powi(64));
+ check(
+ &((BigInt::one() << 100) + (BigInt::one() << 152)),
+ 2.0.powi(100) + 2.0.powi(152),
+ );
+ check(&(BigInt::one() << 1023), 2.0.powi(1023));
+ check(&(BigInt::from((1u64 << 53) - 1) << (1024 - 53)), f64::MAX);
+
+ // keeping all 53 digits with the bits at different offsets to the BigDigits
+ let x: u64 = 0b0000000000011110111110110111111101110111101111011111011011011101;
+ let mut f = x as f64;
+ let mut b = BigInt::from(x);
+ for _ in 0..128 {
+ check(&b, f);
+ f *= 2.0;
+ b = b << 1;
+ }
+
+ // test rounding up with the bits at different offsets to the BigDigits
+ let mut f = ((1u64 << 54) - 1) as f64;
+ let mut b = BigInt::from(1u64 << 54);
+ for _ in 0..128 {
+ assert_eq!(b.to_f64(), Some(f));
+ f *= 2.0;
+ b = b << 1;
+ }
+
+ // rounding
+ assert_eq!(
+ BigInt::from_f64(-f64::consts::PI),
+ Some(BigInt::from(-3i32))
+ );
+ assert_eq!(BigInt::from_f64(-f64::consts::E), Some(BigInt::from(-2i32)));
+ assert_eq!(BigInt::from_f64(-0.99999), Some(BigInt::zero()));
+ assert_eq!(BigInt::from_f64(-0.5), Some(BigInt::zero()));
+ assert_eq!(BigInt::from_f64(-0.0), Some(BigInt::zero()));
+ assert_eq!(
+ BigInt::from_f64(f64::MIN_POSITIVE / 2.0),
+ Some(BigInt::zero())
+ );
+ assert_eq!(BigInt::from_f64(f64::MIN_POSITIVE), Some(BigInt::zero()));
+ assert_eq!(BigInt::from_f64(0.5), Some(BigInt::zero()));
+ assert_eq!(BigInt::from_f64(0.99999), Some(BigInt::zero()));
+ assert_eq!(BigInt::from_f64(f64::consts::E), Some(BigInt::from(2u32)));
+ assert_eq!(BigInt::from_f64(f64::consts::PI), Some(BigInt::from(3u32)));
+
+ // special float values
+ assert_eq!(BigInt::from_f64(f64::NAN), None);
+ assert_eq!(BigInt::from_f64(f64::INFINITY), None);
+ assert_eq!(BigInt::from_f64(f64::NEG_INFINITY), None);
+
+ // largest BigInt that will round to a finite f64 value
+ let big_num = (BigInt::one() << 1024) - BigInt::one() - (BigInt::one() << (1024 - 54));
+ assert_eq!(big_num.to_f64(), Some(f64::MAX));
+ assert_eq!((&big_num + BigInt::one()).to_f64(), None);
+ assert_eq!((-&big_num).to_f64(), Some(f64::MIN));
+ assert_eq!(((-&big_num) - BigInt::one()).to_f64(), None);
+
+ assert_eq!(((BigInt::one() << 1024) - BigInt::one()).to_f64(), None);
+ assert_eq!((BigInt::one() << 1024).to_f64(), None);
+ assert_eq!((-((BigInt::one() << 1024) - BigInt::one())).to_f64(), None);
+ assert_eq!((-(BigInt::one() << 1024)).to_f64(), None);
+}
+
+#[test]
+fn test_convert_to_biguint() {
+ fn check(n: BigInt, ans_1: BigUint) {
+ assert_eq!(n.to_biguint().unwrap(), ans_1);
+ assert_eq!(n.to_biguint().unwrap().to_bigint().unwrap(), n);
+ }
+ let zero: BigInt = Zero::zero();
+ let unsigned_zero: BigUint = Zero::zero();
+ let positive = BigInt::from_biguint(Plus, BigUint::new(vec![1, 2, 3]));
+ let negative = -&positive;
+
+ check(zero, unsigned_zero);
+ check(positive, BigUint::new(vec![1, 2, 3]));
+
+ assert_eq!(negative.to_biguint(), None);
+}
+
+#[test]
+fn test_convert_from_uint() {
+ macro_rules! check {
+ ($ty:ident, $max:expr) => {
+ assert_eq!(BigInt::from($ty::zero()), BigInt::zero());
+ assert_eq!(BigInt::from($ty::one()), BigInt::one());
+ assert_eq!(BigInt::from($ty::MAX - $ty::one()), $max - BigInt::one());
+ assert_eq!(BigInt::from($ty::MAX), $max);
+ };
+ }
+
+ check!(u8, BigInt::from_slice(Plus, &[u8::MAX as u32]));
+ check!(u16, BigInt::from_slice(Plus, &[u16::MAX as u32]));
+ check!(u32, BigInt::from_slice(Plus, &[u32::MAX]));
+ check!(u64, BigInt::from_slice(Plus, &[u32::MAX, u32::MAX]));
+ #[cfg(has_i128)]
+ check!(
+ u128,
+ BigInt::from_slice(Plus, &[u32::MAX, u32::MAX, u32::MAX, u32::MAX])
+ );
+ check!(usize, BigInt::from(usize::MAX as u64));
+}
+
+#[test]
+fn test_convert_from_int() {
+ macro_rules! check {
+ ($ty:ident, $min:expr, $max:expr) => {
+ assert_eq!(BigInt::from($ty::MIN), $min);
+ assert_eq!(BigInt::from($ty::MIN + $ty::one()), $min + BigInt::one());
+ assert_eq!(BigInt::from(-$ty::one()), -BigInt::one());
+ assert_eq!(BigInt::from($ty::zero()), BigInt::zero());
+ assert_eq!(BigInt::from($ty::one()), BigInt::one());
+ assert_eq!(BigInt::from($ty::MAX - $ty::one()), $max - BigInt::one());
+ assert_eq!(BigInt::from($ty::MAX), $max);
+ };
+ }
+
+ check!(
+ i8,
+ BigInt::from_slice(Minus, &[1 << 7]),
+ BigInt::from_slice(Plus, &[i8::MAX as u32])
+ );
+ check!(
+ i16,
+ BigInt::from_slice(Minus, &[1 << 15]),
+ BigInt::from_slice(Plus, &[i16::MAX as u32])
+ );
+ check!(
+ i32,
+ BigInt::from_slice(Minus, &[1 << 31]),
+ BigInt::from_slice(Plus, &[i32::MAX as u32])
+ );
+ check!(
+ i64,
+ BigInt::from_slice(Minus, &[0, 1 << 31]),
+ BigInt::from_slice(Plus, &[u32::MAX, i32::MAX as u32])
+ );
+ #[cfg(has_i128)]
+ check!(
+ i128,
+ BigInt::from_slice(Minus, &[0, 0, 0, 1 << 31]),
+ BigInt::from_slice(Plus, &[u32::MAX, u32::MAX, u32::MAX, i32::MAX as u32])
+ );
+ check!(
+ isize,
+ BigInt::from(isize::MIN as i64),
+ BigInt::from(isize::MAX as i64)
+ );
+}
+
+#[test]
+fn test_convert_from_biguint() {
+ assert_eq!(BigInt::from(BigUint::zero()), BigInt::zero());
+ assert_eq!(BigInt::from(BigUint::one()), BigInt::one());
+ assert_eq!(
+ BigInt::from(BigUint::from_slice(&[1, 2, 3])),
+ BigInt::from_slice(Plus, &[1, 2, 3])
+ );
+}
+
+#[test]
+fn test_add() {
+ for elm in SUM_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigInt::from_slice(Plus, a_vec);
+ let b = BigInt::from_slice(Plus, b_vec);
+ let c = BigInt::from_slice(Plus, c_vec);
+ let (na, nb, nc) = (-&a, -&b, -&c);
+
+ assert_op!(a + b == c);
+ assert_op!(b + a == c);
+ assert_op!(c + na == b);
+ assert_op!(c + nb == a);
+ assert_op!(a + nc == nb);
+ assert_op!(b + nc == na);
+ assert_op!(na + nb == nc);
+ assert_op!(a + na == Zero::zero());
+
+ assert_assign_op!(a += b == c);
+ assert_assign_op!(b += a == c);
+ assert_assign_op!(c += na == b);
+ assert_assign_op!(c += nb == a);
+ assert_assign_op!(a += nc == nb);
+ assert_assign_op!(b += nc == na);
+ assert_assign_op!(na += nb == nc);
+ assert_assign_op!(a += na == Zero::zero());
+ }
+}
+
+#[test]
+fn test_sub() {
+ for elm in SUM_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigInt::from_slice(Plus, a_vec);
+ let b = BigInt::from_slice(Plus, b_vec);
+ let c = BigInt::from_slice(Plus, c_vec);
+ let (na, nb, nc) = (-&a, -&b, -&c);
+
+ assert_op!(c - a == b);
+ assert_op!(c - b == a);
+ assert_op!(nb - a == nc);
+ assert_op!(na - b == nc);
+ assert_op!(b - na == c);
+ assert_op!(a - nb == c);
+ assert_op!(nc - na == nb);
+ assert_op!(a - a == Zero::zero());
+
+ assert_assign_op!(c -= a == b);
+ assert_assign_op!(c -= b == a);
+ assert_assign_op!(nb -= a == nc);
+ assert_assign_op!(na -= b == nc);
+ assert_assign_op!(b -= na == c);
+ assert_assign_op!(a -= nb == c);
+ assert_assign_op!(nc -= na == nb);
+ assert_assign_op!(a -= a == Zero::zero());
+ }
+}
+
+#[test]
+fn test_mul() {
+ for elm in MUL_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigInt::from_slice(Plus, a_vec);
+ let b = BigInt::from_slice(Plus, b_vec);
+ let c = BigInt::from_slice(Plus, c_vec);
+ let (na, nb, nc) = (-&a, -&b, -&c);
+
+ assert_op!(a * b == c);
+ assert_op!(b * a == c);
+ assert_op!(na * nb == c);
+
+ assert_op!(na * b == nc);
+ assert_op!(nb * a == nc);
+
+ assert_assign_op!(a *= b == c);
+ assert_assign_op!(b *= a == c);
+ assert_assign_op!(na *= nb == c);
+
+ assert_assign_op!(na *= b == nc);
+ assert_assign_op!(nb *= a == nc);
+ }
+
+ for elm in DIV_REM_QUADRUPLES.iter() {
+ let (a_vec, b_vec, c_vec, d_vec) = *elm;
+ let a = BigInt::from_slice(Plus, a_vec);
+ let b = BigInt::from_slice(Plus, b_vec);
+ let c = BigInt::from_slice(Plus, c_vec);
+ let d = BigInt::from_slice(Plus, d_vec);
+
+ assert!(a == &b * &c + &d);
+ assert!(a == &c * &b + &d);
+ }
+}
+
+#[test]
+fn test_div_mod_floor() {
+ fn check_sub(a: &BigInt, b: &BigInt, ans_d: &BigInt, ans_m: &BigInt) {
+ let (d, m) = a.div_mod_floor(b);
+ if !m.is_zero() {
+ assert_eq!(m.sign(), b.sign());
+ }
+ assert!(m.abs() <= b.abs());
+ assert!(*a == b * &d + &m);
+ assert!(d == *ans_d);
+ assert!(m == *ans_m);
+ }
+
+ fn check(a: &BigInt, b: &BigInt, d: &BigInt, m: &BigInt) {
+ if m.is_zero() {
+ check_sub(a, b, d, m);
+ check_sub(a, &b.neg(), &d.neg(), m);
+ check_sub(&a.neg(), b, &d.neg(), m);
+ check_sub(&a.neg(), &b.neg(), d, m);
+ } else {
+ let one: BigInt = One::one();
+ check_sub(a, b, d, m);
+ check_sub(a, &b.neg(), &(d.neg() - &one), &(m - b));
+ check_sub(&a.neg(), b, &(d.neg() - &one), &(b - m));
+ check_sub(&a.neg(), &b.neg(), d, &m.neg());
+ }
+ }
+
+ for elm in MUL_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigInt::from_slice(Plus, a_vec);
+ let b = BigInt::from_slice(Plus, b_vec);
+ let c = BigInt::from_slice(Plus, c_vec);
+
+ if !a.is_zero() {
+ check(&c, &a, &b, &Zero::zero());
+ }
+ if !b.is_zero() {
+ check(&c, &b, &a, &Zero::zero());
+ }
+ }
+
+ for elm in DIV_REM_QUADRUPLES.iter() {
+ let (a_vec, b_vec, c_vec, d_vec) = *elm;
+ let a = BigInt::from_slice(Plus, a_vec);
+ let b = BigInt::from_slice(Plus, b_vec);
+ let c = BigInt::from_slice(Plus, c_vec);
+ let d = BigInt::from_slice(Plus, d_vec);
+
+ if !b.is_zero() {
+ check(&a, &b, &c, &d);
+ }
+ }
+}
+
+#[test]
+fn test_div_rem() {
+ fn check_sub(a: &BigInt, b: &BigInt, ans_q: &BigInt, ans_r: &BigInt) {
+ let (q, r) = a.div_rem(b);
+ if !r.is_zero() {
+ assert_eq!(r.sign(), a.sign());
+ }
+ assert!(r.abs() <= b.abs());
+ assert!(*a == b * &q + &r);
+ assert!(q == *ans_q);
+ assert!(r == *ans_r);
+
+ let (a, b, ans_q, ans_r) = (a.clone(), b.clone(), ans_q.clone(), ans_r.clone());
+ assert_op!(a / b == ans_q);
+ assert_op!(a % b == ans_r);
+ assert_assign_op!(a /= b == ans_q);
+ assert_assign_op!(a %= b == ans_r);
+ }
+
+ fn check(a: &BigInt, b: &BigInt, q: &BigInt, r: &BigInt) {
+ check_sub(a, b, q, r);
+ check_sub(a, &b.neg(), &q.neg(), r);
+ check_sub(&a.neg(), b, &q.neg(), &r.neg());
+ check_sub(&a.neg(), &b.neg(), q, &r.neg());
+ }
+ for elm in MUL_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigInt::from_slice(Plus, a_vec);
+ let b = BigInt::from_slice(Plus, b_vec);
+ let c = BigInt::from_slice(Plus, c_vec);
+
+ if !a.is_zero() {
+ check(&c, &a, &b, &Zero::zero());
+ }
+ if !b.is_zero() {
+ check(&c, &b, &a, &Zero::zero());
+ }
+ }
+
+ for elm in DIV_REM_QUADRUPLES.iter() {
+ let (a_vec, b_vec, c_vec, d_vec) = *elm;
+ let a = BigInt::from_slice(Plus, a_vec);
+ let b = BigInt::from_slice(Plus, b_vec);
+ let c = BigInt::from_slice(Plus, c_vec);
+ let d = BigInt::from_slice(Plus, d_vec);
+
+ if !b.is_zero() {
+ check(&a, &b, &c, &d);
+ }
+ }
+}
+
+#[test]
+fn test_checked_add() {
+ for elm in SUM_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigInt::from_slice(Plus, a_vec);
+ let b = BigInt::from_slice(Plus, b_vec);
+ let c = BigInt::from_slice(Plus, c_vec);
+
+ assert!(a.checked_add(&b).unwrap() == c);
+ assert!(b.checked_add(&a).unwrap() == c);
+ assert!(c.checked_add(&(-&a)).unwrap() == b);
+ assert!(c.checked_add(&(-&b)).unwrap() == a);
+ assert!(a.checked_add(&(-&c)).unwrap() == (-&b));
+ assert!(b.checked_add(&(-&c)).unwrap() == (-&a));
+ assert!((-&a).checked_add(&(-&b)).unwrap() == (-&c));
+ assert!(a.checked_add(&(-&a)).unwrap() == Zero::zero());
+ }
+}
+
+#[test]
+fn test_checked_sub() {
+ for elm in SUM_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigInt::from_slice(Plus, a_vec);
+ let b = BigInt::from_slice(Plus, b_vec);
+ let c = BigInt::from_slice(Plus, c_vec);
+
+ assert!(c.checked_sub(&a).unwrap() == b);
+ assert!(c.checked_sub(&b).unwrap() == a);
+ assert!((-&b).checked_sub(&a).unwrap() == (-&c));
+ assert!((-&a).checked_sub(&b).unwrap() == (-&c));
+ assert!(b.checked_sub(&(-&a)).unwrap() == c);
+ assert!(a.checked_sub(&(-&b)).unwrap() == c);
+ assert!((-&c).checked_sub(&(-&a)).unwrap() == (-&b));
+ assert!(a.checked_sub(&a).unwrap() == Zero::zero());
+ }
+}
+
+#[test]
+fn test_checked_mul() {
+ for elm in MUL_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigInt::from_slice(Plus, a_vec);
+ let b = BigInt::from_slice(Plus, b_vec);
+ let c = BigInt::from_slice(Plus, c_vec);
+
+ assert!(a.checked_mul(&b).unwrap() == c);
+ assert!(b.checked_mul(&a).unwrap() == c);
+
+ assert!((-&a).checked_mul(&b).unwrap() == -&c);
+ assert!((-&b).checked_mul(&a).unwrap() == -&c);
+ }
+
+ for elm in DIV_REM_QUADRUPLES.iter() {
+ let (a_vec, b_vec, c_vec, d_vec) = *elm;
+ let a = BigInt::from_slice(Plus, a_vec);
+ let b = BigInt::from_slice(Plus, b_vec);
+ let c = BigInt::from_slice(Plus, c_vec);
+ let d = BigInt::from_slice(Plus, d_vec);
+
+ assert!(a == b.checked_mul(&c).unwrap() + &d);
+ assert!(a == c.checked_mul(&b).unwrap() + &d);
+ }
+}
+#[test]
+fn test_checked_div() {
+ for elm in MUL_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigInt::from_slice(Plus, a_vec);
+ let b = BigInt::from_slice(Plus, b_vec);
+ let c = BigInt::from_slice(Plus, c_vec);
+
+ if !a.is_zero() {
+ assert!(c.checked_div(&a).unwrap() == b);
+ assert!((-&c).checked_div(&(-&a)).unwrap() == b);
+ assert!((-&c).checked_div(&a).unwrap() == -&b);
+ }
+ if !b.is_zero() {
+ assert!(c.checked_div(&b).unwrap() == a);
+ assert!((-&c).checked_div(&(-&b)).unwrap() == a);
+ assert!((-&c).checked_div(&b).unwrap() == -&a);
+ }
+
+ assert!(c.checked_div(&Zero::zero()).is_none());
+ assert!((-&c).checked_div(&Zero::zero()).is_none());
+ }
+}
+
+#[test]
+fn test_gcd() {
+ fn check(a: isize, b: isize, c: isize) {
+ let big_a: BigInt = FromPrimitive::from_isize(a).unwrap();
+ let big_b: BigInt = FromPrimitive::from_isize(b).unwrap();
+ let big_c: BigInt = FromPrimitive::from_isize(c).unwrap();
+
+ assert_eq!(big_a.gcd(&big_b), big_c);
+ }
+
+ check(10, 2, 2);
+ check(10, 3, 1);
+ check(0, 3, 3);
+ check(3, 3, 3);
+ check(56, 42, 14);
+ check(3, -3, 3);
+ check(-6, 3, 3);
+ check(-4, -2, 2);
+}
+
+#[test]
+fn test_lcm() {
+ fn check(a: isize, b: isize, c: isize) {
+ let big_a: BigInt = FromPrimitive::from_isize(a).unwrap();
+ let big_b: BigInt = FromPrimitive::from_isize(b).unwrap();
+ let big_c: BigInt = FromPrimitive::from_isize(c).unwrap();
+
+ assert_eq!(big_a.lcm(&big_b), big_c);
+ }
+
+ check(0, 0, 0);
+ check(1, 0, 0);
+ check(0, 1, 0);
+ check(1, 1, 1);
+ check(-1, 1, 1);
+ check(1, -1, 1);
+ check(-1, -1, 1);
+ check(8, 9, 72);
+ check(11, 5, 55);
+}
+
+#[test]
+fn test_abs_sub() {
+ let zero: BigInt = Zero::zero();
+ let one: BigInt = One::one();
+ assert_eq!((-&one).abs_sub(&one), zero);
+ let one: BigInt = One::one();
+ let zero: BigInt = Zero::zero();
+ assert_eq!(one.abs_sub(&one), zero);
+ let one: BigInt = One::one();
+ let zero: BigInt = Zero::zero();
+ assert_eq!(one.abs_sub(&zero), one);
+ let one: BigInt = One::one();
+ let two: BigInt = FromPrimitive::from_isize(2).unwrap();
+ assert_eq!(one.abs_sub(&-&one), two);
+}
+
+#[test]
+fn test_from_str_radix() {
+ fn check(s: &str, ans: Option<isize>) {
+ let ans = ans.map(|n| {
+ let x: BigInt = FromPrimitive::from_isize(n).unwrap();
+ x
+ });
+ assert_eq!(BigInt::from_str_radix(s, 10).ok(), ans);
+ }
+ check("10", Some(10));
+ check("1", Some(1));
+ check("0", Some(0));
+ check("-1", Some(-1));
+ check("-10", Some(-10));
+ check("+10", Some(10));
+ check("--7", None);
+ check("++5", None);
+ check("+-9", None);
+ check("-+3", None);
+ check("Z", None);
+ check("_", None);
+
+ // issue 10522, this hit an edge case that caused it to
+ // attempt to allocate a vector of size (-1u) == huge.
+ let x: BigInt = format!("1{}", repeat("0").take(36).collect::<String>())
+ .parse()
+ .unwrap();
+ let _y = x.to_string();
+}
+
+#[test]
+fn test_lower_hex() {
+ let a = BigInt::parse_bytes(b"A", 16).unwrap();
+ let hello = BigInt::parse_bytes("-22405534230753963835153736737".as_bytes(), 10).unwrap();
+
+ assert_eq!(format!("{:x}", a), "a");
+ assert_eq!(format!("{:x}", hello), "-48656c6c6f20776f726c6421");
+ assert_eq!(format!("{:♥>+#8x}", a), "♥♥♥♥+0xa");
+}
+
+#[test]
+fn test_upper_hex() {
+ let a = BigInt::parse_bytes(b"A", 16).unwrap();
+ let hello = BigInt::parse_bytes("-22405534230753963835153736737".as_bytes(), 10).unwrap();
+
+ assert_eq!(format!("{:X}", a), "A");
+ assert_eq!(format!("{:X}", hello), "-48656C6C6F20776F726C6421");
+ assert_eq!(format!("{:♥>+#8X}", a), "♥♥♥♥+0xA");
+}
+
+#[test]
+fn test_binary() {
+ let a = BigInt::parse_bytes(b"A", 16).unwrap();
+ let hello = BigInt::parse_bytes("-224055342307539".as_bytes(), 10).unwrap();
+
+ assert_eq!(format!("{:b}", a), "1010");
+ assert_eq!(
+ format!("{:b}", hello),
+ "-110010111100011011110011000101101001100011010011"
+ );
+ assert_eq!(format!("{:♥>+#8b}", a), "♥+0b1010");
+}
+
+#[test]
+fn test_octal() {
+ let a = BigInt::parse_bytes(b"A", 16).unwrap();
+ let hello = BigInt::parse_bytes("-22405534230753963835153736737".as_bytes(), 10).unwrap();
+
+ assert_eq!(format!("{:o}", a), "12");
+ assert_eq!(format!("{:o}", hello), "-22062554330674403566756233062041");
+ assert_eq!(format!("{:♥>+#8o}", a), "♥♥♥+0o12");
+}
+
+#[test]
+fn test_display() {
+ let a = BigInt::parse_bytes(b"A", 16).unwrap();
+ let hello = BigInt::parse_bytes("-22405534230753963835153736737".as_bytes(), 10).unwrap();
+
+ assert_eq!(format!("{}", a), "10");
+ assert_eq!(format!("{}", hello), "-22405534230753963835153736737");
+ assert_eq!(format!("{:♥>+#8}", a), "♥♥♥♥♥+10");
+}
+
+#[test]
+fn test_neg() {
+ assert!(-BigInt::new(Plus, vec![1, 1, 1]) == BigInt::new(Minus, vec![1, 1, 1]));
+ assert!(-BigInt::new(Minus, vec![1, 1, 1]) == BigInt::new(Plus, vec![1, 1, 1]));
+ let zero: BigInt = Zero::zero();
+ assert_eq!(-&zero, zero);
+}
+
+#[test]
+fn test_negative_shr() {
+ assert_eq!(BigInt::from(-1) >> 1, BigInt::from(-1));
+ assert_eq!(BigInt::from(-2) >> 1, BigInt::from(-1));
+ assert_eq!(BigInt::from(-3) >> 1, BigInt::from(-2));
+ assert_eq!(BigInt::from(-3) >> 2, BigInt::from(-1));
+}
+
+#[test]
+#[cfg(feature = "rand")]
+fn test_random_shr() {
+ use rand::distributions::Standard;
+ use rand::Rng;
+ let mut rng = rand::thread_rng();
+
+ for p in rng.sample_iter::<i64, _>(&Standard).take(1000) {
+ let big = BigInt::from(p);
+ let bigger = &big << 1000;
+ assert_eq!(&bigger >> 1000, big);
+ for i in 0..64 {
+ let answer = BigInt::from(p >> i);
+ assert_eq!(&big >> i, answer);
+ assert_eq!(&bigger >> (1000 + i), answer);
+ }
+ }
+}
+
+#[test]
+fn test_iter_sum() {
+ let result: BigInt = FromPrimitive::from_isize(-1234567).unwrap();
+ let data: Vec<BigInt> = vec![
+ FromPrimitive::from_i32(-1000000).unwrap(),
+ FromPrimitive::from_i32(-200000).unwrap(),
+ FromPrimitive::from_i32(-30000).unwrap(),
+ FromPrimitive::from_i32(-4000).unwrap(),
+ FromPrimitive::from_i32(-500).unwrap(),
+ FromPrimitive::from_i32(-60).unwrap(),
+ FromPrimitive::from_i32(-7).unwrap(),
+ ];
+
+ assert_eq!(result, data.iter().sum());
+ assert_eq!(result, data.into_iter().sum());
+}
+
+#[test]
+fn test_iter_product() {
+ let data: Vec<BigInt> = vec![
+ FromPrimitive::from_i32(1001).unwrap(),
+ FromPrimitive::from_i32(-1002).unwrap(),
+ FromPrimitive::from_i32(1003).unwrap(),
+ FromPrimitive::from_i32(-1004).unwrap(),
+ FromPrimitive::from_i32(1005).unwrap(),
+ ];
+ let result = data.get(0).unwrap()
+ * data.get(1).unwrap()
+ * data.get(2).unwrap()
+ * data.get(3).unwrap()
+ * data.get(4).unwrap();
+
+ assert_eq!(result, data.iter().product());
+ assert_eq!(result, data.into_iter().product());
+}
+
+#[test]
+fn test_iter_sum_generic() {
+ let result: BigInt = FromPrimitive::from_isize(-1234567).unwrap();
+ let data = vec![-1000000, -200000, -30000, -4000, -500, -60, -7];
+
+ assert_eq!(result, data.iter().sum());
+ assert_eq!(result, data.into_iter().sum());
+}
+
+#[test]
+fn test_iter_product_generic() {
+ let data = vec![1001, -1002, 1003, -1004, 1005];
+ let result = data[0].to_bigint().unwrap()
+ * data[1].to_bigint().unwrap()
+ * data[2].to_bigint().unwrap()
+ * data[3].to_bigint().unwrap()
+ * data[4].to_bigint().unwrap();
+
+ assert_eq!(result, data.iter().product());
+ assert_eq!(result, data.into_iter().product());
+}
+
+#[test]
+fn test_pow() {
+ let one = BigInt::from(1i32);
+ let two = BigInt::from(2i32);
+ let four = BigInt::from(4i32);
+ let eight = BigInt::from(8i32);
+ let minus_two = BigInt::from(-2i32);
+ macro_rules! check {
+ ($t:ty) => {
+ assert_eq!(two.pow(0 as $t), one);
+ assert_eq!(two.pow(1 as $t), two);
+ assert_eq!(two.pow(2 as $t), four);
+ assert_eq!(two.pow(3 as $t), eight);
+ assert_eq!(two.pow(&(3 as $t)), eight);
+ assert_eq!(minus_two.pow(0 as $t), one, "-2^0");
+ assert_eq!(minus_two.pow(1 as $t), minus_two, "-2^1");
+ assert_eq!(minus_two.pow(2 as $t), four, "-2^2");
+ assert_eq!(minus_two.pow(3 as $t), -&eight, "-2^3");
+ };
+ }
+ check!(u8);
+ check!(u16);
+ check!(u32);
+ check!(u64);
+ check!(usize);
+}
diff --git a/third_party/rust/num-bigint/tests/bigint_bitwise.rs b/third_party/rust/num-bigint/tests/bigint_bitwise.rs
new file mode 100644
index 0000000000..cc0c493cb5
--- /dev/null
+++ b/third_party/rust/num-bigint/tests/bigint_bitwise.rs
@@ -0,0 +1,181 @@
+extern crate num_bigint;
+extern crate num_traits;
+
+use num_bigint::{BigInt, Sign, ToBigInt};
+use num_traits::ToPrimitive;
+use std::{i32, i64, u32};
+
+enum ValueVec {
+ N,
+ P(&'static [u32]),
+ M(&'static [u32]),
+}
+
+use ValueVec::*;
+
+impl ToBigInt for ValueVec {
+ fn to_bigint(&self) -> Option<BigInt> {
+ match self {
+ &N => Some(BigInt::from_slice(Sign::NoSign, &[])),
+ &P(s) => Some(BigInt::from_slice(Sign::Plus, s)),
+ &M(s) => Some(BigInt::from_slice(Sign::Minus, s)),
+ }
+ }
+}
+
+// a, !a
+const NOT_VALUES: &'static [(ValueVec, ValueVec)] = &[
+ (N, M(&[1])),
+ (P(&[1]), M(&[2])),
+ (P(&[2]), M(&[3])),
+ (P(&[!0 - 2]), M(&[!0 - 1])),
+ (P(&[!0 - 1]), M(&[!0])),
+ (P(&[!0]), M(&[0, 1])),
+ (P(&[0, 1]), M(&[1, 1])),
+ (P(&[1, 1]), M(&[2, 1])),
+];
+
+// a, b, a & b, a | b, a ^ b
+const BITWISE_VALUES: &'static [(ValueVec, ValueVec, ValueVec, ValueVec, ValueVec)] = &[
+ (N, N, N, N, N),
+ (N, P(&[1]), N, P(&[1]), P(&[1])),
+ (N, P(&[!0]), N, P(&[!0]), P(&[!0])),
+ (N, P(&[0, 1]), N, P(&[0, 1]), P(&[0, 1])),
+ (N, M(&[1]), N, M(&[1]), M(&[1])),
+ (N, M(&[!0]), N, M(&[!0]), M(&[!0])),
+ (N, M(&[0, 1]), N, M(&[0, 1]), M(&[0, 1])),
+ (P(&[1]), P(&[!0]), P(&[1]), P(&[!0]), P(&[!0 - 1])),
+ (P(&[!0]), P(&[!0]), P(&[!0]), P(&[!0]), N),
+ (P(&[!0]), P(&[1, 1]), P(&[1]), P(&[!0, 1]), P(&[!0 - 1, 1])),
+ (P(&[1]), M(&[!0]), P(&[1]), M(&[!0]), M(&[0, 1])),
+ (P(&[!0]), M(&[1]), P(&[!0]), M(&[1]), M(&[0, 1])),
+ (P(&[!0]), M(&[!0]), P(&[1]), M(&[1]), M(&[2])),
+ (P(&[!0]), M(&[1, 1]), P(&[!0]), M(&[1, 1]), M(&[0, 2])),
+ (P(&[1, 1]), M(&[!0]), P(&[1, 1]), M(&[!0]), M(&[0, 2])),
+ (M(&[1]), M(&[!0]), M(&[!0]), M(&[1]), P(&[!0 - 1])),
+ (M(&[!0]), M(&[!0]), M(&[!0]), M(&[!0]), N),
+ (M(&[!0]), M(&[1, 1]), M(&[!0, 1]), M(&[1]), P(&[!0 - 1, 1])),
+];
+
+const I32_MIN: i64 = i32::MIN as i64;
+const I32_MAX: i64 = i32::MAX as i64;
+const U32_MAX: i64 = u32::MAX as i64;
+
+// some corner cases
+const I64_VALUES: &'static [i64] = &[
+ i64::MIN,
+ i64::MIN + 1,
+ i64::MIN + 2,
+ i64::MIN + 3,
+ -U32_MAX - 3,
+ -U32_MAX - 2,
+ -U32_MAX - 1,
+ -U32_MAX,
+ -U32_MAX + 1,
+ -U32_MAX + 2,
+ -U32_MAX + 3,
+ I32_MIN - 3,
+ I32_MIN - 2,
+ I32_MIN - 1,
+ I32_MIN,
+ I32_MIN + 1,
+ I32_MIN + 2,
+ I32_MIN + 3,
+ -3,
+ -2,
+ -1,
+ 0,
+ 1,
+ 2,
+ 3,
+ I32_MAX - 3,
+ I32_MAX - 2,
+ I32_MAX - 1,
+ I32_MAX,
+ I32_MAX + 1,
+ I32_MAX + 2,
+ I32_MAX + 3,
+ U32_MAX - 3,
+ U32_MAX - 2,
+ U32_MAX - 1,
+ U32_MAX,
+ U32_MAX + 1,
+ U32_MAX + 2,
+ U32_MAX + 3,
+ i64::MAX - 3,
+ i64::MAX - 2,
+ i64::MAX - 1,
+ i64::MAX,
+];
+
+#[test]
+fn test_not() {
+ for &(ref a, ref not) in NOT_VALUES.iter() {
+ let a = a.to_bigint().unwrap();
+ let not = not.to_bigint().unwrap();
+
+ // sanity check for tests that fit in i64
+ if let (Some(prim_a), Some(prim_not)) = (a.to_i64(), not.to_i64()) {
+ assert_eq!(!prim_a, prim_not);
+ }
+
+ assert_eq!(!a.clone(), not, "!{:x}", a);
+ assert_eq!(!not.clone(), a, "!{:x}", not);
+ }
+}
+
+#[test]
+fn test_not_i64() {
+ for &prim_a in I64_VALUES.iter() {
+ let a = prim_a.to_bigint().unwrap();
+ let not = (!prim_a).to_bigint().unwrap();
+ assert_eq!(!a.clone(), not, "!{:x}", a);
+ }
+}
+
+#[test]
+fn test_bitwise() {
+ for &(ref a, ref b, ref and, ref or, ref xor) in BITWISE_VALUES.iter() {
+ let a = a.to_bigint().unwrap();
+ let b = b.to_bigint().unwrap();
+ let and = and.to_bigint().unwrap();
+ let or = or.to_bigint().unwrap();
+ let xor = xor.to_bigint().unwrap();
+
+ // sanity check for tests that fit in i64
+ if let (Some(prim_a), Some(prim_b)) = (a.to_i64(), b.to_i64()) {
+ if let Some(prim_and) = and.to_i64() {
+ assert_eq!(prim_a & prim_b, prim_and);
+ }
+ if let Some(prim_or) = or.to_i64() {
+ assert_eq!(prim_a | prim_b, prim_or);
+ }
+ if let Some(prim_xor) = xor.to_i64() {
+ assert_eq!(prim_a ^ prim_b, prim_xor);
+ }
+ }
+
+ assert_eq!(a.clone() & &b, and, "{:x} & {:x}", a, b);
+ assert_eq!(b.clone() & &a, and, "{:x} & {:x}", b, a);
+ assert_eq!(a.clone() | &b, or, "{:x} | {:x}", a, b);
+ assert_eq!(b.clone() | &a, or, "{:x} | {:x}", b, a);
+ assert_eq!(a.clone() ^ &b, xor, "{:x} ^ {:x}", a, b);
+ assert_eq!(b.clone() ^ &a, xor, "{:x} ^ {:x}", b, a);
+ }
+}
+
+#[test]
+fn test_bitwise_i64() {
+ for &prim_a in I64_VALUES.iter() {
+ let a = prim_a.to_bigint().unwrap();
+ for &prim_b in I64_VALUES.iter() {
+ let b = prim_b.to_bigint().unwrap();
+ let and = (prim_a & prim_b).to_bigint().unwrap();
+ let or = (prim_a | prim_b).to_bigint().unwrap();
+ let xor = (prim_a ^ prim_b).to_bigint().unwrap();
+ assert_eq!(a.clone() & &b, and, "{:x} & {:x}", a, b);
+ assert_eq!(a.clone() | &b, or, "{:x} | {:x}", a, b);
+ assert_eq!(a.clone() ^ &b, xor, "{:x} ^ {:x}", a, b);
+ }
+ }
+}
diff --git a/third_party/rust/num-bigint/tests/bigint_scalar.rs b/third_party/rust/num-bigint/tests/bigint_scalar.rs
new file mode 100644
index 0000000000..ae9a6d7aa2
--- /dev/null
+++ b/third_party/rust/num-bigint/tests/bigint_scalar.rs
@@ -0,0 +1,145 @@
+extern crate num_bigint;
+extern crate num_traits;
+
+use num_bigint::BigInt;
+use num_bigint::Sign::Plus;
+use num_traits::{Signed, ToPrimitive, Zero};
+
+use std::ops::Neg;
+
+mod consts;
+use consts::*;
+
+#[macro_use]
+mod macros;
+
+#[test]
+fn test_scalar_add() {
+ fn check(x: &BigInt, y: &BigInt, z: &BigInt) {
+ let (x, y, z) = (x.clone(), y.clone(), z.clone());
+ assert_signed_scalar_op!(x + y == z);
+ }
+
+ for elm in SUM_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigInt::from_slice(Plus, a_vec);
+ let b = BigInt::from_slice(Plus, b_vec);
+ let c = BigInt::from_slice(Plus, c_vec);
+ let (na, nb, nc) = (-&a, -&b, -&c);
+
+ check(&a, &b, &c);
+ check(&b, &a, &c);
+ check(&c, &na, &b);
+ check(&c, &nb, &a);
+ check(&a, &nc, &nb);
+ check(&b, &nc, &na);
+ check(&na, &nb, &nc);
+ check(&a, &na, &Zero::zero());
+ }
+}
+
+#[test]
+fn test_scalar_sub() {
+ fn check(x: &BigInt, y: &BigInt, z: &BigInt) {
+ let (x, y, z) = (x.clone(), y.clone(), z.clone());
+ assert_signed_scalar_op!(x - y == z);
+ }
+
+ for elm in SUM_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigInt::from_slice(Plus, a_vec);
+ let b = BigInt::from_slice(Plus, b_vec);
+ let c = BigInt::from_slice(Plus, c_vec);
+ let (na, nb, nc) = (-&a, -&b, -&c);
+
+ check(&c, &a, &b);
+ check(&c, &b, &a);
+ check(&nb, &a, &nc);
+ check(&na, &b, &nc);
+ check(&b, &na, &c);
+ check(&a, &nb, &c);
+ check(&nc, &na, &nb);
+ check(&a, &a, &Zero::zero());
+ }
+}
+
+#[test]
+fn test_scalar_mul() {
+ fn check(x: &BigInt, y: &BigInt, z: &BigInt) {
+ let (x, y, z) = (x.clone(), y.clone(), z.clone());
+ assert_signed_scalar_op!(x * y == z);
+ }
+
+ for elm in MUL_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigInt::from_slice(Plus, a_vec);
+ let b = BigInt::from_slice(Plus, b_vec);
+ let c = BigInt::from_slice(Plus, c_vec);
+ let (na, nb, nc) = (-&a, -&b, -&c);
+
+ check(&a, &b, &c);
+ check(&b, &a, &c);
+ check(&na, &nb, &c);
+
+ check(&na, &b, &nc);
+ check(&nb, &a, &nc);
+ }
+}
+
+#[test]
+fn test_scalar_div_rem() {
+ fn check_sub(a: &BigInt, b: u32, ans_q: &BigInt, ans_r: &BigInt) {
+ let (q, r) = (a / b, a % b);
+ if !r.is_zero() {
+ assert_eq!(r.sign(), a.sign());
+ }
+ assert!(r.abs() <= From::from(b));
+ assert!(*a == b * &q + &r);
+ assert!(q == *ans_q);
+ assert!(r == *ans_r);
+
+ let (a, b, ans_q, ans_r) = (a.clone(), b.clone(), ans_q.clone(), ans_r.clone());
+ assert_op!(a / b == ans_q);
+ assert_op!(a % b == ans_r);
+
+ if b <= i32::max_value() as u32 {
+ let nb = -(b as i32);
+ assert_op!(a / nb == -ans_q.clone());
+ assert_op!(a % nb == ans_r);
+ }
+ }
+
+ fn check(a: &BigInt, b: u32, q: &BigInt, r: &BigInt) {
+ check_sub(a, b, q, r);
+ check_sub(&a.neg(), b, &q.neg(), &r.neg());
+ }
+
+ for elm in MUL_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigInt::from_slice(Plus, a_vec);
+ let b = BigInt::from_slice(Plus, b_vec);
+ let c = BigInt::from_slice(Plus, c_vec);
+
+ if a_vec.len() == 1 && a_vec[0] != 0 {
+ let a = a_vec[0];
+ check(&c, a, &b, &Zero::zero());
+ }
+
+ if b_vec.len() == 1 && b_vec[0] != 0 {
+ let b = b_vec[0];
+ check(&c, b, &a, &Zero::zero());
+ }
+ }
+
+ for elm in DIV_REM_QUADRUPLES.iter() {
+ let (a_vec, b_vec, c_vec, d_vec) = *elm;
+ let a = BigInt::from_slice(Plus, a_vec);
+ let c = BigInt::from_slice(Plus, c_vec);
+ let d = BigInt::from_slice(Plus, d_vec);
+
+ if b_vec.len() == 1 && b_vec[0] != 0 {
+ let b = b_vec[0];
+ check(&a, b, &c, &d);
+ }
+ }
+}
diff --git a/third_party/rust/num-bigint/tests/biguint.rs b/third_party/rust/num-bigint/tests/biguint.rs
new file mode 100644
index 0000000000..1e23aa17f9
--- /dev/null
+++ b/third_party/rust/num-bigint/tests/biguint.rs
@@ -0,0 +1,1713 @@
+extern crate num_bigint;
+extern crate num_integer;
+extern crate num_traits;
+
+use num_bigint::Sign::Plus;
+use num_bigint::{BigInt, ToBigInt};
+use num_bigint::{BigUint, ToBigUint};
+use num_integer::Integer;
+
+use std::cmp::Ordering::{Equal, Greater, Less};
+use std::collections::hash_map::RandomState;
+use std::hash::{BuildHasher, Hash, Hasher};
+use std::i64;
+use std::iter::repeat;
+use std::str::FromStr;
+use std::{f32, f64};
+#[cfg(has_i128)]
+use std::{i128, u128};
+use std::{u16, u32, u64, u8, usize};
+
+use num_traits::{
+ CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, Float, FromPrimitive, Num, One, Pow,
+ ToPrimitive, Zero,
+};
+
+mod consts;
+use consts::*;
+
+#[macro_use]
+mod macros;
+
+#[test]
+fn test_from_bytes_be() {
+ fn check(s: &str, result: &str) {
+ assert_eq!(
+ BigUint::from_bytes_be(s.as_bytes()),
+ BigUint::parse_bytes(result.as_bytes(), 10).unwrap()
+ );
+ }
+ check("A", "65");
+ check("AA", "16705");
+ check("AB", "16706");
+ check("Hello world!", "22405534230753963835153736737");
+ assert_eq!(BigUint::from_bytes_be(&[]), Zero::zero());
+}
+
+#[test]
+fn test_to_bytes_be() {
+ fn check(s: &str, result: &str) {
+ let b = BigUint::parse_bytes(result.as_bytes(), 10).unwrap();
+ assert_eq!(b.to_bytes_be(), s.as_bytes());
+ }
+ check("A", "65");
+ check("AA", "16705");
+ check("AB", "16706");
+ check("Hello world!", "22405534230753963835153736737");
+ let b: BigUint = Zero::zero();
+ assert_eq!(b.to_bytes_be(), [0]);
+
+ // Test with leading/trailing zero bytes and a full BigDigit of value 0
+ let b = BigUint::from_str_radix("00010000000000000200", 16).unwrap();
+ assert_eq!(b.to_bytes_be(), [1, 0, 0, 0, 0, 0, 0, 2, 0]);
+}
+
+#[test]
+fn test_from_bytes_le() {
+ fn check(s: &str, result: &str) {
+ assert_eq!(
+ BigUint::from_bytes_le(s.as_bytes()),
+ BigUint::parse_bytes(result.as_bytes(), 10).unwrap()
+ );
+ }
+ check("A", "65");
+ check("AA", "16705");
+ check("BA", "16706");
+ check("!dlrow olleH", "22405534230753963835153736737");
+ assert_eq!(BigUint::from_bytes_le(&[]), Zero::zero());
+}
+
+#[test]
+fn test_to_bytes_le() {
+ fn check(s: &str, result: &str) {
+ let b = BigUint::parse_bytes(result.as_bytes(), 10).unwrap();
+ assert_eq!(b.to_bytes_le(), s.as_bytes());
+ }
+ check("A", "65");
+ check("AA", "16705");
+ check("BA", "16706");
+ check("!dlrow olleH", "22405534230753963835153736737");
+ let b: BigUint = Zero::zero();
+ assert_eq!(b.to_bytes_le(), [0]);
+
+ // Test with leading/trailing zero bytes and a full BigDigit of value 0
+ let b = BigUint::from_str_radix("00010000000000000200", 16).unwrap();
+ assert_eq!(b.to_bytes_le(), [0, 2, 0, 0, 0, 0, 0, 0, 1]);
+}
+
+#[test]
+fn test_cmp() {
+ let data: [&[_]; 7] = [&[], &[1], &[2], &[!0], &[0, 1], &[2, 1], &[1, 1, 1]];
+ let data: Vec<BigUint> = data.iter().map(|v| BigUint::from_slice(*v)).collect();
+ for (i, ni) in data.iter().enumerate() {
+ for (j0, nj) in data[i..].iter().enumerate() {
+ let j = j0 + i;
+ if i == j {
+ assert_eq!(ni.cmp(nj), Equal);
+ assert_eq!(nj.cmp(ni), Equal);
+ assert_eq!(ni, nj);
+ assert!(!(ni != nj));
+ assert!(ni <= nj);
+ assert!(ni >= nj);
+ assert!(!(ni < nj));
+ assert!(!(ni > nj));
+ } else {
+ assert_eq!(ni.cmp(nj), Less);
+ assert_eq!(nj.cmp(ni), Greater);
+
+ assert!(!(ni == nj));
+ assert!(ni != nj);
+
+ assert!(ni <= nj);
+ assert!(!(ni >= nj));
+ assert!(ni < nj);
+ assert!(!(ni > nj));
+
+ assert!(!(nj <= ni));
+ assert!(nj >= ni);
+ assert!(!(nj < ni));
+ assert!(nj > ni);
+ }
+ }
+ }
+}
+
+fn hash<T: Hash>(x: &T) -> u64 {
+ let mut hasher = <RandomState as BuildHasher>::Hasher::new();
+ x.hash(&mut hasher);
+ hasher.finish()
+}
+
+#[test]
+fn test_hash() {
+ use hash;
+
+ let a = BigUint::new(vec![]);
+ let b = BigUint::new(vec![0]);
+ let c = BigUint::new(vec![1]);
+ let d = BigUint::new(vec![1, 0, 0, 0, 0, 0]);
+ let e = BigUint::new(vec![0, 0, 0, 0, 0, 1]);
+ assert!(hash(&a) == hash(&b));
+ assert!(hash(&b) != hash(&c));
+ assert!(hash(&c) == hash(&d));
+ assert!(hash(&d) != hash(&e));
+}
+
+// LEFT, RIGHT, AND, OR, XOR
+const BIT_TESTS: &'static [(
+ &'static [u32],
+ &'static [u32],
+ &'static [u32],
+ &'static [u32],
+ &'static [u32],
+)] = &[
+ (&[], &[], &[], &[], &[]),
+ (&[1, 0, 1], &[1, 1], &[1], &[1, 1, 1], &[0, 1, 1]),
+ (&[1, 0, 1], &[0, 1, 1], &[0, 0, 1], &[1, 1, 1], &[1, 1]),
+ (
+ &[268, 482, 17],
+ &[964, 54],
+ &[260, 34],
+ &[972, 502, 17],
+ &[712, 468, 17],
+ ),
+];
+
+#[test]
+fn test_bitand() {
+ for elm in BIT_TESTS {
+ let (a_vec, b_vec, c_vec, _, _) = *elm;
+ let a = BigUint::from_slice(a_vec);
+ let b = BigUint::from_slice(b_vec);
+ let c = BigUint::from_slice(c_vec);
+
+ assert_op!(a & b == c);
+ assert_op!(b & a == c);
+ assert_assign_op!(a &= b == c);
+ assert_assign_op!(b &= a == c);
+ }
+}
+
+#[test]
+fn test_bitor() {
+ for elm in BIT_TESTS {
+ let (a_vec, b_vec, _, c_vec, _) = *elm;
+ let a = BigUint::from_slice(a_vec);
+ let b = BigUint::from_slice(b_vec);
+ let c = BigUint::from_slice(c_vec);
+
+ assert_op!(a | b == c);
+ assert_op!(b | a == c);
+ assert_assign_op!(a |= b == c);
+ assert_assign_op!(b |= a == c);
+ }
+}
+
+#[test]
+fn test_bitxor() {
+ for elm in BIT_TESTS {
+ let (a_vec, b_vec, _, _, c_vec) = *elm;
+ let a = BigUint::from_slice(a_vec);
+ let b = BigUint::from_slice(b_vec);
+ let c = BigUint::from_slice(c_vec);
+
+ assert_op!(a ^ b == c);
+ assert_op!(b ^ a == c);
+ assert_op!(a ^ c == b);
+ assert_op!(c ^ a == b);
+ assert_op!(b ^ c == a);
+ assert_op!(c ^ b == a);
+ assert_assign_op!(a ^= b == c);
+ assert_assign_op!(b ^= a == c);
+ assert_assign_op!(a ^= c == b);
+ assert_assign_op!(c ^= a == b);
+ assert_assign_op!(b ^= c == a);
+ assert_assign_op!(c ^= b == a);
+ }
+}
+
+#[test]
+fn test_shl() {
+ fn check(s: &str, shift: usize, ans: &str) {
+ let opt_biguint = BigUint::from_str_radix(s, 16).ok();
+ let mut bu_assign = opt_biguint.unwrap();
+ let bu = (bu_assign.clone() << shift).to_str_radix(16);
+ assert_eq!(bu, ans);
+ bu_assign <<= shift;
+ assert_eq!(bu_assign.to_str_radix(16), ans);
+ }
+
+ check("0", 3, "0");
+ check("1", 3, "8");
+
+ check(
+ "1\
+ 0000\
+ 0000\
+ 0000\
+ 0001\
+ 0000\
+ 0000\
+ 0000\
+ 0001",
+ 3,
+ "8\
+ 0000\
+ 0000\
+ 0000\
+ 0008\
+ 0000\
+ 0000\
+ 0000\
+ 0008",
+ );
+ check(
+ "1\
+ 0000\
+ 0001\
+ 0000\
+ 0001",
+ 2,
+ "4\
+ 0000\
+ 0004\
+ 0000\
+ 0004",
+ );
+ check(
+ "1\
+ 0001\
+ 0001",
+ 1,
+ "2\
+ 0002\
+ 0002",
+ );
+
+ check(
+ "\
+ 4000\
+ 0000\
+ 0000\
+ 0000",
+ 3,
+ "2\
+ 0000\
+ 0000\
+ 0000\
+ 0000",
+ );
+ check(
+ "4000\
+ 0000",
+ 2,
+ "1\
+ 0000\
+ 0000",
+ );
+ check(
+ "4000",
+ 2,
+ "1\
+ 0000",
+ );
+
+ check(
+ "4000\
+ 0000\
+ 0000\
+ 0000",
+ 67,
+ "2\
+ 0000\
+ 0000\
+ 0000\
+ 0000\
+ 0000\
+ 0000\
+ 0000\
+ 0000",
+ );
+ check(
+ "4000\
+ 0000",
+ 35,
+ "2\
+ 0000\
+ 0000\
+ 0000\
+ 0000",
+ );
+ check(
+ "4000",
+ 19,
+ "2\
+ 0000\
+ 0000",
+ );
+
+ check(
+ "fedc\
+ ba98\
+ 7654\
+ 3210\
+ fedc\
+ ba98\
+ 7654\
+ 3210",
+ 4,
+ "f\
+ edcb\
+ a987\
+ 6543\
+ 210f\
+ edcb\
+ a987\
+ 6543\
+ 2100",
+ );
+ check(
+ "88887777666655554444333322221111",
+ 16,
+ "888877776666555544443333222211110000",
+ );
+}
+
+#[test]
+fn test_shr() {
+ fn check(s: &str, shift: usize, ans: &str) {
+ let opt_biguint = BigUint::from_str_radix(s, 16).ok();
+ let mut bu_assign = opt_biguint.unwrap();
+ let bu = (bu_assign.clone() >> shift).to_str_radix(16);
+ assert_eq!(bu, ans);
+ bu_assign >>= shift;
+ assert_eq!(bu_assign.to_str_radix(16), ans);
+ }
+
+ check("0", 3, "0");
+ check("f", 3, "1");
+
+ check(
+ "1\
+ 0000\
+ 0000\
+ 0000\
+ 0001\
+ 0000\
+ 0000\
+ 0000\
+ 0001",
+ 3,
+ "2000\
+ 0000\
+ 0000\
+ 0000\
+ 2000\
+ 0000\
+ 0000\
+ 0000",
+ );
+ check(
+ "1\
+ 0000\
+ 0001\
+ 0000\
+ 0001",
+ 2,
+ "4000\
+ 0000\
+ 4000\
+ 0000",
+ );
+ check(
+ "1\
+ 0001\
+ 0001",
+ 1,
+ "8000\
+ 8000",
+ );
+
+ check(
+ "2\
+ 0000\
+ 0000\
+ 0000\
+ 0001\
+ 0000\
+ 0000\
+ 0000\
+ 0001",
+ 67,
+ "4000\
+ 0000\
+ 0000\
+ 0000",
+ );
+ check(
+ "2\
+ 0000\
+ 0001\
+ 0000\
+ 0001",
+ 35,
+ "4000\
+ 0000",
+ );
+ check(
+ "2\
+ 0001\
+ 0001",
+ 19,
+ "4000",
+ );
+
+ check(
+ "1\
+ 0000\
+ 0000\
+ 0000\
+ 0000",
+ 1,
+ "8000\
+ 0000\
+ 0000\
+ 0000",
+ );
+ check(
+ "1\
+ 0000\
+ 0000",
+ 1,
+ "8000\
+ 0000",
+ );
+ check(
+ "1\
+ 0000",
+ 1,
+ "8000",
+ );
+ check(
+ "f\
+ edcb\
+ a987\
+ 6543\
+ 210f\
+ edcb\
+ a987\
+ 6543\
+ 2100",
+ 4,
+ "fedc\
+ ba98\
+ 7654\
+ 3210\
+ fedc\
+ ba98\
+ 7654\
+ 3210",
+ );
+
+ check(
+ "888877776666555544443333222211110000",
+ 16,
+ "88887777666655554444333322221111",
+ );
+}
+
+// `DoubleBigDigit` size dependent
+#[test]
+fn test_convert_i64() {
+ fn check(b1: BigUint, i: i64) {
+ let b2: BigUint = FromPrimitive::from_i64(i).unwrap();
+ assert_eq!(b1, b2);
+ assert_eq!(b1.to_i64().unwrap(), i);
+ }
+
+ check(Zero::zero(), 0);
+ check(One::one(), 1);
+ check(i64::MAX.to_biguint().unwrap(), i64::MAX);
+
+ check(BigUint::new(vec![]), 0);
+ check(BigUint::new(vec![1]), 1);
+ check(BigUint::new(vec![N1]), (1 << 32) - 1);
+ check(BigUint::new(vec![0, 1]), 1 << 32);
+ check(BigUint::new(vec![N1, N1 >> 1]), i64::MAX);
+
+ assert_eq!(i64::MIN.to_biguint(), None);
+ assert_eq!(BigUint::new(vec![N1, N1]).to_i64(), None);
+ assert_eq!(BigUint::new(vec![0, 0, 1]).to_i64(), None);
+ assert_eq!(BigUint::new(vec![N1, N1, N1]).to_i64(), None);
+}
+
+#[test]
+#[cfg(has_i128)]
+fn test_convert_i128() {
+ fn check(b1: BigUint, i: i128) {
+ let b2: BigUint = FromPrimitive::from_i128(i).unwrap();
+ assert_eq!(b1, b2);
+ assert_eq!(b1.to_i128().unwrap(), i);
+ }
+
+ check(Zero::zero(), 0);
+ check(One::one(), 1);
+ check(i128::MAX.to_biguint().unwrap(), i128::MAX);
+
+ check(BigUint::new(vec![]), 0);
+ check(BigUint::new(vec![1]), 1);
+ check(BigUint::new(vec![N1]), (1 << 32) - 1);
+ check(BigUint::new(vec![0, 1]), 1 << 32);
+ check(BigUint::new(vec![N1, N1, N1, N1 >> 1]), i128::MAX);
+
+ assert_eq!(i128::MIN.to_biguint(), None);
+ assert_eq!(BigUint::new(vec![N1, N1, N1, N1]).to_i128(), None);
+ assert_eq!(BigUint::new(vec![0, 0, 0, 0, 1]).to_i128(), None);
+ assert_eq!(BigUint::new(vec![N1, N1, N1, N1, N1]).to_i128(), None);
+}
+
+// `DoubleBigDigit` size dependent
+#[test]
+fn test_convert_u64() {
+ fn check(b1: BigUint, u: u64) {
+ let b2: BigUint = FromPrimitive::from_u64(u).unwrap();
+ assert_eq!(b1, b2);
+ assert_eq!(b1.to_u64().unwrap(), u);
+ }
+
+ check(Zero::zero(), 0);
+ check(One::one(), 1);
+ check(u64::MIN.to_biguint().unwrap(), u64::MIN);
+ check(u64::MAX.to_biguint().unwrap(), u64::MAX);
+
+ check(BigUint::new(vec![]), 0);
+ check(BigUint::new(vec![1]), 1);
+ check(BigUint::new(vec![N1]), (1 << 32) - 1);
+ check(BigUint::new(vec![0, 1]), 1 << 32);
+ check(BigUint::new(vec![N1, N1]), u64::MAX);
+
+ assert_eq!(BigUint::new(vec![0, 0, 1]).to_u64(), None);
+ assert_eq!(BigUint::new(vec![N1, N1, N1]).to_u64(), None);
+}
+
+#[test]
+#[cfg(has_i128)]
+fn test_convert_u128() {
+ fn check(b1: BigUint, u: u128) {
+ let b2: BigUint = FromPrimitive::from_u128(u).unwrap();
+ assert_eq!(b1, b2);
+ assert_eq!(b1.to_u128().unwrap(), u);
+ }
+
+ check(Zero::zero(), 0);
+ check(One::one(), 1);
+ check(u128::MIN.to_biguint().unwrap(), u128::MIN);
+ check(u128::MAX.to_biguint().unwrap(), u128::MAX);
+
+ check(BigUint::new(vec![]), 0);
+ check(BigUint::new(vec![1]), 1);
+ check(BigUint::new(vec![N1]), (1 << 32) - 1);
+ check(BigUint::new(vec![0, 1]), 1 << 32);
+ check(BigUint::new(vec![N1, N1, N1, N1]), u128::MAX);
+
+ assert_eq!(BigUint::new(vec![0, 0, 0, 0, 1]).to_u128(), None);
+ assert_eq!(BigUint::new(vec![N1, N1, N1, N1, N1]).to_u128(), None);
+}
+
+#[test]
+fn test_convert_f32() {
+ fn check(b1: &BigUint, f: f32) {
+ let b2 = BigUint::from_f32(f).unwrap();
+ assert_eq!(b1, &b2);
+ assert_eq!(b1.to_f32().unwrap(), f);
+ }
+
+ check(&BigUint::zero(), 0.0);
+ check(&BigUint::one(), 1.0);
+ check(&BigUint::from(u16::MAX), 2.0.powi(16) - 1.0);
+ check(&BigUint::from(1u64 << 32), 2.0.powi(32));
+ check(&BigUint::from_slice(&[0, 0, 1]), 2.0.powi(64));
+ check(
+ &((BigUint::one() << 100) + (BigUint::one() << 123)),
+ 2.0.powi(100) + 2.0.powi(123),
+ );
+ check(&(BigUint::one() << 127), 2.0.powi(127));
+ check(&(BigUint::from((1u64 << 24) - 1) << (128 - 24)), f32::MAX);
+
+ // keeping all 24 digits with the bits at different offsets to the BigDigits
+ let x: u32 = 0b00000000101111011111011011011101;
+ let mut f = x as f32;
+ let mut b = BigUint::from(x);
+ for _ in 0..64 {
+ check(&b, f);
+ f *= 2.0;
+ b = b << 1;
+ }
+
+ // this number when rounded to f64 then f32 isn't the same as when rounded straight to f32
+ let n: u64 = 0b0000000000111111111111111111111111011111111111111111111111111111;
+ assert!((n as f64) as f32 != n as f32);
+ assert_eq!(BigUint::from(n).to_f32(), Some(n as f32));
+
+ // test rounding up with the bits at different offsets to the BigDigits
+ let mut f = ((1u64 << 25) - 1) as f32;
+ let mut b = BigUint::from(1u64 << 25);
+ for _ in 0..64 {
+ assert_eq!(b.to_f32(), Some(f));
+ f *= 2.0;
+ b = b << 1;
+ }
+
+ // rounding
+ assert_eq!(BigUint::from_f32(-1.0), None);
+ assert_eq!(BigUint::from_f32(-0.99999), Some(BigUint::zero()));
+ assert_eq!(BigUint::from_f32(-0.5), Some(BigUint::zero()));
+ assert_eq!(BigUint::from_f32(-0.0), Some(BigUint::zero()));
+ assert_eq!(
+ BigUint::from_f32(f32::MIN_POSITIVE / 2.0),
+ Some(BigUint::zero())
+ );
+ assert_eq!(BigUint::from_f32(f32::MIN_POSITIVE), Some(BigUint::zero()));
+ assert_eq!(BigUint::from_f32(0.5), Some(BigUint::zero()));
+ assert_eq!(BigUint::from_f32(0.99999), Some(BigUint::zero()));
+ assert_eq!(BigUint::from_f32(f32::consts::E), Some(BigUint::from(2u32)));
+ assert_eq!(
+ BigUint::from_f32(f32::consts::PI),
+ Some(BigUint::from(3u32))
+ );
+
+ // special float values
+ assert_eq!(BigUint::from_f32(f32::NAN), None);
+ assert_eq!(BigUint::from_f32(f32::INFINITY), None);
+ assert_eq!(BigUint::from_f32(f32::NEG_INFINITY), None);
+ assert_eq!(BigUint::from_f32(f32::MIN), None);
+
+ // largest BigUint that will round to a finite f32 value
+ let big_num = (BigUint::one() << 128) - BigUint::one() - (BigUint::one() << (128 - 25));
+ assert_eq!(big_num.to_f32(), Some(f32::MAX));
+ assert_eq!((big_num + BigUint::one()).to_f32(), None);
+
+ assert_eq!(((BigUint::one() << 128) - BigUint::one()).to_f32(), None);
+ assert_eq!((BigUint::one() << 128).to_f32(), None);
+}
+
+#[test]
+fn test_convert_f64() {
+ fn check(b1: &BigUint, f: f64) {
+ let b2 = BigUint::from_f64(f).unwrap();
+ assert_eq!(b1, &b2);
+ assert_eq!(b1.to_f64().unwrap(), f);
+ }
+
+ check(&BigUint::zero(), 0.0);
+ check(&BigUint::one(), 1.0);
+ check(&BigUint::from(u32::MAX), 2.0.powi(32) - 1.0);
+ check(&BigUint::from(1u64 << 32), 2.0.powi(32));
+ check(&BigUint::from_slice(&[0, 0, 1]), 2.0.powi(64));
+ check(
+ &((BigUint::one() << 100) + (BigUint::one() << 152)),
+ 2.0.powi(100) + 2.0.powi(152),
+ );
+ check(&(BigUint::one() << 1023), 2.0.powi(1023));
+ check(&(BigUint::from((1u64 << 53) - 1) << (1024 - 53)), f64::MAX);
+
+ // keeping all 53 digits with the bits at different offsets to the BigDigits
+ let x: u64 = 0b0000000000011110111110110111111101110111101111011111011011011101;
+ let mut f = x as f64;
+ let mut b = BigUint::from(x);
+ for _ in 0..128 {
+ check(&b, f);
+ f *= 2.0;
+ b = b << 1;
+ }
+
+ // test rounding up with the bits at different offsets to the BigDigits
+ let mut f = ((1u64 << 54) - 1) as f64;
+ let mut b = BigUint::from(1u64 << 54);
+ for _ in 0..128 {
+ assert_eq!(b.to_f64(), Some(f));
+ f *= 2.0;
+ b = b << 1;
+ }
+
+ // rounding
+ assert_eq!(BigUint::from_f64(-1.0), None);
+ assert_eq!(BigUint::from_f64(-0.99999), Some(BigUint::zero()));
+ assert_eq!(BigUint::from_f64(-0.5), Some(BigUint::zero()));
+ assert_eq!(BigUint::from_f64(-0.0), Some(BigUint::zero()));
+ assert_eq!(
+ BigUint::from_f64(f64::MIN_POSITIVE / 2.0),
+ Some(BigUint::zero())
+ );
+ assert_eq!(BigUint::from_f64(f64::MIN_POSITIVE), Some(BigUint::zero()));
+ assert_eq!(BigUint::from_f64(0.5), Some(BigUint::zero()));
+ assert_eq!(BigUint::from_f64(0.99999), Some(BigUint::zero()));
+ assert_eq!(BigUint::from_f64(f64::consts::E), Some(BigUint::from(2u32)));
+ assert_eq!(
+ BigUint::from_f64(f64::consts::PI),
+ Some(BigUint::from(3u32))
+ );
+
+ // special float values
+ assert_eq!(BigUint::from_f64(f64::NAN), None);
+ assert_eq!(BigUint::from_f64(f64::INFINITY), None);
+ assert_eq!(BigUint::from_f64(f64::NEG_INFINITY), None);
+ assert_eq!(BigUint::from_f64(f64::MIN), None);
+
+ // largest BigUint that will round to a finite f64 value
+ let big_num = (BigUint::one() << 1024) - BigUint::one() - (BigUint::one() << (1024 - 54));
+ assert_eq!(big_num.to_f64(), Some(f64::MAX));
+ assert_eq!((big_num + BigUint::one()).to_f64(), None);
+
+ assert_eq!(((BigInt::one() << 1024) - BigInt::one()).to_f64(), None);
+ assert_eq!((BigUint::one() << 1024).to_f64(), None);
+}
+
+#[test]
+fn test_convert_to_bigint() {
+ fn check(n: BigUint, ans: BigInt) {
+ assert_eq!(n.to_bigint().unwrap(), ans);
+ assert_eq!(n.to_bigint().unwrap().to_biguint().unwrap(), n);
+ }
+ check(Zero::zero(), Zero::zero());
+ check(
+ BigUint::new(vec![1, 2, 3]),
+ BigInt::from_biguint(Plus, BigUint::new(vec![1, 2, 3])),
+ );
+}
+
+#[test]
+fn test_convert_from_uint() {
+ macro_rules! check {
+ ($ty:ident, $max:expr) => {
+ assert_eq!(BigUint::from($ty::zero()), BigUint::zero());
+ assert_eq!(BigUint::from($ty::one()), BigUint::one());
+ assert_eq!(BigUint::from($ty::MAX - $ty::one()), $max - BigUint::one());
+ assert_eq!(BigUint::from($ty::MAX), $max);
+ };
+ }
+
+ check!(u8, BigUint::from_slice(&[u8::MAX as u32]));
+ check!(u16, BigUint::from_slice(&[u16::MAX as u32]));
+ check!(u32, BigUint::from_slice(&[u32::MAX]));
+ check!(u64, BigUint::from_slice(&[u32::MAX, u32::MAX]));
+ #[cfg(has_i128)]
+ check!(
+ u128,
+ BigUint::from_slice(&[u32::MAX, u32::MAX, u32::MAX, u32::MAX])
+ );
+ check!(usize, BigUint::from(usize::MAX as u64));
+}
+
+#[test]
+fn test_add() {
+ for elm in SUM_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigUint::from_slice(a_vec);
+ let b = BigUint::from_slice(b_vec);
+ let c = BigUint::from_slice(c_vec);
+
+ assert_op!(a + b == c);
+ assert_op!(b + a == c);
+ assert_assign_op!(a += b == c);
+ assert_assign_op!(b += a == c);
+ }
+}
+
+#[test]
+fn test_sub() {
+ for elm in SUM_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigUint::from_slice(a_vec);
+ let b = BigUint::from_slice(b_vec);
+ let c = BigUint::from_slice(c_vec);
+
+ assert_op!(c - a == b);
+ assert_op!(c - b == a);
+ assert_assign_op!(c -= a == b);
+ assert_assign_op!(c -= b == a);
+ }
+}
+
+#[test]
+#[should_panic]
+fn test_sub_fail_on_underflow() {
+ let (a, b): (BigUint, BigUint) = (Zero::zero(), One::one());
+ let _ = a - b;
+}
+
+#[test]
+fn test_mul() {
+ for elm in MUL_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigUint::from_slice(a_vec);
+ let b = BigUint::from_slice(b_vec);
+ let c = BigUint::from_slice(c_vec);
+
+ assert_op!(a * b == c);
+ assert_op!(b * a == c);
+ assert_assign_op!(a *= b == c);
+ assert_assign_op!(b *= a == c);
+ }
+
+ for elm in DIV_REM_QUADRUPLES.iter() {
+ let (a_vec, b_vec, c_vec, d_vec) = *elm;
+ let a = BigUint::from_slice(a_vec);
+ let b = BigUint::from_slice(b_vec);
+ let c = BigUint::from_slice(c_vec);
+ let d = BigUint::from_slice(d_vec);
+
+ assert!(a == &b * &c + &d);
+ assert!(a == &c * &b + &d);
+ }
+}
+
+#[test]
+fn test_div_rem() {
+ for elm in MUL_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigUint::from_slice(a_vec);
+ let b = BigUint::from_slice(b_vec);
+ let c = BigUint::from_slice(c_vec);
+
+ if !a.is_zero() {
+ assert_op!(c / a == b);
+ assert_op!(c % a == Zero::zero());
+ assert_assign_op!(c /= a == b);
+ assert_assign_op!(c %= a == Zero::zero());
+ assert_eq!(c.div_rem(&a), (b.clone(), Zero::zero()));
+ }
+ if !b.is_zero() {
+ assert_op!(c / b == a);
+ assert_op!(c % b == Zero::zero());
+ assert_assign_op!(c /= b == a);
+ assert_assign_op!(c %= b == Zero::zero());
+ assert_eq!(c.div_rem(&b), (a.clone(), Zero::zero()));
+ }
+ }
+
+ for elm in DIV_REM_QUADRUPLES.iter() {
+ let (a_vec, b_vec, c_vec, d_vec) = *elm;
+ let a = BigUint::from_slice(a_vec);
+ let b = BigUint::from_slice(b_vec);
+ let c = BigUint::from_slice(c_vec);
+ let d = BigUint::from_slice(d_vec);
+
+ if !b.is_zero() {
+ assert_op!(a / b == c);
+ assert_op!(a % b == d);
+ assert_assign_op!(a /= b == c);
+ assert_assign_op!(a %= b == d);
+ assert!(a.div_rem(&b) == (c, d));
+ }
+ }
+}
+
+#[test]
+fn test_checked_add() {
+ for elm in SUM_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigUint::from_slice(a_vec);
+ let b = BigUint::from_slice(b_vec);
+ let c = BigUint::from_slice(c_vec);
+
+ assert!(a.checked_add(&b).unwrap() == c);
+ assert!(b.checked_add(&a).unwrap() == c);
+ }
+}
+
+#[test]
+fn test_checked_sub() {
+ for elm in SUM_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigUint::from_slice(a_vec);
+ let b = BigUint::from_slice(b_vec);
+ let c = BigUint::from_slice(c_vec);
+
+ assert!(c.checked_sub(&a).unwrap() == b);
+ assert!(c.checked_sub(&b).unwrap() == a);
+
+ if a > c {
+ assert!(a.checked_sub(&c).is_none());
+ }
+ if b > c {
+ assert!(b.checked_sub(&c).is_none());
+ }
+ }
+}
+
+#[test]
+fn test_checked_mul() {
+ for elm in MUL_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigUint::from_slice(a_vec);
+ let b = BigUint::from_slice(b_vec);
+ let c = BigUint::from_slice(c_vec);
+
+ assert!(a.checked_mul(&b).unwrap() == c);
+ assert!(b.checked_mul(&a).unwrap() == c);
+ }
+
+ for elm in DIV_REM_QUADRUPLES.iter() {
+ let (a_vec, b_vec, c_vec, d_vec) = *elm;
+ let a = BigUint::from_slice(a_vec);
+ let b = BigUint::from_slice(b_vec);
+ let c = BigUint::from_slice(c_vec);
+ let d = BigUint::from_slice(d_vec);
+
+ assert!(a == b.checked_mul(&c).unwrap() + &d);
+ assert!(a == c.checked_mul(&b).unwrap() + &d);
+ }
+}
+
+#[test]
+fn test_mul_overflow() {
+ /* Test for issue #187 - overflow due to mac3 incorrectly sizing temporary */
+ let s = "531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502232636710047537552105951370000796528760829212940754539968588340162273730474622005920097370111";
+ let a: BigUint = s.parse().unwrap();
+ let b = a.clone();
+ let _ = a.checked_mul(&b);
+}
+
+#[test]
+fn test_checked_div() {
+ for elm in MUL_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigUint::from_slice(a_vec);
+ let b = BigUint::from_slice(b_vec);
+ let c = BigUint::from_slice(c_vec);
+
+ if !a.is_zero() {
+ assert!(c.checked_div(&a).unwrap() == b);
+ }
+ if !b.is_zero() {
+ assert!(c.checked_div(&b).unwrap() == a);
+ }
+
+ assert!(c.checked_div(&Zero::zero()).is_none());
+ }
+}
+
+#[test]
+fn test_gcd() {
+ fn check(a: usize, b: usize, c: usize) {
+ let big_a: BigUint = FromPrimitive::from_usize(a).unwrap();
+ let big_b: BigUint = FromPrimitive::from_usize(b).unwrap();
+ let big_c: BigUint = FromPrimitive::from_usize(c).unwrap();
+
+ assert_eq!(big_a.gcd(&big_b), big_c);
+ }
+
+ check(10, 2, 2);
+ check(10, 3, 1);
+ check(0, 3, 3);
+ check(3, 3, 3);
+ check(56, 42, 14);
+}
+
+#[test]
+fn test_lcm() {
+ fn check(a: usize, b: usize, c: usize) {
+ let big_a: BigUint = FromPrimitive::from_usize(a).unwrap();
+ let big_b: BigUint = FromPrimitive::from_usize(b).unwrap();
+ let big_c: BigUint = FromPrimitive::from_usize(c).unwrap();
+
+ assert_eq!(big_a.lcm(&big_b), big_c);
+ }
+
+ check(0, 0, 0);
+ check(1, 0, 0);
+ check(0, 1, 0);
+ check(1, 1, 1);
+ check(8, 9, 72);
+ check(11, 5, 55);
+ check(99, 17, 1683);
+}
+
+#[test]
+fn test_is_even() {
+ let one: BigUint = FromStr::from_str("1").unwrap();
+ let two: BigUint = FromStr::from_str("2").unwrap();
+ let thousand: BigUint = FromStr::from_str("1000").unwrap();
+ let big: BigUint = FromStr::from_str("1000000000000000000000").unwrap();
+ let bigger: BigUint = FromStr::from_str("1000000000000000000001").unwrap();
+ assert!(one.is_odd());
+ assert!(two.is_even());
+ assert!(thousand.is_even());
+ assert!(big.is_even());
+ assert!(bigger.is_odd());
+ assert!((&one << 64).is_even());
+ assert!(((&one << 64) + one).is_odd());
+}
+
+fn to_str_pairs() -> Vec<(BigUint, Vec<(u32, String)>)> {
+ let bits = 32;
+ vec![
+ (
+ Zero::zero(),
+ vec![(2, "0".to_string()), (3, "0".to_string())],
+ ),
+ (
+ BigUint::from_slice(&[0xff]),
+ vec![
+ (2, "11111111".to_string()),
+ (3, "100110".to_string()),
+ (4, "3333".to_string()),
+ (5, "2010".to_string()),
+ (6, "1103".to_string()),
+ (7, "513".to_string()),
+ (8, "377".to_string()),
+ (9, "313".to_string()),
+ (10, "255".to_string()),
+ (11, "212".to_string()),
+ (12, "193".to_string()),
+ (13, "168".to_string()),
+ (14, "143".to_string()),
+ (15, "120".to_string()),
+ (16, "ff".to_string()),
+ ],
+ ),
+ (
+ BigUint::from_slice(&[0xfff]),
+ vec![
+ (2, "111111111111".to_string()),
+ (4, "333333".to_string()),
+ (16, "fff".to_string()),
+ ],
+ ),
+ (
+ BigUint::from_slice(&[1, 2]),
+ vec![
+ (
+ 2,
+ format!("10{}1", repeat("0").take(bits - 1).collect::<String>()),
+ ),
+ (
+ 4,
+ format!("2{}1", repeat("0").take(bits / 2 - 1).collect::<String>()),
+ ),
+ (
+ 10,
+ match bits {
+ 64 => "36893488147419103233".to_string(),
+ 32 => "8589934593".to_string(),
+ 16 => "131073".to_string(),
+ _ => panic!(),
+ },
+ ),
+ (
+ 16,
+ format!("2{}1", repeat("0").take(bits / 4 - 1).collect::<String>()),
+ ),
+ ],
+ ),
+ (
+ BigUint::from_slice(&[1, 2, 3]),
+ vec![
+ (
+ 2,
+ format!(
+ "11{}10{}1",
+ repeat("0").take(bits - 2).collect::<String>(),
+ repeat("0").take(bits - 1).collect::<String>()
+ ),
+ ),
+ (
+ 4,
+ format!(
+ "3{}2{}1",
+ repeat("0").take(bits / 2 - 1).collect::<String>(),
+ repeat("0").take(bits / 2 - 1).collect::<String>()
+ ),
+ ),
+ (
+ 8,
+ match bits {
+ 64 => "14000000000000000000004000000000000000000001".to_string(),
+ 32 => "6000000000100000000001".to_string(),
+ 16 => "140000400001".to_string(),
+ _ => panic!(),
+ },
+ ),
+ (
+ 10,
+ match bits {
+ 64 => "1020847100762815390427017310442723737601".to_string(),
+ 32 => "55340232229718589441".to_string(),
+ 16 => "12885032961".to_string(),
+ _ => panic!(),
+ },
+ ),
+ (
+ 16,
+ format!(
+ "3{}2{}1",
+ repeat("0").take(bits / 4 - 1).collect::<String>(),
+ repeat("0").take(bits / 4 - 1).collect::<String>()
+ ),
+ ),
+ ],
+ ),
+ ]
+}
+
+#[test]
+fn test_to_str_radix() {
+ let r = to_str_pairs();
+ for num_pair in r.iter() {
+ let &(ref n, ref rs) = num_pair;
+ for str_pair in rs.iter() {
+ let &(ref radix, ref str) = str_pair;
+ assert_eq!(n.to_str_radix(*radix), *str);
+ }
+ }
+}
+
+#[test]
+fn test_from_and_to_radix() {
+ const GROUND_TRUTH: &'static [(&'static [u8], u32, &'static [u8])] = &[
+ (b"0", 42, &[0]),
+ (
+ b"ffffeeffbb",
+ 2,
+ &[
+ 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ ],
+ ),
+ (
+ b"ffffeeffbb",
+ 3,
+ &[
+ 2, 2, 1, 1, 2, 1, 1, 2, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 1,
+ ],
+ ),
+ (
+ b"ffffeeffbb",
+ 4,
+ &[3, 2, 3, 2, 3, 3, 3, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3],
+ ),
+ (
+ b"ffffeeffbb",
+ 5,
+ &[0, 4, 3, 3, 1, 4, 2, 4, 1, 4, 4, 2, 3, 0, 0, 1, 2, 1],
+ ),
+ (
+ b"ffffeeffbb",
+ 6,
+ &[5, 5, 4, 5, 5, 0, 0, 1, 2, 5, 3, 0, 1, 0, 2, 2],
+ ),
+ (
+ b"ffffeeffbb",
+ 7,
+ &[4, 2, 3, 6, 0, 1, 6, 1, 6, 2, 0, 3, 2, 4, 1],
+ ),
+ (
+ b"ffffeeffbb",
+ 8,
+ &[3, 7, 6, 7, 7, 5, 3, 7, 7, 7, 7, 7, 7, 1],
+ ),
+ (b"ffffeeffbb", 9, &[8, 4, 5, 7, 0, 0, 3, 2, 0, 3, 0, 8, 3]),
+ (b"ffffeeffbb", 10, &[5, 9, 5, 3, 1, 5, 0, 1, 5, 9, 9, 0, 1]),
+ (b"ffffeeffbb", 11, &[10, 7, 6, 5, 2, 0, 3, 3, 3, 4, 9, 3]),
+ (b"ffffeeffbb", 12, &[11, 8, 5, 10, 1, 10, 3, 1, 1, 9, 5, 1]),
+ (b"ffffeeffbb", 13, &[0, 5, 7, 4, 6, 5, 6, 11, 8, 12, 7]),
+ (b"ffffeeffbb", 14, &[11, 4, 4, 11, 8, 4, 6, 0, 3, 11, 3]),
+ (b"ffffeeffbb", 15, &[5, 11, 13, 2, 1, 10, 2, 0, 9, 13, 1]),
+ (b"ffffeeffbb", 16, &[11, 11, 15, 15, 14, 14, 15, 15, 15, 15]),
+ (b"ffffeeffbb", 17, &[0, 2, 14, 12, 2, 14, 8, 10, 4, 9]),
+ (b"ffffeeffbb", 18, &[17, 15, 5, 13, 10, 16, 16, 13, 9, 5]),
+ (b"ffffeeffbb", 19, &[14, 13, 2, 8, 9, 0, 1, 14, 7, 3]),
+ (b"ffffeeffbb", 20, &[15, 19, 3, 14, 0, 17, 19, 18, 2, 2]),
+ (b"ffffeeffbb", 21, &[11, 5, 4, 13, 5, 18, 9, 1, 8, 1]),
+ (b"ffffeeffbb", 22, &[21, 3, 7, 21, 15, 12, 17, 0, 20]),
+ (b"ffffeeffbb", 23, &[21, 21, 6, 9, 10, 7, 21, 0, 14]),
+ (b"ffffeeffbb", 24, &[11, 10, 19, 14, 22, 11, 17, 23, 9]),
+ (b"ffffeeffbb", 25, &[20, 18, 21, 22, 21, 14, 3, 5, 7]),
+ (b"ffffeeffbb", 26, &[13, 15, 24, 11, 17, 6, 23, 6, 5]),
+ (b"ffffeeffbb", 27, &[17, 16, 7, 0, 21, 0, 3, 24, 3]),
+ (b"ffffeeffbb", 28, &[11, 16, 11, 15, 14, 18, 13, 25, 2]),
+ (b"ffffeeffbb", 29, &[6, 8, 7, 19, 14, 13, 21, 5, 2]),
+ (b"ffffeeffbb", 30, &[5, 13, 18, 11, 10, 7, 8, 20, 1]),
+ (b"ffffeeffbb", 31, &[22, 26, 15, 19, 8, 27, 29, 8, 1]),
+ (b"ffffeeffbb", 32, &[27, 29, 31, 29, 30, 31, 31, 31]),
+ (b"ffffeeffbb", 33, &[32, 20, 27, 12, 1, 12, 26, 25]),
+ (b"ffffeeffbb", 34, &[17, 9, 16, 33, 13, 25, 31, 20]),
+ (b"ffffeeffbb", 35, &[25, 32, 2, 25, 11, 4, 3, 17]),
+ (b"ffffeeffbb", 36, &[35, 34, 5, 6, 32, 3, 1, 14]),
+ (b"ffffeeffbb", 37, &[16, 21, 18, 4, 33, 19, 21, 11]),
+ (b"ffffeeffbb", 38, &[33, 25, 19, 29, 20, 6, 23, 9]),
+ (b"ffffeeffbb", 39, &[26, 27, 29, 23, 16, 18, 0, 8]),
+ (b"ffffeeffbb", 40, &[35, 39, 30, 11, 16, 17, 28, 6]),
+ (b"ffffeeffbb", 41, &[36, 30, 9, 18, 12, 19, 26, 5]),
+ (b"ffffeeffbb", 42, &[11, 34, 37, 27, 1, 13, 32, 4]),
+ (b"ffffeeffbb", 43, &[3, 24, 11, 2, 10, 40, 1, 4]),
+ (b"ffffeeffbb", 44, &[43, 12, 40, 32, 3, 23, 19, 3]),
+ (b"ffffeeffbb", 45, &[35, 38, 44, 18, 22, 18, 42, 2]),
+ (b"ffffeeffbb", 46, &[21, 45, 18, 41, 17, 2, 24, 2]),
+ (b"ffffeeffbb", 47, &[37, 37, 11, 12, 6, 0, 8, 2]),
+ (b"ffffeeffbb", 48, &[11, 41, 40, 43, 5, 43, 41, 1]),
+ (b"ffffeeffbb", 49, &[18, 45, 7, 13, 20, 21, 30, 1]),
+ (b"ffffeeffbb", 50, &[45, 21, 5, 34, 21, 18, 20, 1]),
+ (b"ffffeeffbb", 51, &[17, 6, 26, 22, 38, 24, 11, 1]),
+ (b"ffffeeffbb", 52, &[39, 33, 38, 30, 46, 31, 3, 1]),
+ (b"ffffeeffbb", 53, &[31, 7, 44, 23, 9, 32, 49]),
+ (b"ffffeeffbb", 54, &[17, 35, 8, 37, 31, 18, 44]),
+ (b"ffffeeffbb", 55, &[10, 52, 9, 48, 36, 39, 39]),
+ (b"ffffeeffbb", 56, &[11, 50, 51, 22, 25, 36, 35]),
+ (b"ffffeeffbb", 57, &[14, 55, 12, 43, 20, 3, 32]),
+ (b"ffffeeffbb", 58, &[35, 18, 45, 56, 9, 51, 28]),
+ (b"ffffeeffbb", 59, &[51, 28, 20, 26, 55, 3, 26]),
+ (b"ffffeeffbb", 60, &[35, 6, 27, 46, 58, 33, 23]),
+ (b"ffffeeffbb", 61, &[58, 7, 6, 54, 49, 20, 21]),
+ (b"ffffeeffbb", 62, &[53, 59, 3, 14, 10, 22, 19]),
+ (b"ffffeeffbb", 63, &[53, 50, 23, 4, 56, 36, 17]),
+ (b"ffffeeffbb", 64, &[59, 62, 47, 59, 63, 63, 15]),
+ (b"ffffeeffbb", 65, &[0, 53, 39, 4, 40, 37, 14]),
+ (b"ffffeeffbb", 66, &[65, 59, 39, 1, 64, 19, 13]),
+ (b"ffffeeffbb", 67, &[35, 14, 19, 16, 25, 10, 12]),
+ (b"ffffeeffbb", 68, &[51, 38, 63, 50, 15, 8, 11]),
+ (b"ffffeeffbb", 69, &[44, 45, 18, 58, 68, 12, 10]),
+ (b"ffffeeffbb", 70, &[25, 51, 0, 60, 13, 24, 9]),
+ (b"ffffeeffbb", 71, &[54, 30, 9, 65, 28, 41, 8]),
+ (b"ffffeeffbb", 72, &[35, 35, 55, 54, 17, 64, 7]),
+ (b"ffffeeffbb", 73, &[34, 4, 48, 40, 27, 19, 7]),
+ (b"ffffeeffbb", 74, &[53, 47, 4, 56, 36, 51, 6]),
+ (b"ffffeeffbb", 75, &[20, 56, 10, 72, 24, 13, 6]),
+ (b"ffffeeffbb", 76, &[71, 31, 52, 60, 48, 53, 5]),
+ (b"ffffeeffbb", 77, &[32, 73, 14, 63, 15, 21, 5]),
+ (b"ffffeeffbb", 78, &[65, 13, 17, 32, 64, 68, 4]),
+ (b"ffffeeffbb", 79, &[37, 56, 2, 56, 25, 41, 4]),
+ (b"ffffeeffbb", 80, &[75, 59, 37, 41, 43, 15, 4]),
+ (b"ffffeeffbb", 81, &[44, 68, 0, 21, 27, 72, 3]),
+ (b"ffffeeffbb", 82, &[77, 35, 2, 74, 46, 50, 3]),
+ (b"ffffeeffbb", 83, &[52, 51, 19, 76, 10, 30, 3]),
+ (b"ffffeeffbb", 84, &[11, 80, 19, 19, 76, 10, 3]),
+ (b"ffffeeffbb", 85, &[0, 82, 20, 14, 68, 77, 2]),
+ (b"ffffeeffbb", 86, &[3, 12, 78, 37, 62, 61, 2]),
+ (b"ffffeeffbb", 87, &[35, 12, 20, 8, 52, 46, 2]),
+ (b"ffffeeffbb", 88, &[43, 6, 54, 42, 30, 32, 2]),
+ (b"ffffeeffbb", 89, &[49, 52, 85, 21, 80, 18, 2]),
+ (b"ffffeeffbb", 90, &[35, 64, 78, 24, 18, 6, 2]),
+ (b"ffffeeffbb", 91, &[39, 17, 83, 63, 17, 85, 1]),
+ (b"ffffeeffbb", 92, &[67, 22, 85, 79, 75, 74, 1]),
+ (b"ffffeeffbb", 93, &[53, 60, 39, 29, 4, 65, 1]),
+ (b"ffffeeffbb", 94, &[37, 89, 2, 72, 76, 55, 1]),
+ (b"ffffeeffbb", 95, &[90, 74, 89, 9, 9, 47, 1]),
+ (b"ffffeeffbb", 96, &[59, 20, 46, 35, 81, 38, 1]),
+ (b"ffffeeffbb", 97, &[94, 87, 60, 71, 3, 31, 1]),
+ (b"ffffeeffbb", 98, &[67, 22, 63, 50, 62, 23, 1]),
+ (b"ffffeeffbb", 99, &[98, 6, 69, 12, 61, 16, 1]),
+ (b"ffffeeffbb", 100, &[95, 35, 51, 10, 95, 9, 1]),
+ (b"ffffeeffbb", 101, &[87, 27, 7, 8, 62, 3, 1]),
+ (b"ffffeeffbb", 102, &[17, 3, 32, 79, 59, 99]),
+ (b"ffffeeffbb", 103, &[30, 22, 90, 0, 87, 94]),
+ (b"ffffeeffbb", 104, &[91, 68, 87, 68, 38, 90]),
+ (b"ffffeeffbb", 105, &[95, 80, 54, 73, 15, 86]),
+ (b"ffffeeffbb", 106, &[31, 30, 24, 16, 17, 82]),
+ (b"ffffeeffbb", 107, &[51, 50, 10, 12, 42, 78]),
+ (b"ffffeeffbb", 108, &[71, 71, 96, 78, 89, 74]),
+ (b"ffffeeffbb", 109, &[33, 18, 93, 22, 50, 71]),
+ (b"ffffeeffbb", 110, &[65, 53, 57, 88, 29, 68]),
+ (b"ffffeeffbb", 111, &[53, 93, 67, 90, 27, 65]),
+ (b"ffffeeffbb", 112, &[11, 109, 96, 65, 43, 62]),
+ (b"ffffeeffbb", 113, &[27, 23, 106, 56, 76, 59]),
+ (b"ffffeeffbb", 114, &[71, 84, 31, 112, 11, 57]),
+ (b"ffffeeffbb", 115, &[90, 22, 1, 56, 76, 54]),
+ (b"ffffeeffbb", 116, &[35, 38, 98, 57, 40, 52]),
+ (b"ffffeeffbb", 117, &[26, 113, 115, 62, 17, 50]),
+ (b"ffffeeffbb", 118, &[51, 14, 5, 18, 7, 48]),
+ (b"ffffeeffbb", 119, &[102, 31, 110, 108, 8, 46]),
+ (b"ffffeeffbb", 120, &[35, 93, 96, 50, 22, 44]),
+ (b"ffffeeffbb", 121, &[87, 61, 2, 36, 47, 42]),
+ (b"ffffeeffbb", 122, &[119, 64, 1, 22, 83, 40]),
+ (b"ffffeeffbb", 123, &[77, 119, 32, 90, 6, 39]),
+ (b"ffffeeffbb", 124, &[115, 122, 31, 79, 62, 37]),
+ (b"ffffeeffbb", 125, &[95, 108, 47, 74, 3, 36]),
+ (b"ffffeeffbb", 126, &[53, 25, 116, 39, 78, 34]),
+ (b"ffffeeffbb", 127, &[22, 23, 125, 67, 35, 33]),
+ (b"ffffeeffbb", 128, &[59, 127, 59, 127, 127, 31]),
+ (b"ffffeeffbb", 129, &[89, 36, 1, 59, 100, 30]),
+ (b"ffffeeffbb", 130, &[65, 91, 123, 89, 79, 29]),
+ (b"ffffeeffbb", 131, &[58, 72, 39, 63, 65, 28]),
+ (b"ffffeeffbb", 132, &[131, 62, 92, 82, 57, 27]),
+ (b"ffffeeffbb", 133, &[109, 31, 51, 123, 55, 26]),
+ (b"ffffeeffbb", 134, &[35, 74, 21, 27, 60, 25]),
+ (b"ffffeeffbb", 135, &[125, 132, 49, 37, 70, 24]),
+ (b"ffffeeffbb", 136, &[51, 121, 117, 133, 85, 23]),
+ (b"ffffeeffbb", 137, &[113, 60, 135, 22, 107, 22]),
+ (b"ffffeeffbb", 138, &[113, 91, 73, 93, 133, 21]),
+ (b"ffffeeffbb", 139, &[114, 75, 102, 51, 26, 21]),
+ (b"ffffeeffbb", 140, &[95, 25, 35, 16, 62, 20]),
+ (b"ffffeeffbb", 141, &[131, 137, 16, 110, 102, 19]),
+ (b"ffffeeffbb", 142, &[125, 121, 108, 34, 6, 19]),
+ (b"ffffeeffbb", 143, &[65, 78, 138, 55, 55, 18]),
+ (b"ffffeeffbb", 144, &[107, 125, 121, 15, 109, 17]),
+ (b"ffffeeffbb", 145, &[35, 13, 122, 42, 22, 17]),
+ (b"ffffeeffbb", 146, &[107, 38, 103, 123, 83, 16]),
+ (b"ffffeeffbb", 147, &[116, 96, 71, 98, 2, 16]),
+ (b"ffffeeffbb", 148, &[127, 23, 75, 99, 71, 15]),
+ (b"ffffeeffbb", 149, &[136, 110, 53, 114, 144, 14]),
+ (b"ffffeeffbb", 150, &[95, 140, 133, 130, 71, 14]),
+ (b"ffffeeffbb", 151, &[15, 50, 29, 137, 0, 14]),
+ (b"ffffeeffbb", 152, &[147, 15, 89, 121, 83, 13]),
+ (b"ffffeeffbb", 153, &[17, 87, 93, 72, 17, 13]),
+ (b"ffffeeffbb", 154, &[109, 113, 3, 133, 106, 12]),
+ (b"ffffeeffbb", 155, &[115, 141, 120, 139, 44, 12]),
+ (b"ffffeeffbb", 156, &[143, 45, 4, 82, 140, 11]),
+ (b"ffffeeffbb", 157, &[149, 92, 15, 106, 82, 11]),
+ (b"ffffeeffbb", 158, &[37, 107, 79, 46, 26, 11]),
+ (b"ffffeeffbb", 159, &[137, 37, 146, 51, 130, 10]),
+ (b"ffffeeffbb", 160, &[155, 69, 29, 115, 77, 10]),
+ (b"ffffeeffbb", 161, &[67, 98, 46, 68, 26, 10]),
+ (b"ffffeeffbb", 162, &[125, 155, 60, 63, 138, 9]),
+ (b"ffffeeffbb", 163, &[96, 43, 118, 93, 90, 9]),
+ (b"ffffeeffbb", 164, &[159, 99, 123, 152, 43, 9]),
+ (b"ffffeeffbb", 165, &[65, 17, 1, 69, 163, 8]),
+ (b"ffffeeffbb", 166, &[135, 108, 25, 165, 119, 8]),
+ (b"ffffeeffbb", 167, &[165, 116, 164, 103, 77, 8]),
+ (b"ffffeeffbb", 168, &[11, 166, 67, 44, 36, 8]),
+ (b"ffffeeffbb", 169, &[65, 59, 71, 149, 164, 7]),
+ (b"ffffeeffbb", 170, &[85, 83, 26, 76, 126, 7]),
+ (b"ffffeeffbb", 171, &[71, 132, 140, 157, 88, 7]),
+ (b"ffffeeffbb", 172, &[3, 6, 127, 47, 52, 7]),
+ (b"ffffeeffbb", 173, &[122, 66, 53, 83, 16, 7]),
+ (b"ffffeeffbb", 174, &[35, 6, 5, 88, 155, 6]),
+ (b"ffffeeffbb", 175, &[95, 20, 84, 56, 122, 6]),
+ (b"ffffeeffbb", 176, &[43, 91, 57, 159, 89, 6]),
+ (b"ffffeeffbb", 177, &[110, 127, 54, 40, 58, 6]),
+ (b"ffffeeffbb", 178, &[49, 115, 43, 47, 27, 6]),
+ (b"ffffeeffbb", 179, &[130, 91, 4, 178, 175, 5]),
+ (b"ffffeeffbb", 180, &[35, 122, 109, 70, 147, 5]),
+ (b"ffffeeffbb", 181, &[94, 94, 4, 79, 119, 5]),
+ (b"ffffeeffbb", 182, &[39, 54, 66, 19, 92, 5]),
+ (b"ffffeeffbb", 183, &[119, 2, 143, 69, 65, 5]),
+ (b"ffffeeffbb", 184, &[67, 57, 90, 44, 39, 5]),
+ (b"ffffeeffbb", 185, &[90, 63, 141, 123, 13, 5]),
+ (b"ffffeeffbb", 186, &[53, 123, 172, 119, 174, 4]),
+ (b"ffffeeffbb", 187, &[153, 21, 68, 28, 151, 4]),
+ (b"ffffeeffbb", 188, &[131, 138, 94, 32, 128, 4]),
+ (b"ffffeeffbb", 189, &[179, 121, 156, 130, 105, 4]),
+ (b"ffffeeffbb", 190, &[185, 179, 164, 131, 83, 4]),
+ (b"ffffeeffbb", 191, &[118, 123, 37, 31, 62, 4]),
+ (b"ffffeeffbb", 192, &[59, 106, 83, 16, 41, 4]),
+ (b"ffffeeffbb", 193, &[57, 37, 47, 86, 20, 4]),
+ (b"ffffeeffbb", 194, &[191, 140, 63, 45, 0, 4]),
+ (b"ffffeeffbb", 195, &[65, 169, 83, 84, 175, 3]),
+ (b"ffffeeffbb", 196, &[67, 158, 64, 6, 157, 3]),
+ (b"ffffeeffbb", 197, &[121, 26, 167, 3, 139, 3]),
+ (b"ffffeeffbb", 198, &[197, 151, 165, 75, 121, 3]),
+ (b"ffffeeffbb", 199, &[55, 175, 36, 22, 104, 3]),
+ (b"ffffeeffbb", 200, &[195, 167, 162, 38, 87, 3]),
+ (b"ffffeeffbb", 201, &[35, 27, 136, 124, 70, 3]),
+ (b"ffffeeffbb", 202, &[87, 64, 153, 76, 54, 3]),
+ (b"ffffeeffbb", 203, &[151, 191, 14, 94, 38, 3]),
+ (b"ffffeeffbb", 204, &[119, 103, 135, 175, 22, 3]),
+ (b"ffffeeffbb", 205, &[200, 79, 123, 115, 7, 3]),
+ (b"ffffeeffbb", 206, &[133, 165, 202, 115, 198, 2]),
+ (b"ffffeeffbb", 207, &[44, 153, 193, 175, 184, 2]),
+ (b"ffffeeffbb", 208, &[91, 190, 125, 86, 171, 2]),
+ (b"ffffeeffbb", 209, &[109, 151, 34, 53, 158, 2]),
+ (b"ffffeeffbb", 210, &[95, 40, 171, 74, 145, 2]),
+ (b"ffffeeffbb", 211, &[84, 195, 162, 150, 132, 2]),
+ (b"ffffeeffbb", 212, &[31, 15, 59, 68, 120, 2]),
+ (b"ffffeeffbb", 213, &[125, 57, 127, 36, 108, 2]),
+ (b"ffffeeffbb", 214, &[51, 132, 2, 55, 96, 2]),
+ (b"ffffeeffbb", 215, &[175, 133, 177, 122, 84, 2]),
+ (b"ffffeeffbb", 216, &[179, 35, 78, 23, 73, 2]),
+ (b"ffffeeffbb", 217, &[53, 101, 208, 186, 61, 2]),
+ (b"ffffeeffbb", 218, &[33, 9, 214, 179, 50, 2]),
+ (b"ffffeeffbb", 219, &[107, 147, 175, 217, 39, 2]),
+ (b"ffffeeffbb", 220, &[175, 81, 179, 79, 29, 2]),
+ (b"ffffeeffbb", 221, &[0, 76, 95, 204, 18, 2]),
+ (b"ffffeeffbb", 222, &[53, 213, 16, 150, 8, 2]),
+ (b"ffffeeffbb", 223, &[158, 161, 42, 136, 221, 1]),
+ (b"ffffeeffbb", 224, &[123, 54, 52, 162, 212, 1]),
+ (b"ffffeeffbb", 225, &[170, 43, 151, 2, 204, 1]),
+ (b"ffffeeffbb", 226, &[27, 68, 224, 105, 195, 1]),
+ (b"ffffeeffbb", 227, &[45, 69, 157, 20, 187, 1]),
+ (b"ffffeeffbb", 228, &[71, 213, 64, 199, 178, 1]),
+ (b"ffffeeffbb", 229, &[129, 203, 66, 186, 170, 1]),
+ (b"ffffeeffbb", 230, &[205, 183, 57, 208, 162, 1]),
+ (b"ffffeeffbb", 231, &[32, 50, 164, 33, 155, 1]),
+ (b"ffffeeffbb", 232, &[35, 135, 53, 123, 147, 1]),
+ (b"ffffeeffbb", 233, &[209, 47, 89, 13, 140, 1]),
+ (b"ffffeeffbb", 234, &[143, 56, 175, 168, 132, 1]),
+ (b"ffffeeffbb", 235, &[225, 157, 216, 121, 125, 1]),
+ (b"ffffeeffbb", 236, &[51, 66, 119, 105, 118, 1]),
+ (b"ffffeeffbb", 237, &[116, 150, 26, 119, 111, 1]),
+ (b"ffffeeffbb", 238, &[221, 15, 87, 162, 104, 1]),
+ (b"ffffeeffbb", 239, &[234, 155, 214, 234, 97, 1]),
+ (b"ffffeeffbb", 240, &[155, 46, 84, 96, 91, 1]),
+ (b"ffffeeffbb", 241, &[187, 48, 90, 225, 84, 1]),
+ (b"ffffeeffbb", 242, &[87, 212, 151, 140, 78, 1]),
+ (b"ffffeeffbb", 243, &[206, 22, 189, 81, 72, 1]),
+ (b"ffffeeffbb", 244, &[119, 93, 122, 48, 66, 1]),
+ (b"ffffeeffbb", 245, &[165, 224, 117, 40, 60, 1]),
+ (b"ffffeeffbb", 246, &[77, 121, 100, 57, 54, 1]),
+ (b"ffffeeffbb", 247, &[52, 128, 242, 98, 48, 1]),
+ (b"ffffeeffbb", 248, &[115, 247, 224, 164, 42, 1]),
+ (b"ffffeeffbb", 249, &[218, 127, 223, 5, 37, 1]),
+ (b"ffffeeffbb", 250, &[95, 54, 168, 118, 31, 1]),
+ (b"ffffeeffbb", 251, &[121, 204, 240, 3, 26, 1]),
+ (b"ffffeeffbb", 252, &[179, 138, 123, 162, 20, 1]),
+ (b"ffffeeffbb", 253, &[21, 50, 1, 91, 15, 1]),
+ (b"ffffeeffbb", 254, &[149, 11, 63, 40, 10, 1]),
+ (b"ffffeeffbb", 255, &[170, 225, 247, 9, 5, 1]),
+ (b"ffffeeffbb", 256, &[187, 255, 238, 255, 255]),
+ ];
+
+ for &(bigint, radix, inbaseradix_le) in GROUND_TRUTH.iter() {
+ let bigint = BigUint::parse_bytes(bigint, 16).unwrap();
+ // to_radix_le
+ assert_eq!(bigint.to_radix_le(radix), inbaseradix_le);
+ // to_radix_be
+ let mut inbase_be = bigint.to_radix_be(radix);
+ inbase_be.reverse(); // now le
+ assert_eq!(inbase_be, inbaseradix_le);
+ // from_radix_le
+ assert_eq!(
+ BigUint::from_radix_le(inbaseradix_le, radix).unwrap(),
+ bigint
+ );
+ // from_radix_be
+ let mut inbaseradix_be = Vec::from(inbaseradix_le);
+ inbaseradix_be.reverse();
+ assert_eq!(
+ BigUint::from_radix_be(&inbaseradix_be, radix).unwrap(),
+ bigint
+ );
+ }
+
+ assert!(BigUint::from_radix_le(&[10, 100, 10], 50).is_none());
+}
+
+#[test]
+fn test_from_str_radix() {
+ let r = to_str_pairs();
+ for num_pair in r.iter() {
+ let &(ref n, ref rs) = num_pair;
+ for str_pair in rs.iter() {
+ let &(ref radix, ref str) = str_pair;
+ assert_eq!(n, &BigUint::from_str_radix(str, *radix).unwrap());
+ }
+ }
+
+ let zed = BigUint::from_str_radix("Z", 10).ok();
+ assert_eq!(zed, None);
+ let blank = BigUint::from_str_radix("_", 2).ok();
+ assert_eq!(blank, None);
+ let blank_one = BigUint::from_str_radix("_1", 2).ok();
+ assert_eq!(blank_one, None);
+ let plus_one = BigUint::from_str_radix("+1", 10).ok();
+ assert_eq!(plus_one, Some(BigUint::from_slice(&[1])));
+ let plus_plus_one = BigUint::from_str_radix("++1", 10).ok();
+ assert_eq!(plus_plus_one, None);
+ let minus_one = BigUint::from_str_radix("-1", 10).ok();
+ assert_eq!(minus_one, None);
+ let zero_plus_two = BigUint::from_str_radix("0+2", 10).ok();
+ assert_eq!(zero_plus_two, None);
+ let three = BigUint::from_str_radix("1_1", 2).ok();
+ assert_eq!(three, Some(BigUint::from_slice(&[3])));
+ let ff = BigUint::from_str_radix("1111_1111", 2).ok();
+ assert_eq!(ff, Some(BigUint::from_slice(&[0xff])));
+}
+
+#[test]
+fn test_all_str_radix() {
+ #[allow(deprecated, unused_imports)]
+ use std::ascii::AsciiExt;
+
+ let n = BigUint::new((0..10).collect());
+ for radix in 2..37 {
+ let s = n.to_str_radix(radix);
+ let x = BigUint::from_str_radix(&s, radix);
+ assert_eq!(x.unwrap(), n);
+
+ let s = s.to_ascii_uppercase();
+ let x = BigUint::from_str_radix(&s, radix);
+ assert_eq!(x.unwrap(), n);
+ }
+}
+
+#[test]
+fn test_lower_hex() {
+ let a = BigUint::parse_bytes(b"A", 16).unwrap();
+ let hello = BigUint::parse_bytes("22405534230753963835153736737".as_bytes(), 10).unwrap();
+
+ assert_eq!(format!("{:x}", a), "a");
+ assert_eq!(format!("{:x}", hello), "48656c6c6f20776f726c6421");
+ assert_eq!(format!("{:♥>+#8x}", a), "♥♥♥♥+0xa");
+}
+
+#[test]
+fn test_upper_hex() {
+ let a = BigUint::parse_bytes(b"A", 16).unwrap();
+ let hello = BigUint::parse_bytes("22405534230753963835153736737".as_bytes(), 10).unwrap();
+
+ assert_eq!(format!("{:X}", a), "A");
+ assert_eq!(format!("{:X}", hello), "48656C6C6F20776F726C6421");
+ assert_eq!(format!("{:♥>+#8X}", a), "♥♥♥♥+0xA");
+}
+
+#[test]
+fn test_binary() {
+ let a = BigUint::parse_bytes(b"A", 16).unwrap();
+ let hello = BigUint::parse_bytes("224055342307539".as_bytes(), 10).unwrap();
+
+ assert_eq!(format!("{:b}", a), "1010");
+ assert_eq!(
+ format!("{:b}", hello),
+ "110010111100011011110011000101101001100011010011"
+ );
+ assert_eq!(format!("{:♥>+#8b}", a), "♥+0b1010");
+}
+
+#[test]
+fn test_octal() {
+ let a = BigUint::parse_bytes(b"A", 16).unwrap();
+ let hello = BigUint::parse_bytes("22405534230753963835153736737".as_bytes(), 10).unwrap();
+
+ assert_eq!(format!("{:o}", a), "12");
+ assert_eq!(format!("{:o}", hello), "22062554330674403566756233062041");
+ assert_eq!(format!("{:♥>+#8o}", a), "♥♥♥+0o12");
+}
+
+#[test]
+fn test_display() {
+ let a = BigUint::parse_bytes(b"A", 16).unwrap();
+ let hello = BigUint::parse_bytes("22405534230753963835153736737".as_bytes(), 10).unwrap();
+
+ assert_eq!(format!("{}", a), "10");
+ assert_eq!(format!("{}", hello), "22405534230753963835153736737");
+ assert_eq!(format!("{:♥>+#8}", a), "♥♥♥♥♥+10");
+}
+
+#[test]
+fn test_factor() {
+ fn factor(n: usize) -> BigUint {
+ let mut f: BigUint = One::one();
+ for i in 2..n + 1 {
+ // FIXME(#5992): assignment operator overloads
+ // f *= FromPrimitive::from_usize(i);
+ let bu: BigUint = FromPrimitive::from_usize(i).unwrap();
+ f = f * bu;
+ }
+ return f;
+ }
+
+ fn check(n: usize, s: &str) {
+ let n = factor(n);
+ let ans = match BigUint::from_str_radix(s, 10) {
+ Ok(x) => x,
+ Err(_) => panic!(),
+ };
+ assert_eq!(n, ans);
+ }
+
+ check(3, "6");
+ check(10, "3628800");
+ check(20, "2432902008176640000");
+ check(30, "265252859812191058636308480000000");
+}
+
+#[test]
+fn test_bits() {
+ assert_eq!(BigUint::new(vec![0, 0, 0, 0]).bits(), 0);
+ let n: BigUint = FromPrimitive::from_usize(0).unwrap();
+ assert_eq!(n.bits(), 0);
+ let n: BigUint = FromPrimitive::from_usize(1).unwrap();
+ assert_eq!(n.bits(), 1);
+ let n: BigUint = FromPrimitive::from_usize(3).unwrap();
+ assert_eq!(n.bits(), 2);
+ let n: BigUint = BigUint::from_str_radix("4000000000", 16).unwrap();
+ assert_eq!(n.bits(), 39);
+ let one: BigUint = One::one();
+ assert_eq!((one << 426).bits(), 427);
+}
+
+#[test]
+fn test_iter_sum() {
+ let result: BigUint = FromPrimitive::from_isize(1234567).unwrap();
+ let data: Vec<BigUint> = vec![
+ FromPrimitive::from_u32(1000000).unwrap(),
+ FromPrimitive::from_u32(200000).unwrap(),
+ FromPrimitive::from_u32(30000).unwrap(),
+ FromPrimitive::from_u32(4000).unwrap(),
+ FromPrimitive::from_u32(500).unwrap(),
+ FromPrimitive::from_u32(60).unwrap(),
+ FromPrimitive::from_u32(7).unwrap(),
+ ];
+
+ assert_eq!(result, data.iter().sum());
+ assert_eq!(result, data.into_iter().sum());
+}
+
+#[test]
+fn test_iter_product() {
+ let data: Vec<BigUint> = vec![
+ FromPrimitive::from_u32(1001).unwrap(),
+ FromPrimitive::from_u32(1002).unwrap(),
+ FromPrimitive::from_u32(1003).unwrap(),
+ FromPrimitive::from_u32(1004).unwrap(),
+ FromPrimitive::from_u32(1005).unwrap(),
+ ];
+ let result = data.get(0).unwrap()
+ * data.get(1).unwrap()
+ * data.get(2).unwrap()
+ * data.get(3).unwrap()
+ * data.get(4).unwrap();
+
+ assert_eq!(result, data.iter().product());
+ assert_eq!(result, data.into_iter().product());
+}
+
+#[test]
+fn test_iter_sum_generic() {
+ let result: BigUint = FromPrimitive::from_isize(1234567).unwrap();
+ let data = vec![1000000_u32, 200000, 30000, 4000, 500, 60, 7];
+
+ assert_eq!(result, data.iter().sum());
+ assert_eq!(result, data.into_iter().sum());
+}
+
+#[test]
+fn test_iter_product_generic() {
+ let data = vec![1001_u32, 1002, 1003, 1004, 1005];
+ let result = data[0].to_biguint().unwrap()
+ * data[1].to_biguint().unwrap()
+ * data[2].to_biguint().unwrap()
+ * data[3].to_biguint().unwrap()
+ * data[4].to_biguint().unwrap();
+
+ assert_eq!(result, data.iter().product());
+ assert_eq!(result, data.into_iter().product());
+}
+
+#[test]
+fn test_pow() {
+ let one = BigUint::from(1u32);
+ let two = BigUint::from(2u32);
+ let four = BigUint::from(4u32);
+ let eight = BigUint::from(8u32);
+ let tentwentyfour = BigUint::from(1024u32);
+ let twentyfourtyeight = BigUint::from(2048u32);
+ macro_rules! check {
+ ($t:ty) => {
+ assert_eq!(two.pow(0 as $t), one);
+ assert_eq!(two.pow(1 as $t), two);
+ assert_eq!(two.pow(2 as $t), four);
+ assert_eq!(two.pow(3 as $t), eight);
+ assert_eq!(two.pow(10 as $t), tentwentyfour);
+ assert_eq!(two.pow(11 as $t), twentyfourtyeight);
+ assert_eq!(two.pow(&(11 as $t)), twentyfourtyeight);
+ };
+ }
+ check!(u8);
+ check!(u16);
+ check!(u32);
+ check!(u64);
+ check!(usize);
+ #[cfg(has_i128)]
+ check!(u128);
+}
diff --git a/third_party/rust/num-bigint/tests/biguint_scalar.rs b/third_party/rust/num-bigint/tests/biguint_scalar.rs
new file mode 100644
index 0000000000..fb8fbf0357
--- /dev/null
+++ b/third_party/rust/num-bigint/tests/biguint_scalar.rs
@@ -0,0 +1,109 @@
+extern crate num_bigint;
+extern crate num_traits;
+
+use num_bigint::BigUint;
+use num_traits::{ToPrimitive, Zero};
+
+mod consts;
+use consts::*;
+
+#[macro_use]
+mod macros;
+
+#[test]
+fn test_scalar_add() {
+ fn check(x: &BigUint, y: &BigUint, z: &BigUint) {
+ let (x, y, z) = (x.clone(), y.clone(), z.clone());
+ assert_unsigned_scalar_op!(x + y == z);
+ }
+
+ for elm in SUM_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigUint::from_slice(a_vec);
+ let b = BigUint::from_slice(b_vec);
+ let c = BigUint::from_slice(c_vec);
+
+ check(&a, &b, &c);
+ check(&b, &a, &c);
+ }
+}
+
+#[test]
+fn test_scalar_sub() {
+ fn check(x: &BigUint, y: &BigUint, z: &BigUint) {
+ let (x, y, z) = (x.clone(), y.clone(), z.clone());
+ assert_unsigned_scalar_op!(x - y == z);
+ }
+
+ for elm in SUM_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigUint::from_slice(a_vec);
+ let b = BigUint::from_slice(b_vec);
+ let c = BigUint::from_slice(c_vec);
+
+ check(&c, &a, &b);
+ check(&c, &b, &a);
+ }
+}
+
+#[test]
+fn test_scalar_mul() {
+ fn check(x: &BigUint, y: &BigUint, z: &BigUint) {
+ let (x, y, z) = (x.clone(), y.clone(), z.clone());
+ assert_unsigned_scalar_op!(x * y == z);
+ }
+
+ for elm in MUL_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigUint::from_slice(a_vec);
+ let b = BigUint::from_slice(b_vec);
+ let c = BigUint::from_slice(c_vec);
+
+ check(&a, &b, &c);
+ check(&b, &a, &c);
+ }
+}
+
+#[test]
+fn test_scalar_rem_noncommutative() {
+ assert_eq!(5u8 % BigUint::from(7u8), 5u8.into());
+ assert_eq!(BigUint::from(5u8) % 7u8, 5u8.into());
+}
+
+#[test]
+fn test_scalar_div_rem() {
+ fn check(x: &BigUint, y: &BigUint, z: &BigUint, r: &BigUint) {
+ let (x, y, z, r) = (x.clone(), y.clone(), z.clone(), r.clone());
+ assert_unsigned_scalar_op!(x / y == z);
+ assert_unsigned_scalar_op!(x % y == r);
+ }
+
+ for elm in MUL_TRIPLES.iter() {
+ let (a_vec, b_vec, c_vec) = *elm;
+ let a = BigUint::from_slice(a_vec);
+ let b = BigUint::from_slice(b_vec);
+ let c = BigUint::from_slice(c_vec);
+
+ if !a.is_zero() {
+ check(&c, &a, &b, &Zero::zero());
+ }
+
+ if !b.is_zero() {
+ check(&c, &b, &a, &Zero::zero());
+ }
+ }
+
+ for elm in DIV_REM_QUADRUPLES.iter() {
+ let (a_vec, b_vec, c_vec, d_vec) = *elm;
+ let a = BigUint::from_slice(a_vec);
+ let b = BigUint::from_slice(b_vec);
+ let c = BigUint::from_slice(c_vec);
+ let d = BigUint::from_slice(d_vec);
+
+ if !b.is_zero() {
+ check(&a, &b, &c, &d);
+ assert_unsigned_scalar_op!(a / b == c);
+ assert_unsigned_scalar_op!(a % b == d);
+ }
+ }
+}
diff --git a/third_party/rust/num-bigint/tests/consts/mod.rs b/third_party/rust/num-bigint/tests/consts/mod.rs
new file mode 100644
index 0000000000..87805d5e24
--- /dev/null
+++ b/third_party/rust/num-bigint/tests/consts/mod.rs
@@ -0,0 +1,56 @@
+#![allow(unused)]
+
+pub const N1: u32 = -1i32 as u32;
+pub const N2: u32 = -2i32 as u32;
+
+pub const SUM_TRIPLES: &'static [(&'static [u32], &'static [u32], &'static [u32])] = &[
+ (&[], &[], &[]),
+ (&[], &[1], &[1]),
+ (&[1], &[1], &[2]),
+ (&[1], &[1, 1], &[2, 1]),
+ (&[1], &[N1], &[0, 1]),
+ (&[1], &[N1, N1], &[0, 0, 1]),
+ (&[N1, N1], &[N1, N1], &[N2, N1, 1]),
+ (&[1, 1, 1], &[N1, N1], &[0, 1, 2]),
+ (&[2, 2, 1], &[N1, N2], &[1, 1, 2]),
+ (&[1, 2, 2, 1], &[N1, N2], &[0, 1, 3, 1]),
+];
+
+pub const M: u32 = ::std::u32::MAX;
+pub const MUL_TRIPLES: &'static [(&'static [u32], &'static [u32], &'static [u32])] = &[
+ (&[], &[], &[]),
+ (&[], &[1], &[]),
+ (&[2], &[], &[]),
+ (&[1], &[1], &[1]),
+ (&[2], &[3], &[6]),
+ (&[1], &[1, 1, 1], &[1, 1, 1]),
+ (&[1, 2, 3], &[3], &[3, 6, 9]),
+ (&[1, 1, 1], &[N1], &[N1, N1, N1]),
+ (&[1, 2, 3], &[N1], &[N1, N2, N2, 2]),
+ (&[1, 2, 3, 4], &[N1], &[N1, N2, N2, N2, 3]),
+ (&[N1], &[N1], &[1, N2]),
+ (&[N1, N1], &[N1], &[1, N1, N2]),
+ (&[N1, N1, N1], &[N1], &[1, N1, N1, N2]),
+ (&[N1, N1, N1, N1], &[N1], &[1, N1, N1, N1, N2]),
+ (&[M / 2 + 1], &[2], &[0, 1]),
+ (&[0, M / 2 + 1], &[2], &[0, 0, 1]),
+ (&[1, 2], &[1, 2, 3], &[1, 4, 7, 6]),
+ (&[N1, N1], &[N1, N1, N1], &[1, 0, N1, N2, N1]),
+ (&[N1, N1, N1], &[N1, N1, N1, N1], &[1, 0, 0, N1, N2, N1, N1]),
+ (&[0, 0, 1], &[1, 2, 3], &[0, 0, 1, 2, 3]),
+ (&[0, 0, 1], &[0, 0, 0, 1], &[0, 0, 0, 0, 0, 1]),
+];
+
+pub const DIV_REM_QUADRUPLES: &'static [(
+ &'static [u32],
+ &'static [u32],
+ &'static [u32],
+ &'static [u32],
+)] = &[
+ (&[1], &[2], &[], &[1]),
+ (&[3], &[2], &[1], &[1]),
+ (&[1, 1], &[2], &[M / 2 + 1], &[1]),
+ (&[1, 1, 1], &[2], &[M / 2 + 1, M / 2 + 1], &[1]),
+ (&[0, 1], &[N1], &[1], &[1]),
+ (&[N1, N1], &[N2], &[2, 1], &[3]),
+];
diff --git a/third_party/rust/num-bigint/tests/macros/mod.rs b/third_party/rust/num-bigint/tests/macros/mod.rs
new file mode 100644
index 0000000000..d848b29b35
--- /dev/null
+++ b/third_party/rust/num-bigint/tests/macros/mod.rs
@@ -0,0 +1,70 @@
+#![allow(unused)]
+
+/// Assert that an op works for all val/ref combinations
+macro_rules! assert_op {
+ ($left:ident $op:tt $right:ident == $expected:expr) => {
+ assert_eq!((&$left) $op (&$right), $expected);
+ assert_eq!((&$left) $op $right.clone(), $expected);
+ assert_eq!($left.clone() $op (&$right), $expected);
+ assert_eq!($left.clone() $op $right.clone(), $expected);
+ };
+}
+
+/// Assert that an assign-op works for all val/ref combinations
+macro_rules! assert_assign_op {
+ ($left:ident $op:tt $right:ident == $expected:expr) => {{
+ let mut left = $left.clone();
+ assert_eq!({ left $op &$right; left}, $expected);
+
+ let mut left = $left.clone();
+ assert_eq!({ left $op $right.clone(); left}, $expected);
+ }};
+}
+
+/// Assert that an op works for scalar left or right
+macro_rules! assert_scalar_op {
+ (($($to:ident),*) $left:ident $op:tt $right:ident == $expected:expr) => {
+ $(
+ if let Some(left) = $left.$to() {
+ assert_op!(left $op $right == $expected);
+ }
+ if let Some(right) = $right.$to() {
+ assert_op!($left $op right == $expected);
+ }
+ )*
+ };
+}
+
+#[cfg(not(has_i128))]
+macro_rules! assert_unsigned_scalar_op {
+ ($left:ident $op:tt $right:ident == $expected:expr) => {
+ assert_scalar_op!((to_u8, to_u16, to_u32, to_u64, to_usize)
+ $left $op $right == $expected);
+ };
+}
+
+#[cfg(has_i128)]
+macro_rules! assert_unsigned_scalar_op {
+ ($left:ident $op:tt $right:ident == $expected:expr) => {
+ assert_scalar_op!((to_u8, to_u16, to_u32, to_u64, to_usize, to_u128)
+ $left $op $right == $expected);
+ };
+}
+
+#[cfg(not(has_i128))]
+macro_rules! assert_signed_scalar_op {
+ ($left:ident $op:tt $right:ident == $expected:expr) => {
+ assert_scalar_op!((to_u8, to_u16, to_u32, to_u64, to_usize,
+ to_i8, to_i16, to_i32, to_i64, to_isize)
+ $left $op $right == $expected);
+ };
+}
+
+#[cfg(has_i128)]
+macro_rules! assert_signed_scalar_op {
+ ($left:ident $op:tt $right:ident == $expected:expr) => {
+ assert_scalar_op!((to_u8, to_u16, to_u32, to_u64, to_usize, to_u128,
+ to_i8, to_i16, to_i32, to_i64, to_isize, to_i128)
+ $left $op $right == $expected);
+ };
+}
diff --git a/third_party/rust/num-bigint/tests/modpow.rs b/third_party/rust/num-bigint/tests/modpow.rs
new file mode 100644
index 0000000000..b7a992c863
--- /dev/null
+++ b/third_party/rust/num-bigint/tests/modpow.rs
@@ -0,0 +1,150 @@
+extern crate num_bigint;
+extern crate num_integer;
+extern crate num_traits;
+
+static BIG_B: &'static str = "\
+ efac3c0a_0de55551_fee0bfe4_67fa017a_1a898fa1_6ca57cb1\
+ ca9e3248_cacc09a9_b99d6abc_38418d0f_82ae4238_d9a68832\
+ aadec7c1_ac5fed48_7a56a71b_67ac59d5_afb28022_20d9592d\
+ 247c4efc_abbd9b75_586088ee_1dc00dc4_232a8e15_6e8191dd\
+ 675b6ae0_c80f5164_752940bc_284b7cee_885c1e10_e495345b\
+ 8fbe9cfd_e5233fe1_19459d0b_d64be53c_27de5a02_a829976b\
+ 33096862_82dad291_bd38b6a9_be396646_ddaf8039_a2573c39\
+ 1b14e8bc_2cb53e48_298c047e_d9879e9c_5a521076_f0e27df3\
+ 990e1659_d3d8205b_6443ebc0_9918ebee_6764f668_9f2b2be3\
+ b59cbc76_d76d0dfc_d737c3ec_0ccf9c00_ad0554bf_17e776ad\
+ b4edf9cc_6ce540be_76229093_5c53893b";
+
+static BIG_E: &'static str = "\
+ be0e6ea6_08746133_e0fbc1bf_82dba91e_e2b56231_a81888d2\
+ a833a1fc_f7ff002a_3c486a13_4f420bf3_a5435be9_1a5c8391\
+ 774d6e6c_085d8357_b0c97d4d_2bb33f7c_34c68059_f78d2541\
+ eacc8832_426f1816_d3be001e_b69f9242_51c7708e_e10efe98\
+ 449c9a4a_b55a0f23_9d797410_515da00d_3ea07970_4478a2ca\
+ c3d5043c_bd9be1b4_6dce479d_4302d344_84a939e6_0ab5ada7\
+ 12ae34b2_30cc473c_9f8ee69d_2cac5970_29f5bf18_bc8203e4\
+ f3e895a2_13c94f1e_24c73d77_e517e801_53661fdd_a2ce9e47\
+ a73dd7f8_2f2adb1e_3f136bf7_8ae5f3b8_08730de1_a4eff678\
+ e77a06d0_19a522eb_cbefba2a_9caf7736_b157c5c6_2d192591\
+ 17946850_2ddb1822_117b68a0_32f7db88";
+
+// This modulus is the prime from the 2048-bit MODP DH group:
+// https://tools.ietf.org/html/rfc3526#section-3
+static BIG_M: &'static str = "\
+ FFFFFFFF_FFFFFFFF_C90FDAA2_2168C234_C4C6628B_80DC1CD1\
+ 29024E08_8A67CC74_020BBEA6_3B139B22_514A0879_8E3404DD\
+ EF9519B3_CD3A431B_302B0A6D_F25F1437_4FE1356D_6D51C245\
+ E485B576_625E7EC6_F44C42E9_A637ED6B_0BFF5CB6_F406B7ED\
+ EE386BFB_5A899FA5_AE9F2411_7C4B1FE6_49286651_ECE45B3D\
+ C2007CB8_A163BF05_98DA4836_1C55D39A_69163FA8_FD24CF5F\
+ 83655D23_DCA3AD96_1C62F356_208552BB_9ED52907_7096966D\
+ 670C354E_4ABC9804_F1746C08_CA18217C_32905E46_2E36CE3B\
+ E39E772C_180E8603_9B2783A2_EC07A28F_B5C55DF0_6F4C52C9\
+ DE2BCBF6_95581718_3995497C_EA956AE5_15D22618_98FA0510\
+ 15728E5A_8AACAA68_FFFFFFFF_FFFFFFFF";
+
+static BIG_R: &'static str = "\
+ a1468311_6e56edc9_7a98228b_5e924776_0dd7836e_caabac13\
+ eda5373b_4752aa65_a1454850_40dc770e_30aa8675_6be7d3a8\
+ 9d3085e4_da5155cf_b451ef62_54d0da61_cf2b2c87_f495e096\
+ 055309f7_77802bbb_37271ba8_1313f1b5_075c75d1_024b6c77\
+ fdb56f17_b05bce61_e527ebfd_2ee86860_e9907066_edd526e7\
+ 93d289bf_6726b293_41b0de24_eff82424_8dfd374b_4ec59542\
+ 35ced2b2_6b195c90_10042ffb_8f58ce21_bc10ec42_64fda779\
+ d352d234_3d4eaea6_a86111ad_a37e9555_43ca78ce_2885bed7\
+ 5a30d182_f1cf6834_dc5b6e27_1a41ac34_a2e91e11_33363ff0\
+ f88a7b04_900227c9_f6e6d06b_7856b4bb_4e354d61_060db6c8\
+ 109c4735_6e7db425_7b5d74c7_0b709508";
+
+mod biguint {
+ use num_bigint::BigUint;
+ use num_integer::Integer;
+ use num_traits::Num;
+
+ fn check_modpow<T: Into<BigUint>>(b: T, e: T, m: T, r: T) {
+ let b: BigUint = b.into();
+ let e: BigUint = e.into();
+ let m: BigUint = m.into();
+ let r: BigUint = r.into();
+
+ assert_eq!(b.modpow(&e, &m), r);
+
+ let even_m = &m << 1;
+ let even_modpow = b.modpow(&e, &even_m);
+ assert!(even_modpow < even_m);
+ assert_eq!(even_modpow.mod_floor(&m), r);
+ }
+
+ #[test]
+ fn test_modpow() {
+ check_modpow::<u32>(1, 0, 11, 1);
+ check_modpow::<u32>(0, 15, 11, 0);
+ check_modpow::<u32>(3, 7, 11, 9);
+ check_modpow::<u32>(5, 117, 19, 1);
+ }
+
+ #[test]
+ fn test_modpow_big() {
+ let b = BigUint::from_str_radix(super::BIG_B, 16).unwrap();
+ let e = BigUint::from_str_radix(super::BIG_E, 16).unwrap();
+ let m = BigUint::from_str_radix(super::BIG_M, 16).unwrap();
+ let r = BigUint::from_str_radix(super::BIG_R, 16).unwrap();
+
+ assert_eq!(b.modpow(&e, &m), r);
+
+ let even_m = &m << 1;
+ let even_modpow = b.modpow(&e, &even_m);
+ assert!(even_modpow < even_m);
+ assert_eq!(even_modpow % m, r);
+ }
+}
+
+mod bigint {
+ use num_bigint::BigInt;
+ use num_integer::Integer;
+ use num_traits::{Num, One, Signed, Zero};
+
+ fn check_modpow<T: Into<BigInt>>(b: T, e: T, m: T, r: T) {
+ fn check(b: &BigInt, e: &BigInt, m: &BigInt, r: &BigInt) {
+ assert_eq!(&b.modpow(e, m), r);
+
+ let even_m = m << 1;
+ let even_modpow = b.modpow(e, m);
+ assert!(even_modpow.abs() < even_m.abs());
+ assert_eq!(&even_modpow.mod_floor(&m), r);
+
+ // the sign of the result follows the modulus like `mod_floor`, not `rem`
+ assert_eq!(b.modpow(&BigInt::one(), m), b.mod_floor(m));
+ }
+
+ let b: BigInt = b.into();
+ let e: BigInt = e.into();
+ let m: BigInt = m.into();
+ let r: BigInt = r.into();
+
+ let neg_r = if r.is_zero() { BigInt::zero() } else { &m - &r };
+
+ check(&b, &e, &m, &r);
+ check(&-&b, &e, &m, &neg_r);
+ check(&b, &e, &-&m, &-neg_r);
+ check(&-b, &e, &-m, &-r);
+ }
+
+ #[test]
+ fn test_modpow() {
+ check_modpow(1, 0, 11, 1);
+ check_modpow(0, 15, 11, 0);
+ check_modpow(3, 7, 11, 9);
+ check_modpow(5, 117, 19, 1);
+ }
+
+ #[test]
+ fn test_modpow_big() {
+ let b = BigInt::from_str_radix(super::BIG_B, 16).unwrap();
+ let e = BigInt::from_str_radix(super::BIG_E, 16).unwrap();
+ let m = BigInt::from_str_radix(super::BIG_M, 16).unwrap();
+ let r = BigInt::from_str_radix(super::BIG_R, 16).unwrap();
+
+ check_modpow(b, e, m, r);
+ }
+}
diff --git a/third_party/rust/num-bigint/tests/quickcheck.rs b/third_party/rust/num-bigint/tests/quickcheck.rs
new file mode 100644
index 0000000000..6bb251fa90
--- /dev/null
+++ b/third_party/rust/num-bigint/tests/quickcheck.rs
@@ -0,0 +1,317 @@
+#![cfg(feature = "quickcheck")]
+#![cfg(feature = "quickcheck_macros")]
+
+extern crate num_bigint;
+extern crate num_integer;
+extern crate num_traits;
+
+extern crate quickcheck;
+#[macro_use]
+extern crate quickcheck_macros;
+
+use num_bigint::{BigInt, BigUint};
+use num_traits::{Num, One, Pow, Zero};
+use quickcheck::{QuickCheck, StdThreadGen, TestResult};
+
+#[quickcheck]
+fn quickcheck_unsigned_eq_reflexive(a: BigUint) -> bool {
+ a == a
+}
+
+#[quickcheck]
+fn quickcheck_signed_eq_reflexive(a: BigInt) -> bool {
+ a == a
+}
+
+#[quickcheck]
+fn quickcheck_unsigned_eq_symmetric(a: BigUint, b: BigUint) -> bool {
+ if a == b {
+ b == a
+ } else {
+ b != a
+ }
+}
+
+#[quickcheck]
+fn quickcheck_signed_eq_symmetric(a: BigInt, b: BigInt) -> bool {
+ if a == b {
+ b == a
+ } else {
+ b != a
+ }
+}
+
+#[test]
+fn quickcheck_arith_primitive() {
+ let gen = StdThreadGen::new(usize::max_value());
+ let mut qc = QuickCheck::with_gen(gen);
+
+ fn test_unsigned_add_primitive(a: usize, b: usize) -> TestResult {
+ let actual = BigUint::from(a) + BigUint::from(b);
+ match a.checked_add(b) {
+ None => TestResult::discard(),
+ Some(expected) => TestResult::from_bool(BigUint::from(expected) == actual),
+ }
+ }
+
+ fn test_signed_add_primitive(a: isize, b: isize) -> TestResult {
+ let actual = BigInt::from(a) + BigInt::from(b);
+ match a.checked_add(b) {
+ None => TestResult::discard(),
+ Some(expected) => TestResult::from_bool(BigInt::from(expected) == actual),
+ }
+ }
+
+ fn test_unsigned_mul_primitive(a: u64, b: u64) -> bool {
+ //maximum value of u64 means no overflow
+ BigUint::from(a as u128 * b as u128) == BigUint::from(a) * BigUint::from(b)
+ }
+
+ fn test_signed_mul_primitive(a: i64, b: i64) -> bool {
+ //maximum value of i64 means no overflow
+ BigInt::from(a as i128 * b as i128) == BigInt::from(a) * BigInt::from(b)
+ }
+
+ fn test_unsigned_sub_primitive(a: u128, b: u128) -> bool {
+ if b < a {
+ BigUint::from(a - b) == BigUint::from(a) - BigUint::from(b)
+ } else {
+ BigUint::from(b - a) == BigUint::from(b) - BigUint::from(a)
+ }
+ }
+
+ fn test_signed_sub_primitive(a: i128, b: i128) -> bool {
+ if b < a {
+ BigInt::from(a - b) == BigInt::from(a) - BigInt::from(b)
+ } else {
+ BigInt::from(b - a) == BigInt::from(b) - BigInt::from(a)
+ }
+ }
+
+ fn test_unsigned_div_primitive(a: u128, b: u128) -> TestResult {
+ if b == 0 {
+ TestResult::discard()
+ } else {
+ TestResult::from_bool(BigUint::from(a / b) == BigUint::from(a) / BigUint::from(b))
+ }
+ }
+
+ fn test_signed_div_primitive(a: i128, b: i128) -> TestResult {
+ if b == 0 {
+ TestResult::discard()
+ } else {
+ TestResult::from_bool(BigInt::from(a / b) == BigInt::from(a) / BigInt::from(b))
+ }
+ }
+
+ qc.quickcheck(test_unsigned_add_primitive as fn(usize, usize) -> TestResult);
+ qc.quickcheck(test_signed_add_primitive as fn(isize, isize) -> TestResult);
+ qc.quickcheck(test_unsigned_mul_primitive as fn(u64, u64) -> bool);
+ qc.quickcheck(test_signed_mul_primitive as fn(i64, i64) -> bool);
+ qc.quickcheck(test_unsigned_sub_primitive as fn(u128, u128) -> bool);
+ qc.quickcheck(test_signed_sub_primitive as fn(i128, i128) -> bool);
+ qc.quickcheck(test_unsigned_div_primitive as fn(u128, u128) -> TestResult);
+ qc.quickcheck(test_signed_div_primitive as fn(i128, i128) -> TestResult);
+}
+
+#[quickcheck]
+fn quickcheck_unsigned_add_commutative(a: BigUint, b: BigUint) -> bool {
+ &a + &b == b + a
+}
+
+#[quickcheck]
+fn quickcheck_signed_add_commutative(a: BigInt, b: BigInt) -> bool {
+ &a + &b == b + a
+}
+
+#[quickcheck]
+fn quickcheck_unsigned_add_zero(a: BigUint) -> bool {
+ a == &a + BigUint::zero()
+}
+
+#[quickcheck]
+fn quickcheck_signed_add_zero(a: BigInt) -> bool {
+ a == &a + BigInt::zero()
+}
+
+#[quickcheck]
+fn quickcheck_unsigned_add_associative(a: BigUint, b: BigUint, c: BigUint) -> bool {
+ (&a + &b) + &c == a + (b + c)
+}
+
+#[quickcheck]
+fn quickcheck_signed_add_associative(a: BigInt, b: BigInt, c: BigInt) -> bool {
+ (&a + &b) + &c == a + (b + c)
+}
+
+#[quickcheck]
+fn quickcheck_unsigned_mul_zero(a: BigUint) -> bool {
+ a * BigUint::zero() == BigUint::zero()
+}
+
+#[quickcheck]
+fn quickcheck_signed_mul_zero(a: BigInt) -> bool {
+ a * BigInt::zero() == BigInt::zero()
+}
+
+#[quickcheck]
+fn quickcheck_unsigned_mul_one(a: BigUint) -> bool {
+ &a * BigUint::one() == a
+}
+
+#[quickcheck]
+fn quickcheck_signed_mul_one(a: BigInt) -> bool {
+ &a * BigInt::one() == a
+}
+
+#[quickcheck]
+fn quickcheck_unsigned_mul_commutative(a: BigUint, b: BigUint) -> bool {
+ &a * &b == b * a
+}
+
+#[quickcheck]
+fn quickcheck_signed_mul_commutative(a: BigInt, b: BigInt) -> bool {
+ &a * &b == b * a
+}
+
+#[quickcheck]
+fn quickcheck_unsigned_mul_associative(a: BigUint, b: BigUint, c: BigUint) -> bool {
+ (&a * &b) * &c == a * (b * c)
+}
+
+#[quickcheck]
+fn quickcheck_signed_mul_associative(a: BigInt, b: BigInt, c: BigInt) -> bool {
+ (&a * &b) * &c == a * (b * c)
+}
+
+#[quickcheck]
+fn quickcheck_unsigned_distributive(a: BigUint, b: BigUint, c: BigUint) -> bool {
+ &a * (&b + &c) == &a * b + a * c
+}
+
+#[quickcheck]
+fn quickcheck_signed_distributive(a: BigInt, b: BigInt, c: BigInt) -> bool {
+ &a * (&b + &c) == &a * b + a * c
+}
+
+#[quickcheck]
+///Tests that exactly one of a<b a>b a=b is true
+fn quickcheck_unsigned_ge_le_eq_mut_exclusive(a: BigUint, b: BigUint) -> bool {
+ let gt_lt_eq = vec![a > b, a < b, a == b];
+ gt_lt_eq
+ .iter()
+ .fold(0, |acc, e| if *e { acc + 1 } else { acc })
+ == 1
+}
+
+#[quickcheck]
+///Tests that exactly one of a<b a>b a=b is true
+fn quickcheck_signed_ge_le_eq_mut_exclusive(a: BigInt, b: BigInt) -> bool {
+ let gt_lt_eq = vec![a > b, a < b, a == b];
+ gt_lt_eq
+ .iter()
+ .fold(0, |acc, e| if *e { acc + 1 } else { acc })
+ == 1
+}
+
+#[quickcheck]
+/// Tests correctness of subtraction assuming addition is correct
+fn quickcheck_unsigned_sub(a: BigUint, b: BigUint) -> bool {
+ if b < a {
+ &a - &b + b == a
+ } else {
+ &b - &a + a == b
+ }
+}
+
+#[quickcheck]
+/// Tests correctness of subtraction assuming addition is correct
+fn quickcheck_signed_sub(a: BigInt, b: BigInt) -> bool {
+ if b < a {
+ &a - &b + b == a
+ } else {
+ &b - &a + a == b
+ }
+}
+
+#[quickcheck]
+fn quickcheck_unsigned_pow_zero(a: BigUint) -> bool {
+ a.pow(0_u32) == BigUint::one()
+}
+
+#[quickcheck]
+fn quickcheck_unsigned_pow_one(a: BigUint) -> bool {
+ a.pow(1_u32) == a
+}
+
+#[quickcheck]
+fn quickcheck_unsigned_sqrt(a: BigUint) -> bool {
+ (&a * &a).sqrt() == a
+}
+
+#[quickcheck]
+fn quickcheck_unsigned_cbrt(a: BigUint) -> bool {
+ (&a * &a * &a).cbrt() == a
+}
+
+#[quickcheck]
+fn quickcheck_signed_cbrt(a: BigInt) -> bool {
+ (&a * &a * &a).cbrt() == a
+}
+
+#[quickcheck]
+fn quickcheck_unsigned_conversion(a: BigUint, radix: u8) -> TestResult {
+ let radix = radix as u32;
+ if radix > 36 || radix < 2 {
+ return TestResult::discard();
+ }
+ let string = a.to_str_radix(radix);
+ TestResult::from_bool(a == BigUint::from_str_radix(&string, radix).unwrap())
+}
+
+#[quickcheck]
+fn quickcheck_signed_conversion(a: BigInt, radix: u8) -> TestResult {
+ let radix = radix as u32;
+ if radix > 36 || radix < 2 {
+ return TestResult::discard();
+ }
+ let string = a.to_str_radix(radix);
+ TestResult::from_bool(a == BigInt::from_str_radix(&string, radix).unwrap())
+}
+
+#[test]
+fn quicktest_shift() {
+ let gen = StdThreadGen::new(usize::max_value());
+ let mut qc = QuickCheck::with_gen(gen);
+
+ fn test_shr_unsigned(a: u64, shift: u8) -> TestResult {
+ let shift = (shift % 64) as usize; //shift at most 64 bits
+ let big_a = BigUint::from(a);
+ TestResult::from_bool(BigUint::from(a >> shift) == big_a >> shift)
+ }
+
+ fn test_shr_signed(a: i64, shift: u8) -> TestResult {
+ let shift = (shift % 64) as usize; //shift at most 64 bits
+ let big_a = BigInt::from(a);
+ TestResult::from_bool(BigInt::from(a >> shift) == big_a >> shift)
+ }
+
+ fn test_shl_unsigned(a: u32, shift: u8) -> TestResult {
+ let shift = (shift % 32) as usize; //shift at most 32 bits
+ let a = a as u64; //leave room for the shifted bits
+ let big_a = BigUint::from(a);
+ TestResult::from_bool(BigUint::from(a >> shift) == big_a >> shift)
+ }
+
+ fn test_shl_signed(a: i32, shift: u8) -> TestResult {
+ let shift = (shift % 32) as usize;
+ let a = a as u64; //leave room for the shifted bits
+ let big_a = BigInt::from(a);
+ TestResult::from_bool(BigInt::from(a >> shift) == big_a >> shift)
+ }
+
+ qc.quickcheck(test_shr_unsigned as fn(u64, u8) -> TestResult);
+ qc.quickcheck(test_shr_signed as fn(i64, u8) -> TestResult);
+ qc.quickcheck(test_shl_unsigned as fn(u32, u8) -> TestResult);
+ qc.quickcheck(test_shl_signed as fn(i32, u8) -> TestResult);
+}
diff --git a/third_party/rust/num-bigint/tests/rand.rs b/third_party/rust/num-bigint/tests/rand.rs
new file mode 100644
index 0000000000..666b764d79
--- /dev/null
+++ b/third_party/rust/num-bigint/tests/rand.rs
@@ -0,0 +1,324 @@
+#![cfg(feature = "rand")]
+
+extern crate num_bigint;
+extern crate num_traits;
+extern crate rand;
+
+mod biguint {
+ use num_bigint::{BigUint, RandBigInt, RandomBits};
+ use num_traits::Zero;
+ use rand::distributions::Uniform;
+ use rand::thread_rng;
+ use rand::{Rng, SeedableRng};
+
+ #[test]
+ fn test_rand() {
+ let mut rng = thread_rng();
+ let n: BigUint = rng.gen_biguint(137);
+ assert!(n.bits() <= 137);
+ assert!(rng.gen_biguint(0).is_zero());
+ }
+
+ #[test]
+ fn test_rand_bits() {
+ let mut rng = thread_rng();
+ let n: BigUint = rng.sample(&RandomBits::new(137));
+ assert!(n.bits() <= 137);
+ let z: BigUint = rng.sample(&RandomBits::new(0));
+ assert!(z.is_zero());
+ }
+
+ #[test]
+ fn test_rand_range() {
+ let mut rng = thread_rng();
+
+ for _ in 0..10 {
+ assert_eq!(
+ rng.gen_biguint_range(&BigUint::from(236u32), &BigUint::from(237u32)),
+ BigUint::from(236u32)
+ );
+ }
+
+ let l = BigUint::from(403469000u32 + 2352);
+ let u = BigUint::from(403469000u32 + 3513);
+ for _ in 0..1000 {
+ let n: BigUint = rng.gen_biguint_below(&u);
+ assert!(n < u);
+
+ let n: BigUint = rng.gen_biguint_range(&l, &u);
+ assert!(n >= l);
+ assert!(n < u);
+ }
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_zero_rand_range() {
+ thread_rng().gen_biguint_range(&BigUint::from(54u32), &BigUint::from(54u32));
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_negative_rand_range() {
+ let mut rng = thread_rng();
+ let l = BigUint::from(2352u32);
+ let u = BigUint::from(3513u32);
+ // Switching u and l should fail:
+ let _n: BigUint = rng.gen_biguint_range(&u, &l);
+ }
+
+ #[test]
+ fn test_rand_uniform() {
+ let mut rng = thread_rng();
+
+ let tiny = Uniform::new(BigUint::from(236u32), BigUint::from(237u32));
+ for _ in 0..10 {
+ assert_eq!(rng.sample(&tiny), BigUint::from(236u32));
+ }
+
+ let l = BigUint::from(403469000u32 + 2352);
+ let u = BigUint::from(403469000u32 + 3513);
+ let below = Uniform::new(BigUint::zero(), u.clone());
+ let range = Uniform::new(l.clone(), u.clone());
+ for _ in 0..1000 {
+ let n: BigUint = rng.sample(&below);
+ assert!(n < u);
+
+ let n: BigUint = rng.sample(&range);
+ assert!(n >= l);
+ assert!(n < u);
+ }
+ }
+
+ fn seeded_value_stability<R: SeedableRng + RandBigInt>(expected: &[&str]) {
+ let mut seed = <R::Seed>::default();
+ for (i, x) in seed.as_mut().iter_mut().enumerate() {
+ *x = (i as u8).wrapping_mul(191);
+ }
+ let mut rng = R::from_seed(seed);
+ for (i, &s) in expected.iter().enumerate() {
+ let n: BigUint = s.parse().unwrap();
+ let r = rng.gen_biguint((1 << i) + i);
+ assert_eq!(n, r);
+ }
+ }
+
+ #[test]
+ fn test_chacha_value_stability() {
+ const EXPECTED: &[&str] = &[
+ "0",
+ "0",
+ "52",
+ "84",
+ "23780",
+ "86502865016",
+ "187057847319509867386",
+ "34045731223080904464438757488196244981910",
+ "23813754422987836414755953516143692594193066497413249270287126597896871975915808",
+ "57401636903146945411652549098818446911814352529449356393690984105383482703074355\
+ 67088360974672291353736011718191813678720755501317478656550386324355699624671",
+ ];
+ use rand::prng::ChaChaRng;
+ seeded_value_stability::<ChaChaRng>(EXPECTED);
+ }
+
+ #[test]
+ fn test_isaac_value_stability() {
+ const EXPECTED: &[&str] = &[
+ "1",
+ "4",
+ "3",
+ "649",
+ "89116",
+ "7730042024",
+ "20773149082453254949",
+ "35999009049239918667571895439206839620281",
+ "10191757312714088681302309313551624007714035309632506837271600807524767413673006",
+ "37805949268912387809989378008822038725134260145886913321084097194957861133272558\
+ 43458183365174899239251448892645546322463253898288141861183340823194379722556",
+ ];
+ use rand::prng::IsaacRng;
+ seeded_value_stability::<IsaacRng>(EXPECTED);
+ }
+
+ #[test]
+ fn test_xorshift_value_stability() {
+ const EXPECTED: &[&str] = &[
+ "1",
+ "0",
+ "37",
+ "395",
+ "181116",
+ "122718231117",
+ "1068467172329355695001",
+ "28246925743544411614293300167064395633287",
+ "12750053187017853048648861493745244146555950255549630854523304068318587267293038",
+ "53041498719137109355568081064978196049094604705283682101683207799515709404788873\
+ 53417136457745727045473194367732849819278740266658219147356315674940229288531",
+ ];
+ use rand::prng::XorShiftRng;
+ seeded_value_stability::<XorShiftRng>(EXPECTED);
+ }
+}
+
+mod bigint {
+ use num_bigint::{BigInt, RandBigInt, RandomBits};
+ use num_traits::Zero;
+ use rand::distributions::Uniform;
+ use rand::thread_rng;
+ use rand::{Rng, SeedableRng};
+
+ #[test]
+ fn test_rand() {
+ let mut rng = thread_rng();
+ let n: BigInt = rng.gen_bigint(137);
+ assert!(n.bits() <= 137);
+ assert!(rng.gen_bigint(0).is_zero());
+ }
+
+ #[test]
+ fn test_rand_bits() {
+ let mut rng = thread_rng();
+ let n: BigInt = rng.sample(&RandomBits::new(137));
+ assert!(n.bits() <= 137);
+ let z: BigInt = rng.sample(&RandomBits::new(0));
+ assert!(z.is_zero());
+ }
+
+ #[test]
+ fn test_rand_range() {
+ let mut rng = thread_rng();
+
+ for _ in 0..10 {
+ assert_eq!(
+ rng.gen_bigint_range(&BigInt::from(236), &BigInt::from(237)),
+ BigInt::from(236)
+ );
+ }
+
+ fn check(l: BigInt, u: BigInt) {
+ let mut rng = thread_rng();
+ for _ in 0..1000 {
+ let n: BigInt = rng.gen_bigint_range(&l, &u);
+ assert!(n >= l);
+ assert!(n < u);
+ }
+ }
+ let l: BigInt = BigInt::from(403469000 + 2352);
+ let u: BigInt = BigInt::from(403469000 + 3513);
+ check(l.clone(), u.clone());
+ check(-l.clone(), u.clone());
+ check(-u.clone(), -l.clone());
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_zero_rand_range() {
+ thread_rng().gen_bigint_range(&BigInt::from(54), &BigInt::from(54));
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_negative_rand_range() {
+ let mut rng = thread_rng();
+ let l = BigInt::from(2352);
+ let u = BigInt::from(3513);
+ // Switching u and l should fail:
+ let _n: BigInt = rng.gen_bigint_range(&u, &l);
+ }
+
+ #[test]
+ fn test_rand_uniform() {
+ let mut rng = thread_rng();
+
+ let tiny = Uniform::new(BigInt::from(236u32), BigInt::from(237u32));
+ for _ in 0..10 {
+ assert_eq!(rng.sample(&tiny), BigInt::from(236u32));
+ }
+
+ fn check(l: BigInt, u: BigInt) {
+ let mut rng = thread_rng();
+ let range = Uniform::new(l.clone(), u.clone());
+ for _ in 0..1000 {
+ let n: BigInt = rng.sample(&range);
+ assert!(n >= l);
+ assert!(n < u);
+ }
+ }
+ let l: BigInt = BigInt::from(403469000 + 2352);
+ let u: BigInt = BigInt::from(403469000 + 3513);
+ check(l.clone(), u.clone());
+ check(-l.clone(), u.clone());
+ check(-u.clone(), -l.clone());
+ }
+
+ fn seeded_value_stability<R: SeedableRng + RandBigInt>(expected: &[&str]) {
+ let mut seed = <R::Seed>::default();
+ for (i, x) in seed.as_mut().iter_mut().enumerate() {
+ *x = (i as u8).wrapping_mul(191);
+ }
+ let mut rng = R::from_seed(seed);
+ for (i, &s) in expected.iter().enumerate() {
+ let n: BigInt = s.parse().unwrap();
+ let r = rng.gen_bigint((1 << i) + i);
+ assert_eq!(n, r);
+ }
+ }
+
+ #[test]
+ fn test_chacha_value_stability() {
+ const EXPECTED: &[&str] = &[
+ "0",
+ "-6",
+ "-1",
+ "1321",
+ "-147247",
+ "8486373526",
+ "-272736656290199720696",
+ "2731152629387534140535423510744221288522",
+ "-28820024790651190394679732038637785320661450462089347915910979466834461433196572",
+ "501454570554170484799723603981439288209930393334472085317977614690773821680884844\
+ 8530978478667288338327570972869032358120588620346111979053742269317702532328",
+ ];
+ use rand::prng::ChaChaRng;
+ seeded_value_stability::<ChaChaRng>(EXPECTED);
+ }
+
+ #[test]
+ fn test_isaac_value_stability() {
+ const EXPECTED: &[&str] = &[
+ "1",
+ "0",
+ "5",
+ "113",
+ "-132240",
+ "-36348760761",
+ "-365690596708430705434",
+ "-14090753008246284277803606722552430292432",
+ "-26313941628626248579319341019368550803676255307056857978955881718727601479436059",
+ "-14563174552421101848999036239003801073335703811160945137332228646111920972691151\
+ 88341090358094331641182310792892459091016794928947242043358702692294695845817",
+ ];
+ use rand::prng::IsaacRng;
+ seeded_value_stability::<IsaacRng>(EXPECTED);
+ }
+
+ #[test]
+ fn test_xorshift_value_stability() {
+ const EXPECTED: &[&str] = &[
+ "-1",
+ "-4",
+ "11",
+ "-1802",
+ "966495",
+ "-62592045703",
+ "-602281783447192077116",
+ "-34335811410223060575607987996861632509125",
+ "29156580925282215857325937227200350542000244609280383263289720243118706105351199",
+ "49920038676141573457451407325930326489996232208489690499754573826911037849083623\
+ 24546142615325187412887314466195222441945661833644117700809693098722026764846",
+ ];
+ use rand::prng::XorShiftRng;
+ seeded_value_stability::<XorShiftRng>(EXPECTED);
+ }
+}
diff --git a/third_party/rust/num-bigint/tests/roots.rs b/third_party/rust/num-bigint/tests/roots.rs
new file mode 100644
index 0000000000..39201fa928
--- /dev/null
+++ b/third_party/rust/num-bigint/tests/roots.rs
@@ -0,0 +1,186 @@
+extern crate num_bigint;
+extern crate num_integer;
+extern crate num_traits;
+
+#[cfg(feature = "rand")]
+extern crate rand;
+
+mod biguint {
+ use num_bigint::BigUint;
+ use num_traits::{One, Pow, Zero};
+ use std::{i32, u32};
+
+ fn check<T: Into<BigUint>>(x: T, n: u32) {
+ let x: BigUint = x.into();
+ let root = x.nth_root(n);
+ println!("check {}.nth_root({}) = {}", x, n, root);
+
+ if n == 2 {
+ assert_eq!(root, x.sqrt())
+ } else if n == 3 {
+ assert_eq!(root, x.cbrt())
+ }
+
+ let lo = root.pow(n);
+ assert!(lo <= x);
+ assert_eq!(lo.nth_root(n), root);
+ if !lo.is_zero() {
+ assert_eq!((&lo - 1u32).nth_root(n), &root - 1u32);
+ }
+
+ let hi = (&root + 1u32).pow(n);
+ assert!(hi > x);
+ assert_eq!(hi.nth_root(n), &root + 1u32);
+ assert_eq!((&hi - 1u32).nth_root(n), root);
+ }
+
+ #[test]
+ fn test_sqrt() {
+ check(99u32, 2);
+ check(100u32, 2);
+ check(120u32, 2);
+ }
+
+ #[test]
+ fn test_cbrt() {
+ check(8u32, 3);
+ check(26u32, 3);
+ }
+
+ #[test]
+ fn test_nth_root() {
+ check(0u32, 1);
+ check(10u32, 1);
+ check(100u32, 4);
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_nth_root_n_is_zero() {
+ check(4u32, 0);
+ }
+
+ #[test]
+ fn test_nth_root_big() {
+ let x = BigUint::from(123_456_789_u32);
+ let expected = BigUint::from(6u32);
+
+ assert_eq!(x.nth_root(10), expected);
+ check(x, 10);
+ }
+
+ #[test]
+ fn test_nth_root_googol() {
+ let googol = BigUint::from(10u32).pow(100u32);
+
+ // perfect divisors of 100
+ for &n in &[2, 4, 5, 10, 20, 25, 50, 100] {
+ let expected = BigUint::from(10u32).pow(100u32 / n);
+ assert_eq!(googol.nth_root(n), expected);
+ check(googol.clone(), n);
+ }
+ }
+
+ #[test]
+ fn test_nth_root_twos() {
+ const EXP: u32 = 12;
+ const LOG2: usize = 1 << EXP;
+ let x = BigUint::one() << LOG2;
+
+ // the perfect divisors are just powers of two
+ for exp in 1..EXP + 1 {
+ let n = 2u32.pow(exp);
+ let expected = BigUint::one() << (LOG2 / n as usize);
+ assert_eq!(x.nth_root(n), expected);
+ check(x.clone(), n);
+ }
+
+ // degenerate cases should return quickly
+ assert!(x.nth_root(x.bits() as u32).is_one());
+ assert!(x.nth_root(i32::MAX as u32).is_one());
+ assert!(x.nth_root(u32::MAX).is_one());
+ }
+
+ #[cfg(feature = "rand")]
+ #[test]
+ fn test_roots_rand() {
+ use num_bigint::RandBigInt;
+ use rand::distributions::Uniform;
+ use rand::{thread_rng, Rng};
+
+ let mut rng = thread_rng();
+ let bit_range = Uniform::new(0, 2048);
+ let sample_bits: Vec<_> = rng.sample_iter(&bit_range).take(100).collect();
+ for bits in sample_bits {
+ let x = rng.gen_biguint(bits);
+ for n in 2..11 {
+ check(x.clone(), n);
+ }
+ check(x.clone(), 100);
+ }
+ }
+
+ #[test]
+ fn test_roots_rand1() {
+ // A random input that found regressions
+ let s = "575981506858479247661989091587544744717244516135539456183849\
+ 986593934723426343633698413178771587697273822147578889823552\
+ 182702908597782734558103025298880194023243541613924361007059\
+ 353344183590348785832467726433749431093350684849462759540710\
+ 026019022227591412417064179299354183441181373862905039254106\
+ 4781867";
+ let x: BigUint = s.parse().unwrap();
+
+ check(x.clone(), 2);
+ check(x.clone(), 3);
+ check(x.clone(), 10);
+ check(x.clone(), 100);
+ }
+}
+
+mod bigint {
+ use num_bigint::BigInt;
+ use num_traits::{Pow, Signed};
+
+ fn check(x: i64, n: u32) {
+ let big_x = BigInt::from(x);
+ let res = big_x.nth_root(n);
+
+ if n == 2 {
+ assert_eq!(&res, &big_x.sqrt())
+ } else if n == 3 {
+ assert_eq!(&res, &big_x.cbrt())
+ }
+
+ if big_x.is_negative() {
+ assert!(res.pow(n) >= big_x);
+ assert!((res - 1u32).pow(n) < big_x);
+ } else {
+ assert!(res.pow(n) <= big_x);
+ assert!((res + 1u32).pow(n) > big_x);
+ }
+ }
+
+ #[test]
+ fn test_nth_root() {
+ check(-100, 3);
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_nth_root_x_neg_n_even() {
+ check(-100, 4);
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_sqrt_x_neg() {
+ check(-4, 2);
+ }
+
+ #[test]
+ fn test_cbrt() {
+ check(8, 3);
+ check(-8, 3);
+ }
+}
diff --git a/third_party/rust/num-bigint/tests/serde.rs b/third_party/rust/num-bigint/tests/serde.rs
new file mode 100644
index 0000000000..0f3d4868ed
--- /dev/null
+++ b/third_party/rust/num-bigint/tests/serde.rs
@@ -0,0 +1,103 @@
+//! Test serialization and deserialization of `BigUint` and `BigInt`
+//!
+//! The serialized formats should not change, even if we change our
+//! internal representation, because we want to preserve forward and
+//! backward compatibility of serialized data!
+
+#![cfg(feature = "serde")]
+
+extern crate num_bigint;
+extern crate num_traits;
+extern crate serde_test;
+
+use num_bigint::{BigInt, BigUint};
+use num_traits::{One, Zero};
+use serde_test::{assert_tokens, Token};
+
+#[test]
+fn biguint_zero() {
+ let tokens = [Token::Seq { len: Some(0) }, Token::SeqEnd];
+ assert_tokens(&BigUint::zero(), &tokens);
+}
+
+#[test]
+fn bigint_zero() {
+ let tokens = [
+ Token::Tuple { len: 2 },
+ Token::I8(0),
+ Token::Seq { len: Some(0) },
+ Token::SeqEnd,
+ Token::TupleEnd,
+ ];
+ assert_tokens(&BigInt::zero(), &tokens);
+}
+
+#[test]
+fn biguint_one() {
+ let tokens = [Token::Seq { len: Some(1) }, Token::U32(1), Token::SeqEnd];
+ assert_tokens(&BigUint::one(), &tokens);
+}
+
+#[test]
+fn bigint_one() {
+ let tokens = [
+ Token::Tuple { len: 2 },
+ Token::I8(1),
+ Token::Seq { len: Some(1) },
+ Token::U32(1),
+ Token::SeqEnd,
+ Token::TupleEnd,
+ ];
+ assert_tokens(&BigInt::one(), &tokens);
+}
+
+#[test]
+fn bigint_negone() {
+ let tokens = [
+ Token::Tuple { len: 2 },
+ Token::I8(-1),
+ Token::Seq { len: Some(1) },
+ Token::U32(1),
+ Token::SeqEnd,
+ Token::TupleEnd,
+ ];
+ assert_tokens(&-BigInt::one(), &tokens);
+}
+
+// Generated independently from python `hex(factorial(100))`
+const FACTORIAL_100: &'static [u32] = &[
+ 0x00000000, 0x00000000, 0x00000000, 0x2735c61a, 0xee8b02ea, 0xb3b72ed2, 0x9420c6ec, 0x45570cca,
+ 0xdf103917, 0x943a321c, 0xeb21b5b2, 0x66ef9a70, 0xa40d16e9, 0x28d54bbd, 0xdc240695, 0x964ec395,
+ 0x1b30,
+];
+
+#[test]
+fn biguint_factorial_100() {
+ let n: BigUint = (1u8..101).product();
+
+ let mut tokens = vec![];
+ tokens.push(Token::Seq {
+ len: Some(FACTORIAL_100.len()),
+ });
+ tokens.extend(FACTORIAL_100.iter().map(|&u| Token::U32(u)));
+ tokens.push(Token::SeqEnd);
+
+ assert_tokens(&n, &tokens);
+}
+
+#[test]
+fn bigint_factorial_100() {
+ let n: BigInt = (1i8..101).product();
+
+ let mut tokens = vec![];
+ tokens.push(Token::Tuple { len: 2 });
+ tokens.push(Token::I8(1));
+ tokens.push(Token::Seq {
+ len: Some(FACTORIAL_100.len()),
+ });
+ tokens.extend(FACTORIAL_100.iter().map(|&u| Token::U32(u)));
+ tokens.push(Token::SeqEnd);
+ tokens.push(Token::TupleEnd);
+
+ assert_tokens(&n, &tokens);
+}
diff --git a/third_party/rust/num-bigint/tests/torture.rs b/third_party/rust/num-bigint/tests/torture.rs
new file mode 100644
index 0000000000..4f073d31d9
--- /dev/null
+++ b/third_party/rust/num-bigint/tests/torture.rs
@@ -0,0 +1,43 @@
+#![cfg(feature = "rand")]
+
+extern crate num_bigint;
+extern crate num_traits;
+extern crate rand;
+
+use num_bigint::RandBigInt;
+use num_traits::Zero;
+use rand::prelude::*;
+
+fn test_mul_divide_torture_count(count: usize) {
+ let bits_max = 1 << 12;
+ let seed = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16];
+ let mut rng = SmallRng::from_seed(seed);
+
+ for _ in 0..count {
+ // Test with numbers of random sizes:
+ let xbits = rng.gen_range(0, bits_max);
+ let ybits = rng.gen_range(0, bits_max);
+
+ let x = rng.gen_biguint(xbits);
+ let y = rng.gen_biguint(ybits);
+
+ if x.is_zero() || y.is_zero() {
+ continue;
+ }
+
+ let prod = &x * &y;
+ assert_eq!(&prod / &x, y);
+ assert_eq!(&prod / &y, x);
+ }
+}
+
+#[test]
+fn test_mul_divide_torture() {
+ test_mul_divide_torture_count(1000);
+}
+
+#[test]
+#[ignore]
+fn test_mul_divide_torture_long() {
+ test_mul_divide_torture_count(1000000);
+}