diff options
Diffstat (limited to 'third_party/rust/image/src/imageops/sample.rs')
-rw-r--r-- | third_party/rust/image/src/imageops/sample.rs | 873 |
1 files changed, 873 insertions, 0 deletions
diff --git a/third_party/rust/image/src/imageops/sample.rs b/third_party/rust/image/src/imageops/sample.rs new file mode 100644 index 0000000000..6f8a76da17 --- /dev/null +++ b/third_party/rust/image/src/imageops/sample.rs @@ -0,0 +1,873 @@ +//! Functions and filters for the sampling of pixels. + +// See http://cs.brown.edu/courses/cs123/lectures/08_Image_Processing_IV.pdf +// for some of the theory behind image scaling and convolution + +use std::f32; + +use num_traits::{NumCast, ToPrimitive, Zero}; + +use crate::buffer::{ImageBuffer, Pixel}; +use crate::image::GenericImageView; +use crate::math::utils::clamp; +use crate::traits::{Enlargeable, Primitive}; + +/// Available Sampling Filters. +/// +/// ## Examples +/// +/// To test the different sampling filters on a real example, you can find two +/// examples called +/// [`scaledown`](https://github.com/image-rs/image/tree/master/examples/scaledown) +/// and +/// [`scaleup`](https://github.com/image-rs/image/tree/master/examples/scaleup) +/// in the `examples` directory of the crate source code. +/// +/// Here is a 3.58 MiB +/// [test image](https://github.com/image-rs/image/blob/master/examples/scaledown/test.jpg) +/// that has been scaled down to 300x225 px: +/// +/// <!-- NOTE: To test new test images locally, replace the GitHub path with `../../../docs/` --> +/// <div style="display: flex; flex-wrap: wrap; align-items: flex-start;"> +/// <div style="margin: 0 8px 8px 0;"> +/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-near.png" title="Nearest"><br> +/// Nearest Neighbor +/// </div> +/// <div style="margin: 0 8px 8px 0;"> +/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-tri.png" title="Triangle"><br> +/// Linear: Triangle +/// </div> +/// <div style="margin: 0 8px 8px 0;"> +/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-cmr.png" title="CatmullRom"><br> +/// Cubic: Catmull-Rom +/// </div> +/// <div style="margin: 0 8px 8px 0;"> +/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-gauss.png" title="Gaussian"><br> +/// Gaussian +/// </div> +/// <div style="margin: 0 8px 8px 0;"> +/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-lcz2.png" title="Lanczos3"><br> +/// Lanczos with window 3 +/// </div> +/// </div> +/// +/// ## Speed +/// +/// Time required to create each of the examples above, tested on an Intel +/// i7-4770 CPU with Rust 1.37 in release mode: +/// +/// <table style="width: auto;"> +/// <tr> +/// <th>Nearest</th> +/// <td>31 ms</td> +/// </tr> +/// <tr> +/// <th>Triangle</th> +/// <td>414 ms</td> +/// </tr> +/// <tr> +/// <th>CatmullRom</th> +/// <td>817 ms</td> +/// </tr> +/// <tr> +/// <th>Gaussian</th> +/// <td>1180 ms</td> +/// </tr> +/// <tr> +/// <th>Lanczos3</th> +/// <td>1170 ms</td> +/// </tr> +/// </table> +#[derive(Clone, Copy, Debug)] +pub enum FilterType { + /// Nearest Neighbor + Nearest, + + /// Linear Filter + Triangle, + + /// Cubic Filter + CatmullRom, + + /// Gaussian Filter + Gaussian, + + /// Lanczos with window 3 + Lanczos3, +} + +/// A Representation of a separable filter. +pub(crate) struct Filter<'a> { + /// The filter's filter function. + pub(crate) kernel: Box<dyn Fn(f32) -> f32 + 'a>, + + /// The window on which this filter operates. + pub(crate) support: f32, +} + +// sinc function: the ideal sampling filter. +fn sinc(t: f32) -> f32 { + let a = t * f32::consts::PI; + + if t == 0.0 { + 1.0 + } else { + a.sin() / a + } +} + +// lanczos kernel function. A windowed sinc function. +fn lanczos(x: f32, t: f32) -> f32 { + if x.abs() < t { + sinc(x) * sinc(x / t) + } else { + 0.0 + } +} + +// Calculate a splice based on the b and c parameters. +// from authors Mitchell and Netravali. +fn bc_cubic_spline(x: f32, b: f32, c: f32) -> f32 { + let a = x.abs(); + + let k = if a < 1.0 { + (12.0 - 9.0 * b - 6.0 * c) * a.powi(3) + (-18.0 + 12.0 * b + 6.0 * c) * a.powi(2) + + (6.0 - 2.0 * b) + } else if a < 2.0 { + (-b - 6.0 * c) * a.powi(3) + (6.0 * b + 30.0 * c) * a.powi(2) + (-12.0 * b - 48.0 * c) * a + + (8.0 * b + 24.0 * c) + } else { + 0.0 + }; + + k / 6.0 +} + +/// The Gaussian Function. +/// ```r``` is the standard deviation. +pub(crate) fn gaussian(x: f32, r: f32) -> f32 { + ((2.0 * f32::consts::PI).sqrt() * r).recip() * (-x.powi(2) / (2.0 * r.powi(2))).exp() +} + +/// Calculate the lanczos kernel with a window of 3 +pub(crate) fn lanczos3_kernel(x: f32) -> f32 { + lanczos(x, 3.0) +} + +/// Calculate the gaussian function with a +/// standard deviation of 0.5 +pub(crate) fn gaussian_kernel(x: f32) -> f32 { + gaussian(x, 0.5) +} + +/// Calculate the Catmull-Rom cubic spline. +/// Also known as a form of `BiCubic` sampling in two dimensions. +pub(crate) fn catmullrom_kernel(x: f32) -> f32 { + bc_cubic_spline(x, 0.0, 0.5) +} + +/// Calculate the triangle function. +/// Also known as `BiLinear` sampling in two dimensions. +pub(crate) fn triangle_kernel(x: f32) -> f32 { + if x.abs() < 1.0 { + 1.0 - x.abs() + } else { + 0.0 + } +} + +/// Calculate the box kernel. +/// Only pixels inside the box should be considered, and those +/// contribute equally. So this method simply returns 1. +pub(crate) fn box_kernel(_x: f32) -> f32 { + 1.0 +} + +// Sample the rows of the supplied image using the provided filter. +// The height of the image remains unchanged. +// ```new_width``` is the desired width of the new image +// ```filter``` is the filter to use for sampling. +fn horizontal_sample<I, P, S>( + image: &I, + new_width: u32, + filter: &mut Filter, +) -> ImageBuffer<P, Vec<S>> +where + I: GenericImageView<Pixel = P>, + P: Pixel<Subpixel = S> + 'static, + S: Primitive + 'static, +{ + let (width, height) = image.dimensions(); + let mut out = ImageBuffer::new(new_width, height); + let mut ws = Vec::new(); + + let max: f32 = NumCast::from(S::max_value()).unwrap(); + let ratio = width as f32 / new_width as f32; + let sratio = if ratio < 1.0 { 1.0 } else { ratio }; + let src_support = filter.support * sratio; + + for outx in 0..new_width { + // Find the point in the input image corresponding to the centre + // of the current pixel in the output image. + let inputx = (outx as f32 + 0.5) * ratio; + + // Left and right are slice bounds for the input pixels relevant + // to the output pixel we are calculating. Pixel x is relevant + // if and only if (x >= left) && (x < right). + + // Invariant: 0 <= left < right <= width + + let left = (inputx - src_support).floor() as i64; + let left = clamp(left, 0, <i64 as From<_>>::from(width) - 1) as u32; + + let right = (inputx + src_support).ceil() as i64; + let right = clamp( + right, + <i64 as From<_>>::from(left) + 1, + <i64 as From<_>>::from(width), + ) as u32; + + // Go back to left boundary of pixel, to properly compare with i + // below, as the kernel treats the centre of a pixel as 0. + let inputx = inputx - 0.5; + + ws.clear(); + let mut sum = 0.0; + for i in left..right { + let w = (filter.kernel)((i as f32 - inputx) / sratio); + ws.push(w); + sum += w; + } + + for y in 0..height { + let mut t = (0.0, 0.0, 0.0, 0.0); + + for (i, w) in ws.iter().enumerate() { + let p = image.get_pixel(left + i as u32, y); + + let (k1, k2, k3, k4) = p.channels4(); + let vec: (f32, f32, f32, f32) = ( + NumCast::from(k1).unwrap(), + NumCast::from(k2).unwrap(), + NumCast::from(k3).unwrap(), + NumCast::from(k4).unwrap(), + ); + + t.0 += vec.0 * w; + t.1 += vec.1 * w; + t.2 += vec.2 * w; + t.3 += vec.3 * w; + } + + let (t1, t2, t3, t4) = (t.0 / sum, t.1 / sum, t.2 / sum, t.3 / sum); + let t = Pixel::from_channels( + NumCast::from(clamp(t1, 0.0, max)).unwrap(), + NumCast::from(clamp(t2, 0.0, max)).unwrap(), + NumCast::from(clamp(t3, 0.0, max)).unwrap(), + NumCast::from(clamp(t4, 0.0, max)).unwrap(), + ); + + out.put_pixel(outx, y, t); + } + } + + out +} + +// Sample the columns of the supplied image using the provided filter. +// The width of the image remains unchanged. +// ```new_height``` is the desired height of the new image +// ```filter``` is the filter to use for sampling. +fn vertical_sample<I, P, S>( + image: &I, + new_height: u32, + filter: &mut Filter, +) -> ImageBuffer<P, Vec<S>> +where + I: GenericImageView<Pixel = P>, + P: Pixel<Subpixel = S> + 'static, + S: Primitive + 'static, +{ + let (width, height) = image.dimensions(); + let mut out = ImageBuffer::new(width, new_height); + let mut ws = Vec::new(); + + let max: f32 = NumCast::from(S::max_value()).unwrap(); + let ratio = height as f32 / new_height as f32; + let sratio = if ratio < 1.0 { 1.0 } else { ratio }; + let src_support = filter.support * sratio; + + for outy in 0..new_height { + // For an explanation of this algorithm, see the comments + // in horizontal_sample. + let inputy = (outy as f32 + 0.5) * ratio; + + let left = (inputy - src_support).floor() as i64; + let left = clamp(left, 0, <i64 as From<_>>::from(height) - 1) as u32; + + let right = (inputy + src_support).ceil() as i64; + let right = clamp( + right, + <i64 as From<_>>::from(left) + 1, + <i64 as From<_>>::from(height), + ) as u32; + + let inputy = inputy - 0.5; + + ws.clear(); + let mut sum = 0.0; + for i in left..right { + let w = (filter.kernel)((i as f32 - inputy) / sratio); + ws.push(w); + sum += w; + } + + for x in 0..width { + let mut t = (0.0, 0.0, 0.0, 0.0); + + for (i, w) in ws.iter().enumerate() { + let p = image.get_pixel(x, left + i as u32); + + let (k1, k2, k3, k4) = p.channels4(); + let vec: (f32, f32, f32, f32) = ( + NumCast::from(k1).unwrap(), + NumCast::from(k2).unwrap(), + NumCast::from(k3).unwrap(), + NumCast::from(k4).unwrap(), + ); + + t.0 += vec.0 * w; + t.1 += vec.1 * w; + t.2 += vec.2 * w; + t.3 += vec.3 * w; + } + + let (t1, t2, t3, t4) = (t.0 / sum, t.1 / sum, t.2 / sum, t.3 / sum); + let t = Pixel::from_channels( + NumCast::from(clamp(t1, 0.0, max)).unwrap(), + NumCast::from(clamp(t2, 0.0, max)).unwrap(), + NumCast::from(clamp(t3, 0.0, max)).unwrap(), + NumCast::from(clamp(t4, 0.0, max)).unwrap(), + ); + + out.put_pixel(x, outy, t); + } + } + + out +} + +/// Local struct for keeping track of pixel sums for fast thumbnail averaging +struct ThumbnailSum<S: Primitive + Enlargeable>(S::Larger, S::Larger, S::Larger, S::Larger); + +impl<S: Primitive + Enlargeable> ThumbnailSum<S> { + fn zeroed() -> Self { + ThumbnailSum(S::Larger::zero(), S::Larger::zero(), S::Larger::zero(), S::Larger::zero()) + } + + fn sample_val(val: S) -> S::Larger { + <S::Larger as NumCast>::from(val).unwrap() + } + + fn add_pixel<P: Pixel<Subpixel=S>>(&mut self, pixel: P) { + let pixel = pixel.channels4(); + self.0 += Self::sample_val(pixel.0); + self.1 += Self::sample_val(pixel.1); + self.2 += Self::sample_val(pixel.2); + self.3 += Self::sample_val(pixel.3); + } +} + +/// Resize the supplied image to the specific dimensions. +/// +/// For downscaling, this method uses a fast integer algorithm where each source pixel contributes +/// to exactly one target pixel. May give aliasing artifacts if new size is close to old size. +/// +/// In case the current width is smaller than the new width or similar for the height, another +/// strategy is used instead. For each pixel in the output, a rectangular region of the input is +/// determined, just as previously. But when no input pixel is part of this region, the nearest +/// pixels are interpolated instead. +/// +/// For speed reasons, all interpolation is performed linearly over the colour values. It will not +/// take the pixel colour spaces into account. +pub fn thumbnail<I, P, S>(image: &I, new_width: u32, new_height: u32) -> ImageBuffer<P, Vec<S>> +where + I: GenericImageView<Pixel = P>, + P: Pixel<Subpixel = S> + 'static, + S: Primitive + Enlargeable + 'static, +{ + let (width, height) = image.dimensions(); + let mut out = ImageBuffer::new(new_width, new_height); + + let x_ratio = width as f32 / new_width as f32; + let y_ratio = height as f32 / new_height as f32; + + for outy in 0..new_height { + let bottomf = outy as f32 * y_ratio; + let topf = bottomf + y_ratio; + + let bottom = clamp( + bottomf.ceil() as u32, + 0, + height - 1, + ); + let top = clamp( + topf.ceil() as u32, + bottom, + height, + ); + + for outx in 0..new_width { + let leftf = outx as f32 * x_ratio; + let rightf = leftf + x_ratio; + + let left = clamp( + leftf.ceil() as u32, + 0, + width - 1, + ); + let right = clamp( + rightf.ceil() as u32, + left, + width, + ); + + let avg = if bottom != top && left != right { + thumbnail_sample_block(image, left, right, bottom, top) + } else if bottom != top { // && left == right + // In the first column we have left == 0 and right > ceil(y_scale) > 0 so this + // assertion can never trigger. + debug_assert!(left > 0 && right > 0, + "First output column must have corresponding pixels"); + + let fraction_horizontal = (leftf.fract() + rightf.fract())/2.; + thumbnail_sample_fraction_horizontal(image, right - 1, fraction_horizontal, bottom, top) + } else if left != right { // && bottom == top + // In the first line we have bottom == 0 and top > ceil(x_scale) > 0 so this + // assertion can never trigger. + debug_assert!(bottom > 0 && top > 0, + "First output row must have corresponding pixels"); + + let fraction_vertical = (topf.fract() + bottomf.fract())/2.; + thumbnail_sample_fraction_vertical(image, left, right, top - 1, fraction_vertical) + } else { // bottom == top && left == right + let fraction_horizontal = (topf.fract() + bottomf.fract())/2.; + let fraction_vertical= (leftf.fract() + rightf.fract())/2.; + + thumbnail_sample_fraction_both(image, right - 1, fraction_horizontal, top - 1, fraction_vertical) + }; + + let pixel = Pixel::from_channels(avg.0, avg.1, avg.2, avg.3); + out.put_pixel(outx, outy, pixel); + } + } + + out +} + +/// Get a pixel for a thumbnail where the input window encloses at least a full pixel. +fn thumbnail_sample_block<I, P, S>( + image: &I, + left: u32, + right: u32, + bottom: u32, + top: u32, +) -> (S, S, S, S) +where + I: GenericImageView<Pixel = P>, + P: Pixel<Subpixel = S>, + S: Primitive + Enlargeable, +{ + let mut sum = ThumbnailSum::zeroed(); + + for y in bottom..top { + for x in left..right { + let k = image.get_pixel(x, y); + sum.add_pixel(k); + } + } + + let n = <S::Larger as NumCast>::from( + (right - left) * (top - bottom)).unwrap(); + let round = <S::Larger as NumCast>::from( + n / NumCast::from(2).unwrap()).unwrap(); + ( + S::clamp_from((sum.0 + round)/n), + S::clamp_from((sum.1 + round)/n), + S::clamp_from((sum.2 + round)/n), + S::clamp_from((sum.3 + round)/n), + ) +} + +/// Get a thumbnail pixel where the input window encloses at least a vertical pixel. +fn thumbnail_sample_fraction_horizontal<I, P, S>( + image: &I, + left: u32, + fraction_horizontal: f32, + bottom: u32, + top: u32, +) -> (S, S, S, S) +where + I: GenericImageView<Pixel = P>, + P: Pixel<Subpixel = S>, + S: Primitive + Enlargeable, +{ + let fract = fraction_horizontal; + + let mut sum_left = ThumbnailSum::zeroed(); + let mut sum_right = ThumbnailSum::zeroed(); + for x in bottom..top { + let k_left = image.get_pixel(left, x); + sum_left.add_pixel(k_left); + + let k_right = image.get_pixel(left + 1, x); + sum_right.add_pixel(k_right); + } + + // Now we approximate: left/n*(1-fract) + right/n*fract + let fact_right = fract /((top - bottom) as f32); + let fact_left = (1. - fract)/((top - bottom) as f32); + + let mix_left_and_right = |leftv: S::Larger, rightv: S::Larger| + <S as NumCast>::from( + fact_left * leftv.to_f32().unwrap() + + fact_right * rightv.to_f32().unwrap() + ).expect("Average sample value should fit into sample type"); + + ( + mix_left_and_right(sum_left.0, sum_right.0), + mix_left_and_right(sum_left.1, sum_right.1), + mix_left_and_right(sum_left.2, sum_right.2), + mix_left_and_right(sum_left.3, sum_right.3), + ) +} + +/// Get a thumbnail pixel where the input window encloses at least a horizontal pixel. +fn thumbnail_sample_fraction_vertical<I, P, S>( + image: &I, + left: u32, + right: u32, + bottom: u32, + fraction_vertical: f32, +) -> (S, S, S, S) +where + I: GenericImageView<Pixel = P>, + P: Pixel<Subpixel = S>, + S: Primitive + Enlargeable, +{ + let fract = fraction_vertical; + + let mut sum_bot = ThumbnailSum::zeroed(); + let mut sum_top = ThumbnailSum::zeroed(); + for x in left..right { + let k_bot = image.get_pixel(x, bottom); + sum_bot.add_pixel(k_bot); + + let k_top = image.get_pixel(x, bottom + 1); + sum_top.add_pixel(k_top); + } + + // Now we approximate: bot/n*fract + top/n*(1-fract) + let fact_top = fract /((right - left) as f32); + let fact_bot = (1. - fract)/((right - left) as f32); + + let mix_bot_and_top = |botv: S::Larger, topv: S::Larger| + <S as NumCast>::from( + fact_bot * botv.to_f32().unwrap() + + fact_top * topv.to_f32().unwrap() + ).expect("Average sample value should fit into sample type"); + + ( + mix_bot_and_top(sum_bot.0, sum_top.0), + mix_bot_and_top(sum_bot.1, sum_top.1), + mix_bot_and_top(sum_bot.2, sum_top.2), + mix_bot_and_top(sum_bot.3, sum_top.3), + ) +} + +/// Get a single pixel for a thumbnail where the input window does not enclose any full pixel. +fn thumbnail_sample_fraction_both<I, P, S>( + image: &I, + left: u32, + fraction_vertical: f32, + bottom: u32, + fraction_horizontal: f32, +) -> (S, S, S, S) +where + I: GenericImageView<Pixel = P>, + P: Pixel<Subpixel = S>, + S: Primitive + Enlargeable, +{ + let k_bl = image.get_pixel(left, bottom ).channels4(); + let k_tl = image.get_pixel(left, bottom + 1).channels4(); + let k_br = image.get_pixel(left + 1, bottom ).channels4(); + let k_tr = image.get_pixel(left + 1, bottom + 1).channels4(); + + let frac_v = fraction_vertical; + let frac_h = fraction_horizontal; + + let fact_tr = frac_v * frac_h; + let fact_tl = frac_v * (1. - frac_h); + let fact_br = (1. - frac_v) * frac_h; + let fact_bl = (1. - frac_v) * (1. - frac_h); + + let mix = |br: S, tr: S, bl: S, tl: S| + <S as NumCast>::from( + fact_br * br.to_f32().unwrap() + + fact_tr * tr.to_f32().unwrap() + + fact_bl * bl.to_f32().unwrap() + + fact_tl * tl.to_f32().unwrap() + ).expect("Average sample value should fit into sample type"); + + ( + mix(k_br.0, k_tr.0, k_bl.0, k_tl.0), + mix(k_br.1, k_tr.1, k_bl.1, k_tl.1), + mix(k_br.2, k_tr.2, k_bl.2, k_tl.2), + mix(k_br.3, k_tr.3, k_bl.3, k_tl.3), + ) +} + +/// Perform a 3x3 box filter on the supplied image. +/// ```kernel``` is an array of the filter weights of length 9. +pub fn filter3x3<I, P, S>(image: &I, kernel: &[f32]) -> ImageBuffer<P, Vec<S>> +where + I: GenericImageView<Pixel = P>, + P: Pixel<Subpixel = S> + 'static, + S: Primitive + 'static, +{ + // The kernel's input positions relative to the current pixel. + let taps: &[(isize, isize)] = &[ + (-1, -1), + (0, -1), + (1, -1), + (-1, 0), + (0, 0), + (1, 0), + (-1, 1), + (0, 1), + (1, 1), + ]; + + let (width, height) = image.dimensions(); + + let mut out = ImageBuffer::new(width, height); + + let max = S::max_value(); + let max: f32 = NumCast::from(max).unwrap(); + + let sum = match kernel.iter().fold(0.0, |s, &item| s + item) { + x if x == 0.0 => 1.0, + sum => sum, + }; + let sum = (sum, sum, sum, sum); + + for y in 1..height - 1 { + for x in 1..width - 1 { + let mut t = (0.0, 0.0, 0.0, 0.0); + + // TODO: There is no need to recalculate the kernel for each pixel. + // Only a subtract and addition is needed for pixels after the first + // in each row. + for (&k, &(a, b)) in kernel.iter().zip(taps.iter()) { + let k = (k, k, k, k); + let x0 = x as isize + a; + let y0 = y as isize + b; + + let p = image.get_pixel(x0 as u32, y0 as u32); + + let (k1, k2, k3, k4) = p.channels4(); + + let vec: (f32, f32, f32, f32) = ( + NumCast::from(k1).unwrap(), + NumCast::from(k2).unwrap(), + NumCast::from(k3).unwrap(), + NumCast::from(k4).unwrap(), + ); + + t.0 += vec.0 * k.0; + t.1 += vec.1 * k.1; + t.2 += vec.2 * k.2; + t.3 += vec.3 * k.3; + } + + let (t1, t2, t3, t4) = (t.0 / sum.0, t.1 / sum.1, t.2 / sum.2, t.3 / sum.3); + + let t = Pixel::from_channels( + NumCast::from(clamp(t1, 0.0, max)).unwrap(), + NumCast::from(clamp(t2, 0.0, max)).unwrap(), + NumCast::from(clamp(t3, 0.0, max)).unwrap(), + NumCast::from(clamp(t4, 0.0, max)).unwrap(), + ); + + out.put_pixel(x, y, t); + } + } + + out +} + +/// Resize the supplied image to the specified dimensions. +/// ```nwidth``` and ```nheight``` are the new dimensions. +/// ```filter``` is the sampling filter to use. +pub fn resize<I: GenericImageView>( + image: &I, + nwidth: u32, + nheight: u32, + filter: FilterType, +) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>> +where + I::Pixel: 'static, + <I::Pixel as Pixel>::Subpixel: 'static, +{ + let mut method = match filter { + FilterType::Nearest => Filter { + kernel: Box::new(box_kernel), + support: 0.0, + }, + FilterType::Triangle => Filter { + kernel: Box::new(triangle_kernel), + support: 1.0, + }, + FilterType::CatmullRom => Filter { + kernel: Box::new(catmullrom_kernel), + support: 2.0, + }, + FilterType::Gaussian => Filter { + kernel: Box::new(gaussian_kernel), + support: 3.0, + }, + FilterType::Lanczos3 => Filter { + kernel: Box::new(lanczos3_kernel), + support: 3.0, + }, + }; + + let tmp = vertical_sample(image, nheight, &mut method); + horizontal_sample(&tmp, nwidth, &mut method) +} + +/// Performs a Gaussian blur on the supplied image. +/// ```sigma``` is a measure of how much to blur by. +pub fn blur<I: GenericImageView>( + image: &I, + sigma: f32, +) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>> +where + I::Pixel: 'static, +{ + let sigma = if sigma < 0.0 { 1.0 } else { sigma }; + + let mut method = Filter { + kernel: Box::new(|x| gaussian(x, sigma)), + support: 2.0 * sigma, + }; + + let (width, height) = image.dimensions(); + + // Keep width and height the same for horizontal and + // vertical sampling. + let tmp = vertical_sample(image, height, &mut method); + horizontal_sample(&tmp, width, &mut method) +} + +/// Performs an unsharpen mask on the supplied image. +/// ```sigma``` is the amount to blur the image by. +/// ```threshold``` is the threshold for the difference between +/// +/// See <https://en.wikipedia.org/wiki/Unsharp_masking#Digital_unsharp_masking> +pub fn unsharpen<I, P, S>(image: &I, sigma: f32, threshold: i32) -> ImageBuffer<P, Vec<S>> +where + I: GenericImageView<Pixel = P>, + P: Pixel<Subpixel = S> + 'static, + S: Primitive + 'static, +{ + let mut tmp = blur(image, sigma); + + let max = S::max_value(); + let max: i32 = NumCast::from(max).unwrap(); + let (width, height) = image.dimensions(); + + for y in 0..height { + for x in 0..width { + let a = image.get_pixel(x, y); + let b = tmp.get_pixel_mut(x, y); + + let p = a.map2(b, |c, d| { + let ic: i32 = NumCast::from(c).unwrap(); + let id: i32 = NumCast::from(d).unwrap(); + + let diff = (ic - id).abs(); + + if diff > threshold { + let e = clamp(ic + diff, 0, max); + + NumCast::from(e).unwrap() + } else { + c + } + }); + + *b = p; + } + } + + tmp +} + +#[cfg(test)] +mod tests { + use super::{resize, FilterType}; + use crate::buffer::{ImageBuffer, RgbImage}; + #[cfg(feature = "benchmarks")] + use test; + + #[bench] + #[cfg(all(feature = "benchmarks", feature = "png"))] + fn bench_resize(b: &mut test::Bencher) { + use std::path::Path; + let img = crate::open(&Path::new("./examples/fractal.png")).unwrap(); + b.iter(|| { + test::black_box(resize(&img, 200, 200, FilterType::Nearest)); + }); + b.bytes = 800 * 800 * 3 + 200 * 200 * 3; + } + + #[test] + fn test_issue_186() { + let img: RgbImage = ImageBuffer::new(100, 100); + let _ = resize(&img, 50, 50, FilterType::Lanczos3); + } + + #[bench] + #[cfg(all(feature = "benchmarks", feature = "tiff"))] + fn bench_thumbnail(b: &mut test::Bencher) { + let path = concat!(env!("CARGO_MANIFEST_DIR"), "/tests/images/tiff/testsuite/mandrill.tiff"); + let image = crate::open(path).unwrap(); + b.iter(|| { + test::black_box(image.thumbnail(256, 256)); + }); + b.bytes = 512 * 512 * 4 + 256 * 256 * 4; + } + + #[bench] + #[cfg(all(feature = "benchmarks", feature = "tiff"))] + fn bench_thumbnail_upsize(b: &mut test::Bencher) { + let path = concat!(env!("CARGO_MANIFEST_DIR"), "/tests/images/tiff/testsuite/mandrill.tiff"); + let image = crate::open(path).unwrap().thumbnail(256, 256); + b.iter(|| { + test::black_box(image.thumbnail(512, 512)); + }); + b.bytes = 512 * 512 * 4 + 256 * 256 * 4; + } + + #[bench] + #[cfg(all(feature = "benchmarks", feature = "tiff"))] + fn bench_thumbnail_upsize_irregular(b: &mut test::Bencher) { + let path = concat!(env!("CARGO_MANIFEST_DIR"), "/tests/images/tiff/testsuite/mandrill.tiff"); + let image = crate::open(path).unwrap().thumbnail(193, 193); + b.iter(|| { + test::black_box(image.thumbnail(256, 256)); + }); + b.bytes = 193 * 193 * 4 + 256 * 256 * 4; + } +} |