1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
|
//! Functions and filters for the sampling of pixels.
// See http://cs.brown.edu/courses/cs123/lectures/08_Image_Processing_IV.pdf
// for some of the theory behind image scaling and convolution
use std::f32;
use num_traits::{NumCast, ToPrimitive, Zero};
use crate::buffer::{ImageBuffer, Pixel};
use crate::image::GenericImageView;
use crate::math::utils::clamp;
use crate::traits::{Enlargeable, Primitive};
/// Available Sampling Filters.
///
/// ## Examples
///
/// To test the different sampling filters on a real example, you can find two
/// examples called
/// [`scaledown`](https://github.com/image-rs/image/tree/master/examples/scaledown)
/// and
/// [`scaleup`](https://github.com/image-rs/image/tree/master/examples/scaleup)
/// in the `examples` directory of the crate source code.
///
/// Here is a 3.58 MiB
/// [test image](https://github.com/image-rs/image/blob/master/examples/scaledown/test.jpg)
/// that has been scaled down to 300x225 px:
///
/// <!-- NOTE: To test new test images locally, replace the GitHub path with `../../../docs/` -->
/// <div style="display: flex; flex-wrap: wrap; align-items: flex-start;">
/// <div style="margin: 0 8px 8px 0;">
/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-near.png" title="Nearest"><br>
/// Nearest Neighbor
/// </div>
/// <div style="margin: 0 8px 8px 0;">
/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-tri.png" title="Triangle"><br>
/// Linear: Triangle
/// </div>
/// <div style="margin: 0 8px 8px 0;">
/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-cmr.png" title="CatmullRom"><br>
/// Cubic: Catmull-Rom
/// </div>
/// <div style="margin: 0 8px 8px 0;">
/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-gauss.png" title="Gaussian"><br>
/// Gaussian
/// </div>
/// <div style="margin: 0 8px 8px 0;">
/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-lcz2.png" title="Lanczos3"><br>
/// Lanczos with window 3
/// </div>
/// </div>
///
/// ## Speed
///
/// Time required to create each of the examples above, tested on an Intel
/// i7-4770 CPU with Rust 1.37 in release mode:
///
/// <table style="width: auto;">
/// <tr>
/// <th>Nearest</th>
/// <td>31 ms</td>
/// </tr>
/// <tr>
/// <th>Triangle</th>
/// <td>414 ms</td>
/// </tr>
/// <tr>
/// <th>CatmullRom</th>
/// <td>817 ms</td>
/// </tr>
/// <tr>
/// <th>Gaussian</th>
/// <td>1180 ms</td>
/// </tr>
/// <tr>
/// <th>Lanczos3</th>
/// <td>1170 ms</td>
/// </tr>
/// </table>
#[derive(Clone, Copy, Debug)]
pub enum FilterType {
/// Nearest Neighbor
Nearest,
/// Linear Filter
Triangle,
/// Cubic Filter
CatmullRom,
/// Gaussian Filter
Gaussian,
/// Lanczos with window 3
Lanczos3,
}
/// A Representation of a separable filter.
pub(crate) struct Filter<'a> {
/// The filter's filter function.
pub(crate) kernel: Box<dyn Fn(f32) -> f32 + 'a>,
/// The window on which this filter operates.
pub(crate) support: f32,
}
// sinc function: the ideal sampling filter.
fn sinc(t: f32) -> f32 {
let a = t * f32::consts::PI;
if t == 0.0 {
1.0
} else {
a.sin() / a
}
}
// lanczos kernel function. A windowed sinc function.
fn lanczos(x: f32, t: f32) -> f32 {
if x.abs() < t {
sinc(x) * sinc(x / t)
} else {
0.0
}
}
// Calculate a splice based on the b and c parameters.
// from authors Mitchell and Netravali.
fn bc_cubic_spline(x: f32, b: f32, c: f32) -> f32 {
let a = x.abs();
let k = if a < 1.0 {
(12.0 - 9.0 * b - 6.0 * c) * a.powi(3) + (-18.0 + 12.0 * b + 6.0 * c) * a.powi(2)
+ (6.0 - 2.0 * b)
} else if a < 2.0 {
(-b - 6.0 * c) * a.powi(3) + (6.0 * b + 30.0 * c) * a.powi(2) + (-12.0 * b - 48.0 * c) * a
+ (8.0 * b + 24.0 * c)
} else {
0.0
};
k / 6.0
}
/// The Gaussian Function.
/// ```r``` is the standard deviation.
pub(crate) fn gaussian(x: f32, r: f32) -> f32 {
((2.0 * f32::consts::PI).sqrt() * r).recip() * (-x.powi(2) / (2.0 * r.powi(2))).exp()
}
/// Calculate the lanczos kernel with a window of 3
pub(crate) fn lanczos3_kernel(x: f32) -> f32 {
lanczos(x, 3.0)
}
/// Calculate the gaussian function with a
/// standard deviation of 0.5
pub(crate) fn gaussian_kernel(x: f32) -> f32 {
gaussian(x, 0.5)
}
/// Calculate the Catmull-Rom cubic spline.
/// Also known as a form of `BiCubic` sampling in two dimensions.
pub(crate) fn catmullrom_kernel(x: f32) -> f32 {
bc_cubic_spline(x, 0.0, 0.5)
}
/// Calculate the triangle function.
/// Also known as `BiLinear` sampling in two dimensions.
pub(crate) fn triangle_kernel(x: f32) -> f32 {
if x.abs() < 1.0 {
1.0 - x.abs()
} else {
0.0
}
}
/// Calculate the box kernel.
/// Only pixels inside the box should be considered, and those
/// contribute equally. So this method simply returns 1.
pub(crate) fn box_kernel(_x: f32) -> f32 {
1.0
}
// Sample the rows of the supplied image using the provided filter.
// The height of the image remains unchanged.
// ```new_width``` is the desired width of the new image
// ```filter``` is the filter to use for sampling.
fn horizontal_sample<I, P, S>(
image: &I,
new_width: u32,
filter: &mut Filter,
) -> ImageBuffer<P, Vec<S>>
where
I: GenericImageView<Pixel = P>,
P: Pixel<Subpixel = S> + 'static,
S: Primitive + 'static,
{
let (width, height) = image.dimensions();
let mut out = ImageBuffer::new(new_width, height);
let mut ws = Vec::new();
let max: f32 = NumCast::from(S::max_value()).unwrap();
let ratio = width as f32 / new_width as f32;
let sratio = if ratio < 1.0 { 1.0 } else { ratio };
let src_support = filter.support * sratio;
for outx in 0..new_width {
// Find the point in the input image corresponding to the centre
// of the current pixel in the output image.
let inputx = (outx as f32 + 0.5) * ratio;
// Left and right are slice bounds for the input pixels relevant
// to the output pixel we are calculating. Pixel x is relevant
// if and only if (x >= left) && (x < right).
// Invariant: 0 <= left < right <= width
let left = (inputx - src_support).floor() as i64;
let left = clamp(left, 0, <i64 as From<_>>::from(width) - 1) as u32;
let right = (inputx + src_support).ceil() as i64;
let right = clamp(
right,
<i64 as From<_>>::from(left) + 1,
<i64 as From<_>>::from(width),
) as u32;
// Go back to left boundary of pixel, to properly compare with i
// below, as the kernel treats the centre of a pixel as 0.
let inputx = inputx - 0.5;
ws.clear();
let mut sum = 0.0;
for i in left..right {
let w = (filter.kernel)((i as f32 - inputx) / sratio);
ws.push(w);
sum += w;
}
for y in 0..height {
let mut t = (0.0, 0.0, 0.0, 0.0);
for (i, w) in ws.iter().enumerate() {
let p = image.get_pixel(left + i as u32, y);
let (k1, k2, k3, k4) = p.channels4();
let vec: (f32, f32, f32, f32) = (
NumCast::from(k1).unwrap(),
NumCast::from(k2).unwrap(),
NumCast::from(k3).unwrap(),
NumCast::from(k4).unwrap(),
);
t.0 += vec.0 * w;
t.1 += vec.1 * w;
t.2 += vec.2 * w;
t.3 += vec.3 * w;
}
let (t1, t2, t3, t4) = (t.0 / sum, t.1 / sum, t.2 / sum, t.3 / sum);
let t = Pixel::from_channels(
NumCast::from(clamp(t1, 0.0, max)).unwrap(),
NumCast::from(clamp(t2, 0.0, max)).unwrap(),
NumCast::from(clamp(t3, 0.0, max)).unwrap(),
NumCast::from(clamp(t4, 0.0, max)).unwrap(),
);
out.put_pixel(outx, y, t);
}
}
out
}
// Sample the columns of the supplied image using the provided filter.
// The width of the image remains unchanged.
// ```new_height``` is the desired height of the new image
// ```filter``` is the filter to use for sampling.
fn vertical_sample<I, P, S>(
image: &I,
new_height: u32,
filter: &mut Filter,
) -> ImageBuffer<P, Vec<S>>
where
I: GenericImageView<Pixel = P>,
P: Pixel<Subpixel = S> + 'static,
S: Primitive + 'static,
{
let (width, height) = image.dimensions();
let mut out = ImageBuffer::new(width, new_height);
let mut ws = Vec::new();
let max: f32 = NumCast::from(S::max_value()).unwrap();
let ratio = height as f32 / new_height as f32;
let sratio = if ratio < 1.0 { 1.0 } else { ratio };
let src_support = filter.support * sratio;
for outy in 0..new_height {
// For an explanation of this algorithm, see the comments
// in horizontal_sample.
let inputy = (outy as f32 + 0.5) * ratio;
let left = (inputy - src_support).floor() as i64;
let left = clamp(left, 0, <i64 as From<_>>::from(height) - 1) as u32;
let right = (inputy + src_support).ceil() as i64;
let right = clamp(
right,
<i64 as From<_>>::from(left) + 1,
<i64 as From<_>>::from(height),
) as u32;
let inputy = inputy - 0.5;
ws.clear();
let mut sum = 0.0;
for i in left..right {
let w = (filter.kernel)((i as f32 - inputy) / sratio);
ws.push(w);
sum += w;
}
for x in 0..width {
let mut t = (0.0, 0.0, 0.0, 0.0);
for (i, w) in ws.iter().enumerate() {
let p = image.get_pixel(x, left + i as u32);
let (k1, k2, k3, k4) = p.channels4();
let vec: (f32, f32, f32, f32) = (
NumCast::from(k1).unwrap(),
NumCast::from(k2).unwrap(),
NumCast::from(k3).unwrap(),
NumCast::from(k4).unwrap(),
);
t.0 += vec.0 * w;
t.1 += vec.1 * w;
t.2 += vec.2 * w;
t.3 += vec.3 * w;
}
let (t1, t2, t3, t4) = (t.0 / sum, t.1 / sum, t.2 / sum, t.3 / sum);
let t = Pixel::from_channels(
NumCast::from(clamp(t1, 0.0, max)).unwrap(),
NumCast::from(clamp(t2, 0.0, max)).unwrap(),
NumCast::from(clamp(t3, 0.0, max)).unwrap(),
NumCast::from(clamp(t4, 0.0, max)).unwrap(),
);
out.put_pixel(x, outy, t);
}
}
out
}
/// Local struct for keeping track of pixel sums for fast thumbnail averaging
struct ThumbnailSum<S: Primitive + Enlargeable>(S::Larger, S::Larger, S::Larger, S::Larger);
impl<S: Primitive + Enlargeable> ThumbnailSum<S> {
fn zeroed() -> Self {
ThumbnailSum(S::Larger::zero(), S::Larger::zero(), S::Larger::zero(), S::Larger::zero())
}
fn sample_val(val: S) -> S::Larger {
<S::Larger as NumCast>::from(val).unwrap()
}
fn add_pixel<P: Pixel<Subpixel=S>>(&mut self, pixel: P) {
let pixel = pixel.channels4();
self.0 += Self::sample_val(pixel.0);
self.1 += Self::sample_val(pixel.1);
self.2 += Self::sample_val(pixel.2);
self.3 += Self::sample_val(pixel.3);
}
}
/// Resize the supplied image to the specific dimensions.
///
/// For downscaling, this method uses a fast integer algorithm where each source pixel contributes
/// to exactly one target pixel. May give aliasing artifacts if new size is close to old size.
///
/// In case the current width is smaller than the new width or similar for the height, another
/// strategy is used instead. For each pixel in the output, a rectangular region of the input is
/// determined, just as previously. But when no input pixel is part of this region, the nearest
/// pixels are interpolated instead.
///
/// For speed reasons, all interpolation is performed linearly over the colour values. It will not
/// take the pixel colour spaces into account.
pub fn thumbnail<I, P, S>(image: &I, new_width: u32, new_height: u32) -> ImageBuffer<P, Vec<S>>
where
I: GenericImageView<Pixel = P>,
P: Pixel<Subpixel = S> + 'static,
S: Primitive + Enlargeable + 'static,
{
let (width, height) = image.dimensions();
let mut out = ImageBuffer::new(new_width, new_height);
let x_ratio = width as f32 / new_width as f32;
let y_ratio = height as f32 / new_height as f32;
for outy in 0..new_height {
let bottomf = outy as f32 * y_ratio;
let topf = bottomf + y_ratio;
let bottom = clamp(
bottomf.ceil() as u32,
0,
height - 1,
);
let top = clamp(
topf.ceil() as u32,
bottom,
height,
);
for outx in 0..new_width {
let leftf = outx as f32 * x_ratio;
let rightf = leftf + x_ratio;
let left = clamp(
leftf.ceil() as u32,
0,
width - 1,
);
let right = clamp(
rightf.ceil() as u32,
left,
width,
);
let avg = if bottom != top && left != right {
thumbnail_sample_block(image, left, right, bottom, top)
} else if bottom != top { // && left == right
// In the first column we have left == 0 and right > ceil(y_scale) > 0 so this
// assertion can never trigger.
debug_assert!(left > 0 && right > 0,
"First output column must have corresponding pixels");
let fraction_horizontal = (leftf.fract() + rightf.fract())/2.;
thumbnail_sample_fraction_horizontal(image, right - 1, fraction_horizontal, bottom, top)
} else if left != right { // && bottom == top
// In the first line we have bottom == 0 and top > ceil(x_scale) > 0 so this
// assertion can never trigger.
debug_assert!(bottom > 0 && top > 0,
"First output row must have corresponding pixels");
let fraction_vertical = (topf.fract() + bottomf.fract())/2.;
thumbnail_sample_fraction_vertical(image, left, right, top - 1, fraction_vertical)
} else { // bottom == top && left == right
let fraction_horizontal = (topf.fract() + bottomf.fract())/2.;
let fraction_vertical= (leftf.fract() + rightf.fract())/2.;
thumbnail_sample_fraction_both(image, right - 1, fraction_horizontal, top - 1, fraction_vertical)
};
let pixel = Pixel::from_channels(avg.0, avg.1, avg.2, avg.3);
out.put_pixel(outx, outy, pixel);
}
}
out
}
/// Get a pixel for a thumbnail where the input window encloses at least a full pixel.
fn thumbnail_sample_block<I, P, S>(
image: &I,
left: u32,
right: u32,
bottom: u32,
top: u32,
) -> (S, S, S, S)
where
I: GenericImageView<Pixel = P>,
P: Pixel<Subpixel = S>,
S: Primitive + Enlargeable,
{
let mut sum = ThumbnailSum::zeroed();
for y in bottom..top {
for x in left..right {
let k = image.get_pixel(x, y);
sum.add_pixel(k);
}
}
let n = <S::Larger as NumCast>::from(
(right - left) * (top - bottom)).unwrap();
let round = <S::Larger as NumCast>::from(
n / NumCast::from(2).unwrap()).unwrap();
(
S::clamp_from((sum.0 + round)/n),
S::clamp_from((sum.1 + round)/n),
S::clamp_from((sum.2 + round)/n),
S::clamp_from((sum.3 + round)/n),
)
}
/// Get a thumbnail pixel where the input window encloses at least a vertical pixel.
fn thumbnail_sample_fraction_horizontal<I, P, S>(
image: &I,
left: u32,
fraction_horizontal: f32,
bottom: u32,
top: u32,
) -> (S, S, S, S)
where
I: GenericImageView<Pixel = P>,
P: Pixel<Subpixel = S>,
S: Primitive + Enlargeable,
{
let fract = fraction_horizontal;
let mut sum_left = ThumbnailSum::zeroed();
let mut sum_right = ThumbnailSum::zeroed();
for x in bottom..top {
let k_left = image.get_pixel(left, x);
sum_left.add_pixel(k_left);
let k_right = image.get_pixel(left + 1, x);
sum_right.add_pixel(k_right);
}
// Now we approximate: left/n*(1-fract) + right/n*fract
let fact_right = fract /((top - bottom) as f32);
let fact_left = (1. - fract)/((top - bottom) as f32);
let mix_left_and_right = |leftv: S::Larger, rightv: S::Larger|
<S as NumCast>::from(
fact_left * leftv.to_f32().unwrap() +
fact_right * rightv.to_f32().unwrap()
).expect("Average sample value should fit into sample type");
(
mix_left_and_right(sum_left.0, sum_right.0),
mix_left_and_right(sum_left.1, sum_right.1),
mix_left_and_right(sum_left.2, sum_right.2),
mix_left_and_right(sum_left.3, sum_right.3),
)
}
/// Get a thumbnail pixel where the input window encloses at least a horizontal pixel.
fn thumbnail_sample_fraction_vertical<I, P, S>(
image: &I,
left: u32,
right: u32,
bottom: u32,
fraction_vertical: f32,
) -> (S, S, S, S)
where
I: GenericImageView<Pixel = P>,
P: Pixel<Subpixel = S>,
S: Primitive + Enlargeable,
{
let fract = fraction_vertical;
let mut sum_bot = ThumbnailSum::zeroed();
let mut sum_top = ThumbnailSum::zeroed();
for x in left..right {
let k_bot = image.get_pixel(x, bottom);
sum_bot.add_pixel(k_bot);
let k_top = image.get_pixel(x, bottom + 1);
sum_top.add_pixel(k_top);
}
// Now we approximate: bot/n*fract + top/n*(1-fract)
let fact_top = fract /((right - left) as f32);
let fact_bot = (1. - fract)/((right - left) as f32);
let mix_bot_and_top = |botv: S::Larger, topv: S::Larger|
<S as NumCast>::from(
fact_bot * botv.to_f32().unwrap() +
fact_top * topv.to_f32().unwrap()
).expect("Average sample value should fit into sample type");
(
mix_bot_and_top(sum_bot.0, sum_top.0),
mix_bot_and_top(sum_bot.1, sum_top.1),
mix_bot_and_top(sum_bot.2, sum_top.2),
mix_bot_and_top(sum_bot.3, sum_top.3),
)
}
/// Get a single pixel for a thumbnail where the input window does not enclose any full pixel.
fn thumbnail_sample_fraction_both<I, P, S>(
image: &I,
left: u32,
fraction_vertical: f32,
bottom: u32,
fraction_horizontal: f32,
) -> (S, S, S, S)
where
I: GenericImageView<Pixel = P>,
P: Pixel<Subpixel = S>,
S: Primitive + Enlargeable,
{
let k_bl = image.get_pixel(left, bottom ).channels4();
let k_tl = image.get_pixel(left, bottom + 1).channels4();
let k_br = image.get_pixel(left + 1, bottom ).channels4();
let k_tr = image.get_pixel(left + 1, bottom + 1).channels4();
let frac_v = fraction_vertical;
let frac_h = fraction_horizontal;
let fact_tr = frac_v * frac_h;
let fact_tl = frac_v * (1. - frac_h);
let fact_br = (1. - frac_v) * frac_h;
let fact_bl = (1. - frac_v) * (1. - frac_h);
let mix = |br: S, tr: S, bl: S, tl: S|
<S as NumCast>::from(
fact_br * br.to_f32().unwrap() +
fact_tr * tr.to_f32().unwrap() +
fact_bl * bl.to_f32().unwrap() +
fact_tl * tl.to_f32().unwrap()
).expect("Average sample value should fit into sample type");
(
mix(k_br.0, k_tr.0, k_bl.0, k_tl.0),
mix(k_br.1, k_tr.1, k_bl.1, k_tl.1),
mix(k_br.2, k_tr.2, k_bl.2, k_tl.2),
mix(k_br.3, k_tr.3, k_bl.3, k_tl.3),
)
}
/// Perform a 3x3 box filter on the supplied image.
/// ```kernel``` is an array of the filter weights of length 9.
pub fn filter3x3<I, P, S>(image: &I, kernel: &[f32]) -> ImageBuffer<P, Vec<S>>
where
I: GenericImageView<Pixel = P>,
P: Pixel<Subpixel = S> + 'static,
S: Primitive + 'static,
{
// The kernel's input positions relative to the current pixel.
let taps: &[(isize, isize)] = &[
(-1, -1),
(0, -1),
(1, -1),
(-1, 0),
(0, 0),
(1, 0),
(-1, 1),
(0, 1),
(1, 1),
];
let (width, height) = image.dimensions();
let mut out = ImageBuffer::new(width, height);
let max = S::max_value();
let max: f32 = NumCast::from(max).unwrap();
let sum = match kernel.iter().fold(0.0, |s, &item| s + item) {
x if x == 0.0 => 1.0,
sum => sum,
};
let sum = (sum, sum, sum, sum);
for y in 1..height - 1 {
for x in 1..width - 1 {
let mut t = (0.0, 0.0, 0.0, 0.0);
// TODO: There is no need to recalculate the kernel for each pixel.
// Only a subtract and addition is needed for pixels after the first
// in each row.
for (&k, &(a, b)) in kernel.iter().zip(taps.iter()) {
let k = (k, k, k, k);
let x0 = x as isize + a;
let y0 = y as isize + b;
let p = image.get_pixel(x0 as u32, y0 as u32);
let (k1, k2, k3, k4) = p.channels4();
let vec: (f32, f32, f32, f32) = (
NumCast::from(k1).unwrap(),
NumCast::from(k2).unwrap(),
NumCast::from(k3).unwrap(),
NumCast::from(k4).unwrap(),
);
t.0 += vec.0 * k.0;
t.1 += vec.1 * k.1;
t.2 += vec.2 * k.2;
t.3 += vec.3 * k.3;
}
let (t1, t2, t3, t4) = (t.0 / sum.0, t.1 / sum.1, t.2 / sum.2, t.3 / sum.3);
let t = Pixel::from_channels(
NumCast::from(clamp(t1, 0.0, max)).unwrap(),
NumCast::from(clamp(t2, 0.0, max)).unwrap(),
NumCast::from(clamp(t3, 0.0, max)).unwrap(),
NumCast::from(clamp(t4, 0.0, max)).unwrap(),
);
out.put_pixel(x, y, t);
}
}
out
}
/// Resize the supplied image to the specified dimensions.
/// ```nwidth``` and ```nheight``` are the new dimensions.
/// ```filter``` is the sampling filter to use.
pub fn resize<I: GenericImageView>(
image: &I,
nwidth: u32,
nheight: u32,
filter: FilterType,
) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
where
I::Pixel: 'static,
<I::Pixel as Pixel>::Subpixel: 'static,
{
let mut method = match filter {
FilterType::Nearest => Filter {
kernel: Box::new(box_kernel),
support: 0.0,
},
FilterType::Triangle => Filter {
kernel: Box::new(triangle_kernel),
support: 1.0,
},
FilterType::CatmullRom => Filter {
kernel: Box::new(catmullrom_kernel),
support: 2.0,
},
FilterType::Gaussian => Filter {
kernel: Box::new(gaussian_kernel),
support: 3.0,
},
FilterType::Lanczos3 => Filter {
kernel: Box::new(lanczos3_kernel),
support: 3.0,
},
};
let tmp = vertical_sample(image, nheight, &mut method);
horizontal_sample(&tmp, nwidth, &mut method)
}
/// Performs a Gaussian blur on the supplied image.
/// ```sigma``` is a measure of how much to blur by.
pub fn blur<I: GenericImageView>(
image: &I,
sigma: f32,
) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
where
I::Pixel: 'static,
{
let sigma = if sigma < 0.0 { 1.0 } else { sigma };
let mut method = Filter {
kernel: Box::new(|x| gaussian(x, sigma)),
support: 2.0 * sigma,
};
let (width, height) = image.dimensions();
// Keep width and height the same for horizontal and
// vertical sampling.
let tmp = vertical_sample(image, height, &mut method);
horizontal_sample(&tmp, width, &mut method)
}
/// Performs an unsharpen mask on the supplied image.
/// ```sigma``` is the amount to blur the image by.
/// ```threshold``` is the threshold for the difference between
///
/// See <https://en.wikipedia.org/wiki/Unsharp_masking#Digital_unsharp_masking>
pub fn unsharpen<I, P, S>(image: &I, sigma: f32, threshold: i32) -> ImageBuffer<P, Vec<S>>
where
I: GenericImageView<Pixel = P>,
P: Pixel<Subpixel = S> + 'static,
S: Primitive + 'static,
{
let mut tmp = blur(image, sigma);
let max = S::max_value();
let max: i32 = NumCast::from(max).unwrap();
let (width, height) = image.dimensions();
for y in 0..height {
for x in 0..width {
let a = image.get_pixel(x, y);
let b = tmp.get_pixel_mut(x, y);
let p = a.map2(b, |c, d| {
let ic: i32 = NumCast::from(c).unwrap();
let id: i32 = NumCast::from(d).unwrap();
let diff = (ic - id).abs();
if diff > threshold {
let e = clamp(ic + diff, 0, max);
NumCast::from(e).unwrap()
} else {
c
}
});
*b = p;
}
}
tmp
}
#[cfg(test)]
mod tests {
use super::{resize, FilterType};
use crate::buffer::{ImageBuffer, RgbImage};
#[cfg(feature = "benchmarks")]
use test;
#[bench]
#[cfg(all(feature = "benchmarks", feature = "png"))]
fn bench_resize(b: &mut test::Bencher) {
use std::path::Path;
let img = crate::open(&Path::new("./examples/fractal.png")).unwrap();
b.iter(|| {
test::black_box(resize(&img, 200, 200, FilterType::Nearest));
});
b.bytes = 800 * 800 * 3 + 200 * 200 * 3;
}
#[test]
fn test_issue_186() {
let img: RgbImage = ImageBuffer::new(100, 100);
let _ = resize(&img, 50, 50, FilterType::Lanczos3);
}
#[bench]
#[cfg(all(feature = "benchmarks", feature = "tiff"))]
fn bench_thumbnail(b: &mut test::Bencher) {
let path = concat!(env!("CARGO_MANIFEST_DIR"), "/tests/images/tiff/testsuite/mandrill.tiff");
let image = crate::open(path).unwrap();
b.iter(|| {
test::black_box(image.thumbnail(256, 256));
});
b.bytes = 512 * 512 * 4 + 256 * 256 * 4;
}
#[bench]
#[cfg(all(feature = "benchmarks", feature = "tiff"))]
fn bench_thumbnail_upsize(b: &mut test::Bencher) {
let path = concat!(env!("CARGO_MANIFEST_DIR"), "/tests/images/tiff/testsuite/mandrill.tiff");
let image = crate::open(path).unwrap().thumbnail(256, 256);
b.iter(|| {
test::black_box(image.thumbnail(512, 512));
});
b.bytes = 512 * 512 * 4 + 256 * 256 * 4;
}
#[bench]
#[cfg(all(feature = "benchmarks", feature = "tiff"))]
fn bench_thumbnail_upsize_irregular(b: &mut test::Bencher) {
let path = concat!(env!("CARGO_MANIFEST_DIR"), "/tests/images/tiff/testsuite/mandrill.tiff");
let image = crate::open(path).unwrap().thumbnail(193, 193);
b.iter(|| {
test::black_box(image.thumbnail(256, 256));
});
b.bytes = 193 * 193 * 4 + 256 * 256 * 4;
}
}
|