1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <cstdlib>
#include "gc/Memory.h"
#include "jsapi-tests/tests.h"
#if defined(XP_WIN)
# include "util/Windows.h"
# include <psapi.h>
#else
# include <algorithm>
# include <errno.h>
# include <sys/mman.h>
# include <sys/resource.h>
# include <sys/stat.h>
# include <sys/types.h>
# include <unistd.h>
#endif
BEGIN_TEST(testGCAllocator) {
#ifdef JS_64BIT
// If we're using the scattershot allocator, this test does not apply.
if (js::gc::UsingScattershotAllocator()) {
return true;
}
#endif
size_t PageSize = js::gc::SystemPageSize();
/* Finish any ongoing background free activity. */
js::gc::FinishGC(cx);
bool growUp = false;
CHECK(addressesGrowUp(&growUp));
if (growUp) {
return testGCAllocatorUp(PageSize);
} else {
return testGCAllocatorDown(PageSize);
}
}
static const size_t Chunk = 512 * 1024;
static const size_t Alignment = 2 * Chunk;
static const int MaxTempChunks = 4096;
static const size_t StagingSize = 16 * Chunk;
bool addressesGrowUp(bool* resultOut) {
/*
* Try to detect whether the OS allocates memory in increasing or decreasing
* address order by making several allocations and comparing the addresses.
*/
static const unsigned ChunksToTest = 20;
static const int ThresholdCount = 15;
void* chunks[ChunksToTest];
for (unsigned i = 0; i < ChunksToTest; i++) {
chunks[i] = mapMemory(2 * Chunk);
CHECK(chunks[i]);
}
int upCount = 0;
int downCount = 0;
for (unsigned i = 0; i < ChunksToTest - 1; i++) {
if (chunks[i] < chunks[i + 1]) {
upCount++;
} else {
downCount++;
}
}
for (unsigned i = 0; i < ChunksToTest; i++) {
unmapPages(chunks[i], 2 * Chunk);
}
/* Check results were mostly consistent. */
CHECK(abs(upCount - downCount) >= ThresholdCount);
*resultOut = upCount > downCount;
return true;
}
size_t offsetFromAligned(void* p) { return uintptr_t(p) % Alignment; }
enum AllocType { UseNormalAllocator, UseLastDitchAllocator };
bool testGCAllocatorUp(const size_t PageSize) {
const size_t UnalignedSize = StagingSize + Alignment - PageSize;
void* chunkPool[MaxTempChunks];
// Allocate a contiguous chunk that we can partition for testing.
void* stagingArea = mapMemory(UnalignedSize);
if (!stagingArea) {
return false;
}
// Ensure that the staging area is aligned.
unmapPages(stagingArea, UnalignedSize);
if (offsetFromAligned(stagingArea)) {
const size_t Offset = offsetFromAligned(stagingArea);
// Place the area at the lowest aligned address.
stagingArea = (void*)(uintptr_t(stagingArea) + (Alignment - Offset));
}
mapMemoryAt(stagingArea, StagingSize);
// Make sure there are no available chunks below the staging area.
int tempChunks;
if (!fillSpaceBeforeStagingArea(tempChunks, stagingArea, chunkPool, false)) {
return false;
}
// Unmap the staging area so we can set it up for testing.
unmapPages(stagingArea, StagingSize);
// Check that the first chunk is used if it is aligned.
CHECK(positionIsCorrect("xxooxxx---------", stagingArea, chunkPool,
tempChunks));
// Check that the first chunk is used if it can be aligned.
CHECK(positionIsCorrect("x-ooxxx---------", stagingArea, chunkPool,
tempChunks));
// Check that an aligned chunk after a single unalignable chunk is used.
CHECK(positionIsCorrect("x--xooxxx-------", stagingArea, chunkPool,
tempChunks));
// Check that we fall back to the slow path after two unalignable chunks.
CHECK(positionIsCorrect("x--xx--xoo--xxx-", stagingArea, chunkPool,
tempChunks));
// Check that we also fall back after an unalignable and an alignable chunk.
CHECK(positionIsCorrect("x--xx---x-oo--x-", stagingArea, chunkPool,
tempChunks));
// Check that the last ditch allocator works as expected.
CHECK(positionIsCorrect("x--xx--xx-oox---", stagingArea, chunkPool,
tempChunks, UseLastDitchAllocator));
// Check that the last ditch allocator can deal with naturally aligned chunks.
CHECK(positionIsCorrect("x--xx--xoo------", stagingArea, chunkPool,
tempChunks, UseLastDitchAllocator));
// Clean up.
while (--tempChunks >= 0) {
unmapPages(chunkPool[tempChunks], 2 * Chunk);
}
return true;
}
bool testGCAllocatorDown(const size_t PageSize) {
const size_t UnalignedSize = StagingSize + Alignment - PageSize;
void* chunkPool[MaxTempChunks];
// Allocate a contiguous chunk that we can partition for testing.
void* stagingArea = mapMemory(UnalignedSize);
if (!stagingArea) {
return false;
}
// Ensure that the staging area is aligned.
unmapPages(stagingArea, UnalignedSize);
if (offsetFromAligned(stagingArea)) {
void* stagingEnd = (void*)(uintptr_t(stagingArea) + UnalignedSize);
const size_t Offset = offsetFromAligned(stagingEnd);
// Place the area at the highest aligned address.
stagingArea = (void*)(uintptr_t(stagingEnd) - Offset - StagingSize);
}
mapMemoryAt(stagingArea, StagingSize);
// Make sure there are no available chunks above the staging area.
int tempChunks;
if (!fillSpaceBeforeStagingArea(tempChunks, stagingArea, chunkPool, true)) {
return false;
}
// Unmap the staging area so we can set it up for testing.
unmapPages(stagingArea, StagingSize);
// Check that the first chunk is used if it is aligned.
CHECK(positionIsCorrect("---------xxxooxx", stagingArea, chunkPool,
tempChunks));
// Check that the first chunk is used if it can be aligned.
CHECK(positionIsCorrect("---------xxxoo-x", stagingArea, chunkPool,
tempChunks));
// Check that an aligned chunk after a single unalignable chunk is used.
CHECK(positionIsCorrect("-------xxxoox--x", stagingArea, chunkPool,
tempChunks));
// Check that we fall back to the slow path after two unalignable chunks.
CHECK(positionIsCorrect("-xxx--oox--xx--x", stagingArea, chunkPool,
tempChunks));
// Check that we also fall back after an unalignable and an alignable chunk.
CHECK(positionIsCorrect("-x--oo-x---xx--x", stagingArea, chunkPool,
tempChunks));
// Check that the last ditch allocator works as expected.
CHECK(positionIsCorrect("---xoo-xx--xx--x", stagingArea, chunkPool,
tempChunks, UseLastDitchAllocator));
// Check that the last ditch allocator can deal with naturally aligned chunks.
CHECK(positionIsCorrect("------oox--xx--x", stagingArea, chunkPool,
tempChunks, UseLastDitchAllocator));
// Clean up.
while (--tempChunks >= 0) {
unmapPages(chunkPool[tempChunks], 2 * Chunk);
}
return true;
}
bool fillSpaceBeforeStagingArea(int& tempChunks, void* stagingArea,
void** chunkPool, bool addressesGrowDown) {
// Make sure there are no available chunks before the staging area.
tempChunks = 0;
chunkPool[tempChunks++] = mapMemory(2 * Chunk);
while (tempChunks < MaxTempChunks && chunkPool[tempChunks - 1] &&
(chunkPool[tempChunks - 1] < stagingArea) ^ addressesGrowDown) {
chunkPool[tempChunks++] = mapMemory(2 * Chunk);
if (!chunkPool[tempChunks - 1]) {
break; // We already have our staging area, so OOM here is okay.
}
if ((chunkPool[tempChunks - 1] < chunkPool[tempChunks - 2]) ^
addressesGrowDown) {
break; // The address growth direction is inconsistent!
}
}
// OOM also means success in this case.
if (!chunkPool[tempChunks - 1]) {
--tempChunks;
return true;
}
// Bail if we can't guarantee the right address space layout.
if ((chunkPool[tempChunks - 1] < stagingArea) ^ addressesGrowDown ||
(tempChunks > 1 &&
(chunkPool[tempChunks - 1] < chunkPool[tempChunks - 2]) ^
addressesGrowDown)) {
while (--tempChunks >= 0) {
unmapPages(chunkPool[tempChunks], 2 * Chunk);
}
unmapPages(stagingArea, StagingSize);
return false;
}
return true;
}
bool positionIsCorrect(const char* str, void* base, void** chunkPool,
int tempChunks,
AllocType allocator = UseNormalAllocator) {
// str represents a region of memory, with each character representing a
// region of Chunk bytes. str should contain only x, o and -, where
// x = mapped by the test to set up the initial conditions,
// o = mapped by the GC allocator, and
// - = unmapped.
// base should point to a region of contiguous free memory
// large enough to hold strlen(str) chunks of Chunk bytes.
int len = strlen(str);
int i;
// Find the index of the desired address.
for (i = 0; i < len && str[i] != 'o'; ++i)
;
void* desired = (void*)(uintptr_t(base) + i * Chunk);
// Map the regions indicated by str.
for (i = 0; i < len; ++i) {
if (str[i] == 'x') {
mapMemoryAt((void*)(uintptr_t(base) + i * Chunk), Chunk);
}
}
// Allocate using the GC's allocator.
void* result;
if (allocator == UseNormalAllocator) {
result = js::gc::MapAlignedPages(2 * Chunk, Alignment);
} else {
result = js::gc::TestMapAlignedPagesLastDitch(2 * Chunk, Alignment);
}
// Clean up the mapped regions.
if (result) {
js::gc::UnmapPages(result, 2 * Chunk);
}
for (--i; i >= 0; --i) {
if (str[i] == 'x') {
js::gc::UnmapPages((void*)(uintptr_t(base) + i * Chunk), Chunk);
}
}
// CHECK returns, so clean up on failure.
if (result != desired) {
while (--tempChunks >= 0) {
js::gc::UnmapPages(chunkPool[tempChunks], 2 * Chunk);
}
}
return result == desired;
}
#if defined(XP_WIN)
void* mapMemoryAt(void* desired, size_t length) {
return VirtualAlloc(desired, length, MEM_COMMIT | MEM_RESERVE,
PAGE_READWRITE);
}
void* mapMemory(size_t length) {
return VirtualAlloc(nullptr, length, MEM_COMMIT | MEM_RESERVE,
PAGE_READWRITE);
}
void unmapPages(void* p, size_t size) {
MOZ_ALWAYS_TRUE(VirtualFree(p, 0, MEM_RELEASE));
}
#else
void* mapMemoryAt(void* desired, size_t length) {
void* region = mmap(desired, length, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0);
if (region == MAP_FAILED) {
return nullptr;
}
if (region != desired) {
if (munmap(region, length)) {
MOZ_RELEASE_ASSERT(errno == ENOMEM);
}
return nullptr;
}
return region;
}
void* mapMemory(size_t length) {
int prot = PROT_READ | PROT_WRITE;
int flags = MAP_PRIVATE | MAP_ANON;
int fd = -1;
off_t offset = 0;
void* region = mmap(nullptr, length, prot, flags, fd, offset);
if (region == MAP_FAILED) {
return nullptr;
}
return region;
}
void unmapPages(void* p, size_t size) {
if (munmap(p, size)) {
MOZ_RELEASE_ASSERT(errno == ENOMEM);
}
}
#endif
END_TEST(testGCAllocator)
|