1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
|
/* $Id: PGMAllGst.h $ */
/** @file
* VBox - Page Manager, Guest Paging Template - All context code.
*/
/*
* Copyright (C) 2006-2020 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*********************************************************************************************************************************
* Internal Functions *
*********************************************************************************************************************************/
RT_C_DECLS_BEGIN
#if PGM_GST_TYPE == PGM_TYPE_32BIT \
|| PGM_GST_TYPE == PGM_TYPE_PAE \
|| PGM_GST_TYPE == PGM_TYPE_AMD64
static int PGM_GST_NAME(Walk)(PVMCPUCC pVCpu, RTGCPTR GCPtr, PGSTPTWALK pWalk);
#endif
PGM_GST_DECL(int, GetPage)(PVMCPUCC pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys);
PGM_GST_DECL(int, ModifyPage)(PVMCPUCC pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask);
PGM_GST_DECL(int, GetPDE)(PVMCPUCC pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPDE);
#ifdef IN_RING3 /* r3 only for now. */
PGM_GST_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3);
PGM_GST_DECL(int, Relocate)(PVMCPUCC pVCpu, RTGCPTR offDelta);
PGM_GST_DECL(int, Exit)(PVMCPUCC pVCpu);
#endif
RT_C_DECLS_END
/**
* Enters the guest mode.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param GCPhysCR3 The physical address from the CR3 register.
*/
PGM_GST_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3)
{
/*
* Map and monitor CR3
*/
uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData;
AssertReturn(idxBth < RT_ELEMENTS(g_aPgmBothModeData), VERR_PGM_MODE_IPE);
AssertReturn(g_aPgmBothModeData[idxBth].pfnMapCR3, VERR_PGM_MODE_IPE);
return g_aPgmBothModeData[idxBth].pfnMapCR3(pVCpu, GCPhysCR3);
}
/**
* Exits the guest mode.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
*/
PGM_GST_DECL(int, Exit)(PVMCPUCC pVCpu)
{
uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData;
AssertReturn(idxBth < RT_ELEMENTS(g_aPgmBothModeData), VERR_PGM_MODE_IPE);
AssertReturn(g_aPgmBothModeData[idxBth].pfnUnmapCR3, VERR_PGM_MODE_IPE);
return g_aPgmBothModeData[idxBth].pfnUnmapCR3(pVCpu);
}
#if PGM_GST_TYPE == PGM_TYPE_32BIT \
|| PGM_GST_TYPE == PGM_TYPE_PAE \
|| PGM_GST_TYPE == PGM_TYPE_AMD64
DECLINLINE(int) PGM_GST_NAME(WalkReturnNotPresent)(PVMCPUCC pVCpu, PGSTPTWALK pWalk, int iLevel)
{
NOREF(iLevel); NOREF(pVCpu);
pWalk->Core.fNotPresent = true;
pWalk->Core.uLevel = (uint8_t)iLevel;
return VERR_PAGE_TABLE_NOT_PRESENT;
}
DECLINLINE(int) PGM_GST_NAME(WalkReturnBadPhysAddr)(PVMCPUCC pVCpu, PGSTPTWALK pWalk, int iLevel, int rc)
{
AssertMsg(rc == VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS, ("%Rrc\n", rc)); NOREF(rc); NOREF(pVCpu);
pWalk->Core.fBadPhysAddr = true;
pWalk->Core.uLevel = (uint8_t)iLevel;
return VERR_PAGE_TABLE_NOT_PRESENT;
}
DECLINLINE(int) PGM_GST_NAME(WalkReturnRsvdError)(PVMCPUCC pVCpu, PGSTPTWALK pWalk, int iLevel)
{
NOREF(pVCpu);
pWalk->Core.fRsvdError = true;
pWalk->Core.uLevel = (uint8_t)iLevel;
return VERR_PAGE_TABLE_NOT_PRESENT;
}
/**
* Performs a guest page table walk.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PAGE_TABLE_NOT_PRESENT on failure. Check pWalk for details.
*
* @param pVCpu The cross context virtual CPU structure of the calling EMT.
* @param GCPtr The guest virtual address to walk by.
* @param pWalk Where to return the walk result. This is always set.
*/
DECLINLINE(int) PGM_GST_NAME(Walk)(PVMCPUCC pVCpu, RTGCPTR GCPtr, PGSTPTWALK pWalk)
{
int rc;
/*
* Init the walking structure.
*/
RT_ZERO(*pWalk);
pWalk->Core.GCPtr = GCPtr;
# if PGM_GST_TYPE == PGM_TYPE_32BIT \
|| PGM_GST_TYPE == PGM_TYPE_PAE
/*
* Boundary check for PAE and 32-bit (prevents trouble further down).
*/
if (RT_UNLIKELY(GCPtr >= _4G))
return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 8);
# endif
uint32_t register fEffective = X86_PTE_RW | X86_PTE_US | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | 1;
{
# if PGM_GST_TYPE == PGM_TYPE_AMD64
/*
* The PMLE4.
*/
rc = pgmGstGetLongModePML4PtrEx(pVCpu, &pWalk->pPml4);
if (RT_SUCCESS(rc)) { /* probable */ }
else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 4, rc);
PX86PML4E register pPml4e;
pWalk->pPml4e = pPml4e = &pWalk->pPml4->a[(GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK];
X86PML4E register Pml4e;
pWalk->Pml4e.u = Pml4e.u = pPml4e->u;
if (Pml4e.n.u1Present) { /* probable */ }
else return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 4);
if (RT_LIKELY(GST_IS_PML4E_VALID(pVCpu, Pml4e))) { /* likely */ }
else return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 4);
pWalk->Core.fEffective = fEffective = ((uint32_t)Pml4e.u & (X86_PML4E_RW | X86_PML4E_US | X86_PML4E_PWT | X86_PML4E_PCD | X86_PML4E_A))
| ((uint32_t)(Pml4e.u >> 63) ^ 1) /*NX */;
/*
* The PDPE.
*/
rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, Pml4e.u & X86_PML4E_PG_MASK, &pWalk->pPdpt);
if (RT_SUCCESS(rc)) { /* probable */ }
else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 3, rc);
# elif PGM_GST_TYPE == PGM_TYPE_PAE
rc = pgmGstGetPaePDPTPtrEx(pVCpu, &pWalk->pPdpt);
if (RT_SUCCESS(rc)) { /* probable */ }
else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 8, rc);
# endif
}
{
# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
PX86PDPE register pPdpe;
pWalk->pPdpe = pPdpe = &pWalk->pPdpt->a[(GCPtr >> GST_PDPT_SHIFT) & GST_PDPT_MASK];
X86PDPE register Pdpe;
pWalk->Pdpe.u = Pdpe.u = pPdpe->u;
if (Pdpe.n.u1Present) { /* probable */ }
else return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 3);
if (RT_LIKELY(GST_IS_PDPE_VALID(pVCpu, Pdpe))) { /* likely */ }
else return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 3);
# if PGM_GST_TYPE == PGM_TYPE_AMD64
pWalk->Core.fEffective = fEffective &= ((uint32_t)Pdpe.u & (X86_PDPE_RW | X86_PDPE_US | X86_PDPE_PWT | X86_PDPE_PCD | X86_PDPE_A))
| ((uint32_t)(Pdpe.u >> 63) ^ 1) /*NX */;
# else
pWalk->Core.fEffective = fEffective = X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A
| ((uint32_t)Pdpe.u & (X86_PDPE_PWT | X86_PDPE_PCD))
| ((uint32_t)(Pdpe.u >> 63) ^ 1) /*NX */;
# endif
/*
* The PDE.
*/
rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, Pdpe.u & X86_PDPE_PG_MASK, &pWalk->pPd);
if (RT_SUCCESS(rc)) { /* probable */ }
else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 2, rc);
# elif PGM_GST_TYPE == PGM_TYPE_32BIT
rc = pgmGstGet32bitPDPtrEx(pVCpu, &pWalk->pPd);
if (RT_SUCCESS(rc)) { /* probable */ }
else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 8, rc);
# endif
}
{
PGSTPDE register pPde;
pWalk->pPde = pPde = &pWalk->pPd->a[(GCPtr >> GST_PD_SHIFT) & GST_PD_MASK];
GSTPDE Pde;
pWalk->Pde.u = Pde.u = pPde->u;
if (Pde.n.u1Present) { /* probable */ }
else return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 2);
if (Pde.n.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
{
if (RT_LIKELY(GST_IS_BIG_PDE_VALID(pVCpu, Pde))) { /* likely */ }
else return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 2);
/*
* We're done.
*/
# if PGM_GST_TYPE == PGM_TYPE_32BIT
fEffective &= Pde.u & (X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PWT | X86_PDE4M_PCD | X86_PDE4M_A);
# else
fEffective &= ((uint32_t)Pde.u & (X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PWT | X86_PDE4M_PCD | X86_PDE4M_A))
| ((uint32_t)(Pde.u >> 63) ^ 1) /*NX */;
# endif
fEffective |= (uint32_t)Pde.u & (X86_PDE4M_D | X86_PDE4M_G);
fEffective |= (uint32_t)(Pde.u & X86_PDE4M_PAT) >> X86_PDE4M_PAT_SHIFT;
pWalk->Core.fEffective = fEffective;
pWalk->Core.fEffectiveRW = !!(fEffective & X86_PTE_RW);
pWalk->Core.fEffectiveUS = !!(fEffective & X86_PTE_US);
# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
pWalk->Core.fEffectiveNX = !(fEffective & 1) && GST_IS_NX_ACTIVE(pVCpu);
# else
pWalk->Core.fEffectiveNX = false;
# endif
pWalk->Core.fBigPage = true;
pWalk->Core.fSucceeded = true;
pWalk->Core.GCPhys = GST_GET_BIG_PDE_GCPHYS(pVCpu->CTX_SUFF(pVM), Pde)
| (GCPtr & GST_BIG_PAGE_OFFSET_MASK);
PGM_A20_APPLY_TO_VAR(pVCpu, pWalk->Core.GCPhys);
return VINF_SUCCESS;
}
if (RT_UNLIKELY(!GST_IS_PDE_VALID(pVCpu, Pde)))
return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 2);
# if PGM_GST_TYPE == PGM_TYPE_32BIT
pWalk->Core.fEffective = fEffective &= Pde.u & (X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD | X86_PDE_A);
# else
pWalk->Core.fEffective = fEffective &= ((uint32_t)Pde.u & (X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD | X86_PDE_A))
| ((uint32_t)(Pde.u >> 63) ^ 1) /*NX */;
# endif
/*
* The PTE.
*/
rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, GST_GET_PDE_GCPHYS(Pde), &pWalk->pPt);
if (RT_SUCCESS(rc)) { /* probable */ }
else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 1, rc);
}
{
PGSTPTE register pPte;
pWalk->pPte = pPte = &pWalk->pPt->a[(GCPtr >> GST_PT_SHIFT) & GST_PT_MASK];
GSTPTE register Pte;
pWalk->Pte.u = Pte.u = pPte->u;
if (Pte.n.u1Present) { /* probable */ }
else return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 1);
if (RT_LIKELY(GST_IS_PTE_VALID(pVCpu, Pte))) { /* likely */ }
else return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 1);
/*
* We're done.
*/
# if PGM_GST_TYPE == PGM_TYPE_32BIT
fEffective &= Pte.u & (X86_PTE_RW | X86_PTE_US | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A);
# else
fEffective &= ((uint32_t)Pte.u & (X86_PTE_RW | X86_PTE_US | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A))
| ((uint32_t)(Pte.u >> 63) ^ 1) /*NX */;
# endif
fEffective |= (uint32_t)Pte.u & (X86_PTE_D | X86_PTE_PAT | X86_PTE_G);
pWalk->Core.fEffective = fEffective;
pWalk->Core.fEffectiveRW = !!(fEffective & X86_PTE_RW);
pWalk->Core.fEffectiveUS = !!(fEffective & X86_PTE_US);
# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
pWalk->Core.fEffectiveNX = !(fEffective & 1) && GST_IS_NX_ACTIVE(pVCpu);
# else
pWalk->Core.fEffectiveNX = false;
# endif
pWalk->Core.fSucceeded = true;
pWalk->Core.GCPhys = GST_GET_PDE_GCPHYS(Pte)
| (GCPtr & PAGE_OFFSET_MASK);
return VINF_SUCCESS;
}
}
#endif /* 32BIT, PAE, AMD64 */
/**
* Gets effective Guest OS page information.
*
* When GCPtr is in a big page, the function will return as if it was a normal
* 4KB page. If the need for distinguishing between big and normal page becomes
* necessary at a later point, a PGMGstGetPage Ex() will be created for that
* purpose.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param GCPtr Guest Context virtual address of the page.
* @param pfFlags Where to store the flags. These are X86_PTE_*, even for big pages.
* @param pGCPhys Where to store the GC physical address of the page.
* This is page aligned!
*/
PGM_GST_DECL(int, GetPage)(PVMCPUCC pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)
{
#if PGM_GST_TYPE == PGM_TYPE_REAL \
|| PGM_GST_TYPE == PGM_TYPE_PROT
/*
* Fake it.
*/
if (pfFlags)
*pfFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US;
if (pGCPhys)
*pGCPhys = GCPtr & PAGE_BASE_GC_MASK;
NOREF(pVCpu);
return VINF_SUCCESS;
#elif PGM_GST_TYPE == PGM_TYPE_32BIT \
|| PGM_GST_TYPE == PGM_TYPE_PAE \
|| PGM_GST_TYPE == PGM_TYPE_AMD64
GSTPTWALK Walk;
int rc = PGM_GST_NAME(Walk)(pVCpu, GCPtr, &Walk);
if (RT_FAILURE(rc))
return rc;
if (pGCPhys)
*pGCPhys = Walk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
if (pfFlags)
{
if (!Walk.Core.fBigPage)
*pfFlags = (Walk.Pte.u & ~(GST_PTE_PG_MASK | X86_PTE_RW | X86_PTE_US)) /* NX not needed */
| (Walk.Core.fEffectiveRW ? X86_PTE_RW : 0)
| (Walk.Core.fEffectiveUS ? X86_PTE_US : 0)
# if PGM_WITH_NX(PGM_GST_TYPE, PGM_GST_TYPE)
| (Walk.Core.fEffectiveNX ? X86_PTE_PAE_NX : 0)
# endif
;
else
{
*pfFlags = (Walk.Pde.u & ~(GST_PTE_PG_MASK | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PS)) /* NX not needed */
| ((Walk.Pde.u & X86_PDE4M_PAT) >> X86_PDE4M_PAT_SHIFT)
| (Walk.Core.fEffectiveRW ? X86_PTE_RW : 0)
| (Walk.Core.fEffectiveUS ? X86_PTE_US : 0)
# if PGM_WITH_NX(PGM_GST_TYPE, PGM_GST_TYPE)
| (Walk.Core.fEffectiveNX ? X86_PTE_PAE_NX : 0)
# endif
;
}
}
return VINF_SUCCESS;
#else
# error "shouldn't be here!"
/* something else... */
return VERR_NOT_SUPPORTED;
#endif
}
/**
* Modify page flags for a range of pages in the guest's tables
*
* The existing flags are ANDed with the fMask and ORed with the fFlags.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param GCPtr Virtual address of the first page in the range. Page aligned!
* @param cb Size (in bytes) of the page range to apply the modification to. Page aligned!
* @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
* @param fMask The AND mask - page flags X86_PTE_*.
*/
PGM_GST_DECL(int, ModifyPage)(PVMCPUCC pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
{
Assert((cb & PAGE_OFFSET_MASK) == 0); RT_NOREF_PV(cb);
#if PGM_GST_TYPE == PGM_TYPE_32BIT \
|| PGM_GST_TYPE == PGM_TYPE_PAE \
|| PGM_GST_TYPE == PGM_TYPE_AMD64
for (;;)
{
GSTPTWALK Walk;
int rc = PGM_GST_NAME(Walk)(pVCpu, GCPtr, &Walk);
if (RT_FAILURE(rc))
return rc;
if (!Walk.Core.fBigPage)
{
/*
* 4KB Page table, process
*
* Walk pages till we're done.
*/
unsigned iPTE = (GCPtr >> GST_PT_SHIFT) & GST_PT_MASK;
while (iPTE < RT_ELEMENTS(Walk.pPt->a))
{
GSTPTE Pte = Walk.pPt->a[iPTE];
Pte.u = (Pte.u & (fMask | X86_PTE_PAE_PG_MASK))
| (fFlags & ~GST_PTE_PG_MASK);
Walk.pPt->a[iPTE] = Pte;
/* next page */
cb -= PAGE_SIZE;
if (!cb)
return VINF_SUCCESS;
GCPtr += PAGE_SIZE;
iPTE++;
}
}
else
{
/*
* 2/4MB Page table
*/
GSTPDE PdeNew;
# if PGM_GST_TYPE == PGM_TYPE_32BIT
PdeNew.u = (Walk.Pde.u & (fMask | ((fMask & X86_PTE_PAT) << X86_PDE4M_PAT_SHIFT) | GST_PDE_BIG_PG_MASK | X86_PDE4M_PG_HIGH_MASK | X86_PDE4M_PS))
# else
PdeNew.u = (Walk.Pde.u & (fMask | ((fMask & X86_PTE_PAT) << X86_PDE4M_PAT_SHIFT) | GST_PDE_BIG_PG_MASK | X86_PDE4M_PS))
# endif
| (fFlags & ~GST_PTE_PG_MASK)
| ((fFlags & X86_PTE_PAT) << X86_PDE4M_PAT_SHIFT);
*Walk.pPde = PdeNew;
/* advance */
const unsigned cbDone = GST_BIG_PAGE_SIZE - (GCPtr & GST_BIG_PAGE_OFFSET_MASK);
if (cbDone >= cb)
return VINF_SUCCESS;
cb -= cbDone;
GCPtr += cbDone;
}
}
#else
/* real / protected mode: ignore. */
NOREF(pVCpu); NOREF(GCPtr); NOREF(fFlags); NOREF(fMask);
return VINF_SUCCESS;
#endif
}
/**
* Retrieve guest PDE information.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param GCPtr Guest context pointer.
* @param pPDE Pointer to guest PDE structure.
*/
PGM_GST_DECL(int, GetPDE)(PVMCPUCC pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPDE)
{
#if PGM_GST_TYPE == PGM_TYPE_32BIT \
|| PGM_GST_TYPE == PGM_TYPE_PAE \
|| PGM_GST_TYPE == PGM_TYPE_AMD64
# if PGM_GST_TYPE != PGM_TYPE_AMD64
/* Boundary check. */
if (RT_UNLIKELY(GCPtr >= _4G))
return VERR_PAGE_TABLE_NOT_PRESENT;
# endif
# if PGM_GST_TYPE == PGM_TYPE_32BIT
unsigned iPd = (GCPtr >> GST_PD_SHIFT) & GST_PD_MASK;
PX86PD pPd = pgmGstGet32bitPDPtr(pVCpu);
# elif PGM_GST_TYPE == PGM_TYPE_PAE
unsigned iPd = 0; /* shut up gcc */
PCX86PDPAE pPd = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPd, NULL);
# elif PGM_GST_TYPE == PGM_TYPE_AMD64
PX86PML4E pPml4eIgn;
X86PDPE PdpeIgn;
unsigned iPd = 0; /* shut up gcc */
PCX86PDPAE pPd = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eIgn, &PdpeIgn, &iPd);
/* Note! We do not return an effective PDE here like we do for the PTE in GetPage method. */
# endif
if (RT_LIKELY(pPd))
pPDE->u = (X86PGPAEUINT)pPd->a[iPd].u;
else
pPDE->u = 0;
return VINF_SUCCESS;
#else
NOREF(pVCpu); NOREF(GCPtr); NOREF(pPDE);
AssertFailed();
return VERR_NOT_IMPLEMENTED;
#endif
}
#ifdef IN_RING3
/**
* Relocate any GC pointers related to guest mode paging.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param offDelta The relocation offset.
*/
PGM_GST_DECL(int, Relocate)(PVMCPUCC pVCpu, RTGCPTR offDelta)
{
RT_NOREF(pVCpu, offDelta);
return VINF_SUCCESS;
}
#endif
|