summaryrefslogtreecommitdiffstats
path: root/src/arrow/python/pyarrow/table.pxi
blob: 8105ce482948341673e35f555bfc27fafcd6218d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

import warnings


cdef class ChunkedArray(_PandasConvertible):
    """
    An array-like composed from a (possibly empty) collection of pyarrow.Arrays

    Warnings
    --------
    Do not call this class's constructor directly.
    """

    def __cinit__(self):
        self.chunked_array = NULL

    def __init__(self):
        raise TypeError("Do not call ChunkedArray's constructor directly, use "
                        "`chunked_array` function instead.")

    cdef void init(self, const shared_ptr[CChunkedArray]& chunked_array):
        self.sp_chunked_array = chunked_array
        self.chunked_array = chunked_array.get()

    def __reduce__(self):
        return chunked_array, (self.chunks, self.type)

    @property
    def data(self):
        import warnings
        warnings.warn("Calling .data on ChunkedArray is provided for "
                      "compatibility after Column was removed, simply drop "
                      "this attribute", FutureWarning)
        return self

    @property
    def type(self):
        return pyarrow_wrap_data_type(self.sp_chunked_array.get().type())

    def length(self):
        return self.chunked_array.length()

    def __len__(self):
        return self.length()

    def __repr__(self):
        type_format = object.__repr__(self)
        return '{0}\n{1}'.format(type_format, str(self))

    def to_string(self, *, int indent=0, int window=10,
                  c_bool skip_new_lines=False):
        """
        Render a "pretty-printed" string representation of the ChunkedArray

        Parameters
        ----------
        indent : int
            How much to indent right the content of the array,
            by default ``0``.
        window : int
            How many items to preview at the begin and end
            of the array when the arrays is bigger than the window.
            The other elements will be ellipsed.
        skip_new_lines : bool
            If the array should be rendered as a single line of text
            or if each element should be on its own line.
        """
        cdef:
            c_string result
            PrettyPrintOptions options

        with nogil:
            options = PrettyPrintOptions(indent, window)
            options.skip_new_lines = skip_new_lines
            check_status(
                PrettyPrint(
                    deref(self.chunked_array),
                    options,
                    &result
                )
            )

        return frombytes(result, safe=True)

    def format(self, **kwargs):
        import warnings
        warnings.warn('ChunkedArray.format is deprecated, '
                      'use ChunkedArray.to_string')
        return self.to_string(**kwargs)

    def __str__(self):
        return self.to_string()

    def validate(self, *, full=False):
        """
        Perform validation checks.  An exception is raised if validation fails.

        By default only cheap validation checks are run.  Pass `full=True`
        for thorough validation checks (potentially O(n)).

        Parameters
        ----------
        full: bool, default False
            If True, run expensive checks, otherwise cheap checks only.

        Raises
        ------
        ArrowInvalid
        """
        if full:
            with nogil:
                check_status(self.sp_chunked_array.get().ValidateFull())
        else:
            with nogil:
                check_status(self.sp_chunked_array.get().Validate())

    @property
    def null_count(self):
        """
        Number of null entries

        Returns
        -------
        int
        """
        return self.chunked_array.null_count()

    @property
    def nbytes(self):
        """
        Total number of bytes consumed by the elements of the chunked array.
        """
        size = 0
        for chunk in self.iterchunks():
            size += chunk.nbytes
        return size

    def __sizeof__(self):
        return super(ChunkedArray, self).__sizeof__() + self.nbytes

    def __iter__(self):
        for chunk in self.iterchunks():
            for item in chunk:
                yield item

    def __getitem__(self, key):
        """
        Slice or return value at given index

        Parameters
        ----------
        key : integer or slice
            Slices with step not equal to 1 (or None) will produce a copy
            rather than a zero-copy view

        Returns
        -------
        value : Scalar (index) or ChunkedArray (slice)
        """
        if isinstance(key, slice):
            return _normalize_slice(self, key)

        return self.getitem(_normalize_index(key, self.chunked_array.length()))

    cdef getitem(self, int64_t index):
        cdef int j

        for j in range(self.num_chunks):
            if index < self.chunked_array.chunk(j).get().length():
                return self.chunk(j)[index]
            else:
                index -= self.chunked_array.chunk(j).get().length()

    def is_null(self, *, nan_is_null=False):
        """
        Return boolean array indicating the null values.

        Parameters
        ----------
        nan_is_null : bool (optional, default False)
            Whether floating-point NaN values should also be considered null.

        Returns
        -------
        array : boolean Array or ChunkedArray
        """
        options = _pc().NullOptions(nan_is_null=nan_is_null)
        return _pc().call_function('is_null', [self], options)

    def is_valid(self):
        """
        Return boolean array indicating the non-null values.
        """
        return _pc().is_valid(self)

    def __eq__(self, other):
        try:
            return self.equals(other)
        except TypeError:
            return NotImplemented

    def fill_null(self, fill_value):
        """
        See pyarrow.compute.fill_null docstring for usage.
        """
        return _pc().fill_null(self, fill_value)

    def equals(self, ChunkedArray other):
        """
        Return whether the contents of two chunked arrays are equal.

        Parameters
        ----------
        other : pyarrow.ChunkedArray
            Chunked array to compare against.

        Returns
        -------
        are_equal : bool
        """
        if other is None:
            return False

        cdef:
            CChunkedArray* this_arr = self.chunked_array
            CChunkedArray* other_arr = other.chunked_array
            c_bool result

        with nogil:
            result = this_arr.Equals(deref(other_arr))

        return result

    def _to_pandas(self, options, **kwargs):
        return _array_like_to_pandas(self, options)

    def to_numpy(self):
        """
        Return a NumPy copy of this array (experimental).

        Returns
        -------
        array : numpy.ndarray
        """
        cdef:
            PyObject* out
            PandasOptions c_options
            object values

        if self.type.id == _Type_EXTENSION:
            storage_array = chunked_array(
                [chunk.storage for chunk in self.iterchunks()],
                type=self.type.storage_type
            )
            return storage_array.to_numpy()

        with nogil:
            check_status(
                ConvertChunkedArrayToPandas(
                    c_options,
                    self.sp_chunked_array,
                    self,
                    &out
                )
            )

        # wrap_array_output uses pandas to convert to Categorical, here
        # always convert to numpy array
        values = PyObject_to_object(out)

        if isinstance(values, dict):
            values = np.take(values['dictionary'], values['indices'])

        return values

    def __array__(self, dtype=None):
        values = self.to_numpy()
        if dtype is None:
            return values
        return values.astype(dtype)

    def cast(self, object target_type, safe=True):
        """
        Cast array values to another data type

        See pyarrow.compute.cast for usage
        """
        return _pc().cast(self, target_type, safe=safe)

    def dictionary_encode(self, null_encoding='mask'):
        """
        Compute dictionary-encoded representation of array

        Returns
        -------
        pyarrow.ChunkedArray
            Same chunking as the input, all chunks share a common dictionary.
        """
        options = _pc().DictionaryEncodeOptions(null_encoding)
        return _pc().call_function('dictionary_encode', [self], options)

    def flatten(self, MemoryPool memory_pool=None):
        """
        Flatten this ChunkedArray.  If it has a struct type, the column is
        flattened into one array per struct field.

        Parameters
        ----------
        memory_pool : MemoryPool, default None
            For memory allocations, if required, otherwise use default pool

        Returns
        -------
        result : List[ChunkedArray]
        """
        cdef:
            vector[shared_ptr[CChunkedArray]] flattened
            CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool)

        with nogil:
            flattened = GetResultValue(self.chunked_array.Flatten(pool))

        return [pyarrow_wrap_chunked_array(col) for col in flattened]

    def combine_chunks(self, MemoryPool memory_pool=None):
        """
        Flatten this ChunkedArray into a single non-chunked array.

        Parameters
        ----------
        memory_pool : MemoryPool, default None
            For memory allocations, if required, otherwise use default pool

        Returns
        -------
        result : Array
        """
        return concat_arrays(self.chunks)

    def unique(self):
        """
        Compute distinct elements in array

        Returns
        -------
        pyarrow.Array
        """
        return _pc().call_function('unique', [self])

    def value_counts(self):
        """
        Compute counts of unique elements in array.

        Returns
        -------
        An array of  <input type "Values", int64_t "Counts"> structs
        """
        return _pc().call_function('value_counts', [self])

    def slice(self, offset=0, length=None):
        """
        Compute zero-copy slice of this ChunkedArray

        Parameters
        ----------
        offset : int, default 0
            Offset from start of array to slice
        length : int, default None
            Length of slice (default is until end of batch starting from
            offset)

        Returns
        -------
        sliced : ChunkedArray
        """
        cdef shared_ptr[CChunkedArray] result

        if offset < 0:
            raise IndexError('Offset must be non-negative')

        offset = min(len(self), offset)
        if length is None:
            result = self.chunked_array.Slice(offset)
        else:
            result = self.chunked_array.Slice(offset, length)

        return pyarrow_wrap_chunked_array(result)

    def filter(self, mask, object null_selection_behavior="drop"):
        """
        Select values from a chunked array. See pyarrow.compute.filter for full
        usage.
        """
        return _pc().filter(self, mask, null_selection_behavior)

    def index(self, value, start=None, end=None, *, memory_pool=None):
        """
        Find the first index of a value.

        See pyarrow.compute.index for full usage.
        """
        return _pc().index(self, value, start, end, memory_pool=memory_pool)

    def take(self, object indices):
        """
        Select values from a chunked array. See pyarrow.compute.take for full
        usage.
        """
        return _pc().take(self, indices)

    def drop_null(self):
        """
        Remove missing values from a chunked array.
        See pyarrow.compute.drop_null for full description.
        """
        return _pc().drop_null(self)

    def unify_dictionaries(self, MemoryPool memory_pool=None):
        """
        Unify dictionaries across all chunks.

        This method returns an equivalent chunked array, but where all
        chunks share the same dictionary values.  Dictionary indices are
        transposed accordingly.

        If there are no dictionaries in the chunked array, it is returned
        unchanged.

        Parameters
        ----------
        memory_pool : MemoryPool, default None
            For memory allocations, if required, otherwise use default pool

        Returns
        -------
        result : ChunkedArray
        """
        cdef:
            CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool)
            shared_ptr[CChunkedArray] c_result

        with nogil:
            c_result = GetResultValue(CDictionaryUnifier.UnifyChunkedArray(
                self.sp_chunked_array, pool))

        return pyarrow_wrap_chunked_array(c_result)

    @property
    def num_chunks(self):
        """
        Number of underlying chunks

        Returns
        -------
        int
        """
        return self.chunked_array.num_chunks()

    def chunk(self, i):
        """
        Select a chunk by its index

        Parameters
        ----------
        i : int

        Returns
        -------
        pyarrow.Array
        """
        if i >= self.num_chunks or i < 0:
            raise IndexError('Chunk index out of range.')

        return pyarrow_wrap_array(self.chunked_array.chunk(i))

    @property
    def chunks(self):
        return list(self.iterchunks())

    def iterchunks(self):
        for i in range(self.num_chunks):
            yield self.chunk(i)

    def to_pylist(self):
        """
        Convert to a list of native Python objects.
        """
        result = []
        for i in range(self.num_chunks):
            result += self.chunk(i).to_pylist()
        return result


def chunked_array(arrays, type=None):
    """
    Construct chunked array from list of array-like objects

    Parameters
    ----------
    arrays : Array, list of Array, or values coercible to arrays
        Must all be the same data type. Can be empty only if type also passed.
    type : DataType or string coercible to DataType

    Returns
    -------
    ChunkedArray
    """
    cdef:
        Array arr
        vector[shared_ptr[CArray]] c_arrays
        shared_ptr[CChunkedArray] sp_chunked_array

    type = ensure_type(type, allow_none=True)

    if isinstance(arrays, Array):
        arrays = [arrays]

    for x in arrays:
        arr = x if isinstance(x, Array) else array(x, type=type)

        if type is None:
            # it allows more flexible chunked array construction from to coerce
            # subsequent arrays to the firstly inferred array type
            # it also spares the inference overhead after the first chunk
            type = arr.type
        else:
            if arr.type != type:
                raise TypeError(
                    "All array chunks must have type {}".format(type)
                )

        c_arrays.push_back(arr.sp_array)

    if c_arrays.size() == 0 and type is None:
        raise ValueError("When passing an empty collection of arrays "
                         "you must also pass the data type")

    sp_chunked_array.reset(
        new CChunkedArray(c_arrays, pyarrow_unwrap_data_type(type))
    )
    with nogil:
        check_status(sp_chunked_array.get().Validate())

    return pyarrow_wrap_chunked_array(sp_chunked_array)


cdef _schema_from_arrays(arrays, names, metadata, shared_ptr[CSchema]* schema):
    cdef:
        Py_ssize_t K = len(arrays)
        c_string c_name
        shared_ptr[CDataType] c_type
        shared_ptr[const CKeyValueMetadata] c_meta
        vector[shared_ptr[CField]] c_fields

    if metadata is not None:
        c_meta = KeyValueMetadata(metadata).unwrap()

    if K == 0:
        if names is None or len(names) == 0:
            schema.reset(new CSchema(c_fields, c_meta))
            return arrays
        else:
            raise ValueError('Length of names ({}) does not match '
                             'length of arrays ({})'.format(len(names), K))

    c_fields.resize(K)

    if names is None:
        raise ValueError('Must pass names or schema when constructing '
                         'Table or RecordBatch.')

    if len(names) != K:
        raise ValueError('Length of names ({}) does not match '
                         'length of arrays ({})'.format(len(names), K))

    converted_arrays = []
    for i in range(K):
        val = arrays[i]
        if not isinstance(val, (Array, ChunkedArray)):
            val = array(val)

        c_type = (<DataType> val.type).sp_type

        if names[i] is None:
            c_name = b'None'
        else:
            c_name = tobytes(names[i])
        c_fields[i].reset(new CField(c_name, c_type, True))
        converted_arrays.append(val)

    schema.reset(new CSchema(c_fields, c_meta))
    return converted_arrays


cdef _sanitize_arrays(arrays, names, schema, metadata,
                      shared_ptr[CSchema]* c_schema):
    cdef Schema cy_schema
    if schema is None:
        converted_arrays = _schema_from_arrays(arrays, names, metadata,
                                               c_schema)
    else:
        if names is not None:
            raise ValueError('Cannot pass both schema and names')
        if metadata is not None:
            raise ValueError('Cannot pass both schema and metadata')
        cy_schema = schema

        if len(schema) != len(arrays):
            raise ValueError('Schema and number of arrays unequal')

        c_schema[0] = cy_schema.sp_schema
        converted_arrays = []
        for i, item in enumerate(arrays):
            item = asarray(item, type=schema[i].type)
            converted_arrays.append(item)
    return converted_arrays


cdef class RecordBatch(_PandasConvertible):
    """
    Batch of rows of columns of equal length

    Warnings
    --------
    Do not call this class's constructor directly, use one of the
    ``RecordBatch.from_*`` functions instead.
    """

    def __cinit__(self):
        self.batch = NULL
        self._schema = None

    def __init__(self):
        raise TypeError("Do not call RecordBatch's constructor directly, use "
                        "one of the `RecordBatch.from_*` functions instead.")

    cdef void init(self, const shared_ptr[CRecordBatch]& batch):
        self.sp_batch = batch
        self.batch = batch.get()

    @staticmethod
    def from_pydict(mapping, schema=None, metadata=None):
        """
        Construct a RecordBatch from Arrow arrays or columns.

        Parameters
        ----------
        mapping : dict or Mapping
            A mapping of strings to Arrays or Python lists.
        schema : Schema, default None
            If not passed, will be inferred from the Mapping values.
        metadata : dict or Mapping, default None
            Optional metadata for the schema (if inferred).

        Returns
        -------
        RecordBatch
        """

        return _from_pydict(cls=RecordBatch,
                            mapping=mapping,
                            schema=schema,
                            metadata=metadata)

    def __reduce__(self):
        return _reconstruct_record_batch, (self.columns, self.schema)

    def __len__(self):
        return self.batch.num_rows()

    def __eq__(self, other):
        try:
            return self.equals(other)
        except TypeError:
            return NotImplemented

    def to_string(self, show_metadata=False):
        # Use less verbose schema output.
        schema_as_string = self.schema.to_string(
            show_field_metadata=show_metadata,
            show_schema_metadata=show_metadata
        )
        return 'pyarrow.{}\n{}'.format(type(self).__name__, schema_as_string)

    def __repr__(self):
        return self.to_string()

    def validate(self, *, full=False):
        """
        Perform validation checks.  An exception is raised if validation fails.

        By default only cheap validation checks are run.  Pass `full=True`
        for thorough validation checks (potentially O(n)).

        Parameters
        ----------
        full: bool, default False
            If True, run expensive checks, otherwise cheap checks only.

        Raises
        ------
        ArrowInvalid
        """
        if full:
            with nogil:
                check_status(self.batch.ValidateFull())
        else:
            with nogil:
                check_status(self.batch.Validate())

    def replace_schema_metadata(self, metadata=None):
        """
        Create shallow copy of record batch by replacing schema
        key-value metadata with the indicated new metadata (which may be None,
        which deletes any existing metadata

        Parameters
        ----------
        metadata : dict, default None

        Returns
        -------
        shallow_copy : RecordBatch
        """
        cdef:
            shared_ptr[const CKeyValueMetadata] c_meta
            shared_ptr[CRecordBatch] c_batch

        metadata = ensure_metadata(metadata, allow_none=True)
        c_meta = pyarrow_unwrap_metadata(metadata)
        with nogil:
            c_batch = self.batch.ReplaceSchemaMetadata(c_meta)

        return pyarrow_wrap_batch(c_batch)

    @property
    def num_columns(self):
        """
        Number of columns

        Returns
        -------
        int
        """
        return self.batch.num_columns()

    @property
    def num_rows(self):
        """
        Number of rows

        Due to the definition of a RecordBatch, all columns have the same
        number of rows.

        Returns
        -------
        int
        """
        return len(self)

    @property
    def schema(self):
        """
        Schema of the RecordBatch and its columns

        Returns
        -------
        pyarrow.Schema
        """
        if self._schema is None:
            self._schema = pyarrow_wrap_schema(self.batch.schema())

        return self._schema

    def field(self, i):
        """
        Select a schema field by its column name or numeric index

        Parameters
        ----------
        i : int or string
            The index or name of the field to retrieve

        Returns
        -------
        pyarrow.Field
        """
        return self.schema.field(i)

    @property
    def columns(self):
        """
        List of all columns in numerical order

        Returns
        -------
        list of pa.Array
        """
        return [self.column(i) for i in range(self.num_columns)]

    def _ensure_integer_index(self, i):
        """
        Ensure integer index (convert string column name to integer if needed).
        """
        if isinstance(i, (bytes, str)):
            field_indices = self.schema.get_all_field_indices(i)

            if len(field_indices) == 0:
                raise KeyError(
                    "Field \"{}\" does not exist in record batch schema"
                    .format(i))
            elif len(field_indices) > 1:
                raise KeyError(
                    "Field \"{}\" exists {} times in record batch schema"
                    .format(i, len(field_indices)))
            else:
                return field_indices[0]
        elif isinstance(i, int):
            return i
        else:
            raise TypeError("Index must either be string or integer")

    def column(self, i):
        """
        Select single column from record batch

        Parameters
        ----------
        i : int or string
            The index or name of the column to retrieve.

        Returns
        -------
        column : pyarrow.Array
        """
        return self._column(self._ensure_integer_index(i))

    def _column(self, int i):
        """
        Select single column from record batch by its numeric index.

        Parameters
        ----------
        i : int
            The index of the column to retrieve.

        Returns
        -------
        column : pyarrow.Array
        """
        cdef int index = <int> _normalize_index(i, self.num_columns)
        cdef Array result = pyarrow_wrap_array(self.batch.column(index))
        result._name = self.schema[index].name
        return result

    @property
    def nbytes(self):
        """
        Total number of bytes consumed by the elements of the record batch.
        """
        size = 0
        for i in range(self.num_columns):
            size += self.column(i).nbytes
        return size

    def __sizeof__(self):
        return super(RecordBatch, self).__sizeof__() + self.nbytes

    def __getitem__(self, key):
        """
        Slice or return column at given index or column name

        Parameters
        ----------
        key : integer, str, or slice
            Slices with step not equal to 1 (or None) will produce a copy
            rather than a zero-copy view

        Returns
        -------
        value : Array (index/column) or RecordBatch (slice)
        """
        if isinstance(key, slice):
            return _normalize_slice(self, key)
        else:
            return self.column(key)

    def serialize(self, memory_pool=None):
        """
        Write RecordBatch to Buffer as encapsulated IPC message.

        Parameters
        ----------
        memory_pool : MemoryPool, default None
            Uses default memory pool if not specified

        Returns
        -------
        serialized : Buffer
        """
        cdef shared_ptr[CBuffer] buffer
        cdef CIpcWriteOptions options = CIpcWriteOptions.Defaults()
        options.memory_pool = maybe_unbox_memory_pool(memory_pool)

        with nogil:
            buffer = GetResultValue(
                SerializeRecordBatch(deref(self.batch), options))
        return pyarrow_wrap_buffer(buffer)

    def slice(self, offset=0, length=None):
        """
        Compute zero-copy slice of this RecordBatch

        Parameters
        ----------
        offset : int, default 0
            Offset from start of record batch to slice
        length : int, default None
            Length of slice (default is until end of batch starting from
            offset)

        Returns
        -------
        sliced : RecordBatch
        """
        cdef shared_ptr[CRecordBatch] result

        if offset < 0:
            raise IndexError('Offset must be non-negative')

        offset = min(len(self), offset)
        if length is None:
            result = self.batch.Slice(offset)
        else:
            result = self.batch.Slice(offset, length)

        return pyarrow_wrap_batch(result)

    def filter(self, mask, object null_selection_behavior="drop"):
        """
        Select record from a record batch. See pyarrow.compute.filter for full
        usage.
        """
        return _pc().filter(self, mask, null_selection_behavior)

    def equals(self, object other, bint check_metadata=False):
        """
        Check if contents of two record batches are equal.

        Parameters
        ----------
        other : pyarrow.RecordBatch
            RecordBatch to compare against.
        check_metadata : bool, default False
            Whether schema metadata equality should be checked as well.

        Returns
        -------
        are_equal : bool
        """
        cdef:
            CRecordBatch* this_batch = self.batch
            shared_ptr[CRecordBatch] other_batch = pyarrow_unwrap_batch(other)
            c_bool result

        if not other_batch:
            return False

        with nogil:
            result = this_batch.Equals(deref(other_batch), check_metadata)

        return result

    def take(self, object indices):
        """
        Select records from a RecordBatch. See pyarrow.compute.take for full
        usage.
        """
        return _pc().take(self, indices)

    def drop_null(self):
        """
        Remove missing values from a RecordBatch.
        See pyarrow.compute.drop_null for full usage.
        """
        return _pc().drop_null(self)

    def to_pydict(self):
        """
        Convert the RecordBatch to a dict or OrderedDict.

        Returns
        -------
        dict
        """
        entries = []
        for i in range(self.batch.num_columns()):
            name = bytes(self.batch.column_name(i)).decode('utf8')
            column = self[i].to_pylist()
            entries.append((name, column))
        return ordered_dict(entries)

    def _to_pandas(self, options, **kwargs):
        return Table.from_batches([self])._to_pandas(options, **kwargs)

    @classmethod
    def from_pandas(cls, df, Schema schema=None, preserve_index=None,
                    nthreads=None, columns=None):
        """
        Convert pandas.DataFrame to an Arrow RecordBatch

        Parameters
        ----------
        df : pandas.DataFrame
        schema : pyarrow.Schema, optional
            The expected schema of the RecordBatch. This can be used to
            indicate the type of columns if we cannot infer it automatically.
            If passed, the output will have exactly this schema. Columns
            specified in the schema that are not found in the DataFrame columns
            or its index will raise an error. Additional columns or index
            levels in the DataFrame which are not specified in the schema will
            be ignored.
        preserve_index : bool, optional
            Whether to store the index as an additional column in the resulting
            ``RecordBatch``. The default of None will store the index as a
            column, except for RangeIndex which is stored as metadata only. Use
            ``preserve_index=True`` to force it to be stored as a column.
        nthreads : int, default None (may use up to system CPU count threads)
            If greater than 1, convert columns to Arrow in parallel using
            indicated number of threads
        columns : list, optional
           List of column to be converted. If None, use all columns.

        Returns
        -------
        pyarrow.RecordBatch
        """
        from pyarrow.pandas_compat import dataframe_to_arrays
        arrays, schema = dataframe_to_arrays(
            df, schema, preserve_index, nthreads=nthreads, columns=columns
        )
        return cls.from_arrays(arrays, schema=schema)

    @staticmethod
    def from_arrays(list arrays, names=None, schema=None, metadata=None):
        """
        Construct a RecordBatch from multiple pyarrow.Arrays

        Parameters
        ----------
        arrays : list of pyarrow.Array
            One for each field in RecordBatch
        names : list of str, optional
            Names for the batch fields. If not passed, schema must be passed
        schema : Schema, default None
            Schema for the created batch. If not passed, names must be passed
        metadata : dict or Mapping, default None
            Optional metadata for the schema (if inferred).

        Returns
        -------
        pyarrow.RecordBatch
        """
        cdef:
            Array arr
            shared_ptr[CSchema] c_schema
            vector[shared_ptr[CArray]] c_arrays
            int64_t num_rows

        if len(arrays) > 0:
            num_rows = len(arrays[0])
        else:
            num_rows = 0

        if isinstance(names, Schema):
            import warnings
            warnings.warn("Schema passed to names= option, please "
                          "pass schema= explicitly. "
                          "Will raise exception in future", FutureWarning)
            schema = names
            names = None

        converted_arrays = _sanitize_arrays(arrays, names, schema, metadata,
                                            &c_schema)

        c_arrays.reserve(len(arrays))
        for arr in converted_arrays:
            if len(arr) != num_rows:
                raise ValueError('Arrays were not all the same length: '
                                 '{0} vs {1}'.format(len(arr), num_rows))
            c_arrays.push_back(arr.sp_array)

        result = pyarrow_wrap_batch(CRecordBatch.Make(c_schema, num_rows,
                                                      c_arrays))
        result.validate()
        return result

    @staticmethod
    def from_struct_array(StructArray struct_array):
        """
        Construct a RecordBatch from a StructArray.

        Each field in the StructArray will become a column in the resulting
        ``RecordBatch``.

        Parameters
        ----------
        struct_array : StructArray
            Array to construct the record batch from.

        Returns
        -------
        pyarrow.RecordBatch
        """
        cdef:
            shared_ptr[CRecordBatch] c_record_batch
        with nogil:
            c_record_batch = GetResultValue(
                CRecordBatch.FromStructArray(struct_array.sp_array))
        return pyarrow_wrap_batch(c_record_batch)

    def _export_to_c(self, uintptr_t out_ptr, uintptr_t out_schema_ptr=0):
        """
        Export to a C ArrowArray struct, given its pointer.

        If a C ArrowSchema struct pointer is also given, the record batch
        schema is exported to it at the same time.

        Parameters
        ----------
        out_ptr: int
            The raw pointer to a C ArrowArray struct.
        out_schema_ptr: int (optional)
            The raw pointer to a C ArrowSchema struct.

        Be careful: if you don't pass the ArrowArray struct to a consumer,
        array memory will leak.  This is a low-level function intended for
        expert users.
        """
        with nogil:
            check_status(ExportRecordBatch(deref(self.sp_batch),
                                           <ArrowArray*> out_ptr,
                                           <ArrowSchema*> out_schema_ptr))

    @staticmethod
    def _import_from_c(uintptr_t in_ptr, schema):
        """
        Import RecordBatch from a C ArrowArray struct, given its pointer
        and the imported schema.

        Parameters
        ----------
        in_ptr: int
            The raw pointer to a C ArrowArray struct.
        type: Schema or int
            Either a Schema object, or the raw pointer to a C ArrowSchema
            struct.

        This is a low-level function intended for expert users.
        """
        cdef:
            shared_ptr[CRecordBatch] c_batch

        c_schema = pyarrow_unwrap_schema(schema)
        if c_schema == nullptr:
            # Not a Schema object, perhaps a raw ArrowSchema pointer
            schema_ptr = <uintptr_t> schema
            with nogil:
                c_batch = GetResultValue(ImportRecordBatch(
                    <ArrowArray*> in_ptr, <ArrowSchema*> schema_ptr))
        else:
            with nogil:
                c_batch = GetResultValue(ImportRecordBatch(
                    <ArrowArray*> in_ptr, c_schema))
        return pyarrow_wrap_batch(c_batch)


def _reconstruct_record_batch(columns, schema):
    """
    Internal: reconstruct RecordBatch from pickled components.
    """
    return RecordBatch.from_arrays(columns, schema=schema)


def table_to_blocks(options, Table table, categories, extension_columns):
    cdef:
        PyObject* result_obj
        shared_ptr[CTable] c_table
        CMemoryPool* pool
        PandasOptions c_options = _convert_pandas_options(options)

    if categories is not None:
        c_options.categorical_columns = {tobytes(cat) for cat in categories}
    if extension_columns is not None:
        c_options.extension_columns = {tobytes(col)
                                       for col in extension_columns}

    # ARROW-3789(wesm); Convert date/timestamp types to datetime64[ns]
    c_options.coerce_temporal_nanoseconds = True

    if c_options.self_destruct:
        # Move the shared_ptr, table is now unsafe to use further
        c_table = move(table.sp_table)
        table.table = NULL
    else:
        c_table = table.sp_table

    with nogil:
        check_status(
            libarrow.ConvertTableToPandas(c_options, move(c_table),
                                          &result_obj)
        )

    return PyObject_to_object(result_obj)


cdef class Table(_PandasConvertible):
    """
    A collection of top-level named, equal length Arrow arrays.

    Warning
    -------
    Do not call this class's constructor directly, use one of the ``from_*``
    methods instead.
    """

    def __cinit__(self):
        self.table = NULL

    def __init__(self):
        raise TypeError("Do not call Table's constructor directly, use one of "
                        "the `Table.from_*` functions instead.")

    def to_string(self, *, show_metadata=False, preview_cols=0):
        """
        Return human-readable string representation of Table.

        Parameters
        ----------
        show_metadata : bool, default True
            Display Field-level and Schema-level KeyValueMetadata.
        preview_cols : int, default 0
            Display values of the columns for the first N columns.

        Returns
        -------
        str
        """
        # Use less verbose schema output.
        schema_as_string = self.schema.to_string(
            show_field_metadata=show_metadata,
            show_schema_metadata=show_metadata
        )
        title = 'pyarrow.{}\n{}'.format(type(self).__name__, schema_as_string)
        pieces = [title]
        if preview_cols:
            pieces.append('----')
            for i in range(min(self.num_columns, preview_cols)):
                pieces.append('{}: {}'.format(
                    self.field(i).name,
                    self.column(i).to_string(indent=0, skip_new_lines=True)
                ))
            if preview_cols < self.num_columns:
                pieces.append('...')
        return '\n'.join(pieces)

    def __repr__(self):
        if self.table == NULL:
            raise ValueError("Table's internal pointer is NULL, do not use "
                             "any methods or attributes on this object")
        return self.to_string(preview_cols=10)

    cdef void init(self, const shared_ptr[CTable]& table):
        self.sp_table = table
        self.table = table.get()

    def validate(self, *, full=False):
        """
        Perform validation checks.  An exception is raised if validation fails.

        By default only cheap validation checks are run.  Pass `full=True`
        for thorough validation checks (potentially O(n)).

        Parameters
        ----------
        full: bool, default False
            If True, run expensive checks, otherwise cheap checks only.

        Raises
        ------
        ArrowInvalid
        """
        if full:
            with nogil:
                check_status(self.table.ValidateFull())
        else:
            with nogil:
                check_status(self.table.Validate())

    def __reduce__(self):
        # Reduce the columns as ChunkedArrays to avoid serializing schema
        # data twice
        columns = [col for col in self.columns]
        return _reconstruct_table, (columns, self.schema)

    def __getitem__(self, key):
        """
        Slice or return column at given index or column name.

        Parameters
        ----------
        key : integer, str, or slice
            Slices with step not equal to 1 (or None) will produce a copy
            rather than a zero-copy view.

        Returns
        -------
        ChunkedArray (index/column) or Table (slice)
        """
        if isinstance(key, slice):
            return _normalize_slice(self, key)
        else:
            return self.column(key)

    def slice(self, offset=0, length=None):
        """
        Compute zero-copy slice of this Table.

        Parameters
        ----------
        offset : int, default 0
            Offset from start of table to slice.
        length : int, default None
            Length of slice (default is until end of table starting from
            offset).

        Returns
        -------
        Table
        """
        cdef shared_ptr[CTable] result

        if offset < 0:
            raise IndexError('Offset must be non-negative')

        offset = min(len(self), offset)
        if length is None:
            result = self.table.Slice(offset)
        else:
            result = self.table.Slice(offset, length)

        return pyarrow_wrap_table(result)

    def filter(self, mask, object null_selection_behavior="drop"):
        """
        Select records from a Table. See :func:`pyarrow.compute.filter` for
        full usage.
        """
        return _pc().filter(self, mask, null_selection_behavior)

    def take(self, object indices):
        """
        Select records from a Table. See :func:`pyarrow.compute.take` for full
        usage.
        """
        return _pc().take(self, indices)

    def drop_null(self):
        """
        Remove missing values from a Table.
        See :func:`pyarrow.compute.drop_null` for full usage.
        """
        return _pc().drop_null(self)

    def select(self, object columns):
        """
        Select columns of the Table.

        Returns a new Table with the specified columns, and metadata
        preserved.

        Parameters
        ----------
        columns : list-like
            The column names or integer indices to select.

        Returns
        -------
        Table
        """
        cdef:
            shared_ptr[CTable] c_table
            vector[int] c_indices

        for idx in columns:
            idx = self._ensure_integer_index(idx)
            idx = _normalize_index(idx, self.num_columns)
            c_indices.push_back(<int> idx)

        with nogil:
            c_table = GetResultValue(self.table.SelectColumns(move(c_indices)))

        return pyarrow_wrap_table(c_table)

    def replace_schema_metadata(self, metadata=None):
        """
        Create shallow copy of table by replacing schema
        key-value metadata with the indicated new metadata (which may be None),
        which deletes any existing metadata.

        Parameters
        ----------
        metadata : dict, default None

        Returns
        -------
        Table
        """
        cdef:
            shared_ptr[const CKeyValueMetadata] c_meta
            shared_ptr[CTable] c_table

        metadata = ensure_metadata(metadata, allow_none=True)
        c_meta = pyarrow_unwrap_metadata(metadata)
        with nogil:
            c_table = self.table.ReplaceSchemaMetadata(c_meta)

        return pyarrow_wrap_table(c_table)

    def flatten(self, MemoryPool memory_pool=None):
        """
        Flatten this Table.

        Each column with a struct type is flattened
        into one column per struct field.  Other columns are left unchanged.

        Parameters
        ----------
        memory_pool : MemoryPool, default None
            For memory allocations, if required, otherwise use default pool

        Returns
        -------
        Table
        """
        cdef:
            shared_ptr[CTable] flattened
            CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool)

        with nogil:
            flattened = GetResultValue(self.table.Flatten(pool))

        return pyarrow_wrap_table(flattened)

    def combine_chunks(self, MemoryPool memory_pool=None):
        """
        Make a new table by combining the chunks this table has.

        All the underlying chunks in the ChunkedArray of each column are
        concatenated into zero or one chunk.

        Parameters
        ----------
        memory_pool : MemoryPool, default None
            For memory allocations, if required, otherwise use default pool.

        Returns
        -------
        Table
        """
        cdef:
            shared_ptr[CTable] combined
            CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool)

        with nogil:
            combined = GetResultValue(self.table.CombineChunks(pool))

        return pyarrow_wrap_table(combined)

    def unify_dictionaries(self, MemoryPool memory_pool=None):
        """
        Unify dictionaries across all chunks.

        This method returns an equivalent table, but where all chunks of
        each column share the same dictionary values.  Dictionary indices
        are transposed accordingly.

        Columns without dictionaries are returned unchanged.

        Parameters
        ----------
        memory_pool : MemoryPool, default None
            For memory allocations, if required, otherwise use default pool

        Returns
        -------
        Table
        """
        cdef:
            CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool)
            shared_ptr[CTable] c_result

        with nogil:
            c_result = GetResultValue(CDictionaryUnifier.UnifyTable(
                deref(self.table), pool))

        return pyarrow_wrap_table(c_result)

    def __eq__(self, other):
        try:
            return self.equals(other)
        except TypeError:
            return NotImplemented

    def equals(self, Table other, bint check_metadata=False):
        """
        Check if contents of two tables are equal.

        Parameters
        ----------
        other : pyarrow.Table
            Table to compare against.
        check_metadata : bool, default False
            Whether schema metadata equality should be checked as well.

        Returns
        -------
        bool
        """
        if other is None:
            return False

        cdef:
            CTable* this_table = self.table
            CTable* other_table = other.table
            c_bool result

        with nogil:
            result = this_table.Equals(deref(other_table), check_metadata)

        return result

    def cast(self, Schema target_schema, bint safe=True):
        """
        Cast table values to another schema.

        Parameters
        ----------
        target_schema : Schema
            Schema to cast to, the names and order of fields must match.
        safe : bool, default True
            Check for overflows or other unsafe conversions.

        Returns
        -------
        Table
        """
        cdef:
            ChunkedArray column, casted
            Field field
            list newcols = []

        if self.schema.names != target_schema.names:
            raise ValueError("Target schema's field names are not matching "
                             "the table's field names: {!r}, {!r}"
                             .format(self.schema.names, target_schema.names))

        for column, field in zip(self.itercolumns(), target_schema):
            casted = column.cast(field.type, safe=safe)
            newcols.append(casted)

        return Table.from_arrays(newcols, schema=target_schema)

    @classmethod
    def from_pandas(cls, df, Schema schema=None, preserve_index=None,
                    nthreads=None, columns=None, bint safe=True):
        """
        Convert pandas.DataFrame to an Arrow Table.

        The column types in the resulting Arrow Table are inferred from the
        dtypes of the pandas.Series in the DataFrame. In the case of non-object
        Series, the NumPy dtype is translated to its Arrow equivalent. In the
        case of `object`, we need to guess the datatype by looking at the
        Python objects in this Series.

        Be aware that Series of the `object` dtype don't carry enough
        information to always lead to a meaningful Arrow type. In the case that
        we cannot infer a type, e.g. because the DataFrame is of length 0 or
        the Series only contains None/nan objects, the type is set to
        null. This behavior can be avoided by constructing an explicit schema
        and passing it to this function.

        Parameters
        ----------
        df : pandas.DataFrame
        schema : pyarrow.Schema, optional
            The expected schema of the Arrow Table. This can be used to
            indicate the type of columns if we cannot infer it automatically.
            If passed, the output will have exactly this schema. Columns
            specified in the schema that are not found in the DataFrame columns
            or its index will raise an error. Additional columns or index
            levels in the DataFrame which are not specified in the schema will
            be ignored.
        preserve_index : bool, optional
            Whether to store the index as an additional column in the resulting
            ``Table``. The default of None will store the index as a column,
            except for RangeIndex which is stored as metadata only. Use
            ``preserve_index=True`` to force it to be stored as a column.
        nthreads : int, default None (may use up to system CPU count threads)
            If greater than 1, convert columns to Arrow in parallel using
            indicated number of threads.
        columns : list, optional
           List of column to be converted. If None, use all columns.
        safe : bool, default True
           Check for overflows or other unsafe conversions.

        Returns
        -------
        Table

        Examples
        --------

        >>> import pandas as pd
        >>> import pyarrow as pa
        >>> df = pd.DataFrame({
            ...     'int': [1, 2],
            ...     'str': ['a', 'b']
            ... })
        >>> pa.Table.from_pandas(df)
        <pyarrow.lib.Table object at 0x7f05d1fb1b40>
        """
        from pyarrow.pandas_compat import dataframe_to_arrays
        arrays, schema = dataframe_to_arrays(
            df,
            schema=schema,
            preserve_index=preserve_index,
            nthreads=nthreads,
            columns=columns,
            safe=safe
        )
        return cls.from_arrays(arrays, schema=schema)

    @staticmethod
    def from_arrays(arrays, names=None, schema=None, metadata=None):
        """
        Construct a Table from Arrow arrays.

        Parameters
        ----------
        arrays : list of pyarrow.Array or pyarrow.ChunkedArray
            Equal-length arrays that should form the table.
        names : list of str, optional
            Names for the table columns. If not passed, schema must be passed.
        schema : Schema, default None
            Schema for the created table. If not passed, names must be passed.
        metadata : dict or Mapping, default None
            Optional metadata for the schema (if inferred).

        Returns
        -------
        Table
        """
        cdef:
            vector[shared_ptr[CChunkedArray]] columns
            shared_ptr[CSchema] c_schema
            int i, K = <int> len(arrays)

        converted_arrays = _sanitize_arrays(arrays, names, schema, metadata,
                                            &c_schema)

        columns.reserve(K)
        for item in converted_arrays:
            if isinstance(item, Array):
                columns.push_back(
                    make_shared[CChunkedArray](
                        (<Array> item).sp_array
                    )
                )
            elif isinstance(item, ChunkedArray):
                columns.push_back((<ChunkedArray> item).sp_chunked_array)
            else:
                raise TypeError(type(item))

        result = pyarrow_wrap_table(CTable.Make(c_schema, columns))
        result.validate()
        return result

    @staticmethod
    def from_pydict(mapping, schema=None, metadata=None):
        """
        Construct a Table from Arrow arrays or columns.

        Parameters
        ----------
        mapping : dict or Mapping
            A mapping of strings to Arrays or Python lists.
        schema : Schema, default None
            If not passed, will be inferred from the Mapping values.
        metadata : dict or Mapping, default None
            Optional metadata for the schema (if inferred).

        Returns
        -------
        Table
        """

        return _from_pydict(cls=Table,
                            mapping=mapping,
                            schema=schema,
                            metadata=metadata)

    @staticmethod
    def from_batches(batches, Schema schema=None):
        """
        Construct a Table from a sequence or iterator of Arrow RecordBatches.

        Parameters
        ----------
        batches : sequence or iterator of RecordBatch
            Sequence of RecordBatch to be converted, all schemas must be equal.
        schema : Schema, default None
            If not passed, will be inferred from the first RecordBatch.

        Returns
        -------
        Table
        """
        cdef:
            vector[shared_ptr[CRecordBatch]] c_batches
            shared_ptr[CTable] c_table
            shared_ptr[CSchema] c_schema
            RecordBatch batch

        for batch in batches:
            c_batches.push_back(batch.sp_batch)

        if schema is None:
            if c_batches.size() == 0:
                raise ValueError('Must pass schema, or at least '
                                 'one RecordBatch')
            c_schema = c_batches[0].get().schema()
        else:
            c_schema = schema.sp_schema

        with nogil:
            c_table = GetResultValue(
                CTable.FromRecordBatches(c_schema, move(c_batches)))

        return pyarrow_wrap_table(c_table)

    def to_batches(self, max_chunksize=None, **kwargs):
        """
        Convert Table to list of (contiguous) RecordBatch objects.

        Parameters
        ----------
        max_chunksize : int, default None
            Maximum size for RecordBatch chunks. Individual chunks may be
            smaller depending on the chunk layout of individual columns.

        Returns
        -------
        list of RecordBatch
        """
        cdef:
            unique_ptr[TableBatchReader] reader
            int64_t c_max_chunksize
            list result = []
            shared_ptr[CRecordBatch] batch

        reader.reset(new TableBatchReader(deref(self.table)))

        if 'chunksize' in kwargs:
            max_chunksize = kwargs['chunksize']
            msg = ('The parameter chunksize is deprecated for '
                   'pyarrow.Table.to_batches as of 0.15, please use '
                   'the parameter max_chunksize instead')
            warnings.warn(msg, FutureWarning)

        if max_chunksize is not None:
            c_max_chunksize = max_chunksize
            reader.get().set_chunksize(c_max_chunksize)

        while True:
            with nogil:
                check_status(reader.get().ReadNext(&batch))

            if batch.get() == NULL:
                break

            result.append(pyarrow_wrap_batch(batch))

        return result

    def _to_pandas(self, options, categories=None, ignore_metadata=False,
                   types_mapper=None):
        from pyarrow.pandas_compat import table_to_blockmanager
        mgr = table_to_blockmanager(
            options, self, categories,
            ignore_metadata=ignore_metadata,
            types_mapper=types_mapper)
        return pandas_api.data_frame(mgr)

    def to_pydict(self):
        """
        Convert the Table to a dict or OrderedDict.

        Returns
        -------
        dict
        """
        cdef:
            size_t i
            size_t num_columns = self.table.num_columns()
            list entries = []
            ChunkedArray column

        for i in range(num_columns):
            column = self.column(i)
            entries.append((self.field(i).name, column.to_pylist()))

        return ordered_dict(entries)

    @property
    def schema(self):
        """
        Schema of the table and its columns.

        Returns
        -------
        Schema
        """
        return pyarrow_wrap_schema(self.table.schema())

    def field(self, i):
        """
        Select a schema field by its column name or numeric index.

        Parameters
        ----------
        i : int or string
            The index or name of the field to retrieve.

        Returns
        -------
        Field
        """
        return self.schema.field(i)

    def _ensure_integer_index(self, i):
        """
        Ensure integer index (convert string column name to integer if needed).
        """
        if isinstance(i, (bytes, str)):
            field_indices = self.schema.get_all_field_indices(i)

            if len(field_indices) == 0:
                raise KeyError("Field \"{}\" does not exist in table schema"
                               .format(i))
            elif len(field_indices) > 1:
                raise KeyError("Field \"{}\" exists {} times in table schema"
                               .format(i, len(field_indices)))
            else:
                return field_indices[0]
        elif isinstance(i, int):
            return i
        else:
            raise TypeError("Index must either be string or integer")

    def column(self, i):
        """
        Select a column by its column name, or numeric index.

        Parameters
        ----------
        i : int or string
            The index or name of the column to retrieve.

        Returns
        -------
        ChunkedArray
        """
        return self._column(self._ensure_integer_index(i))

    def _column(self, int i):
        """
        Select a column by its numeric index.

        Parameters
        ----------
        i : int
            The index of the column to retrieve.

        Returns
        -------
        ChunkedArray
        """
        cdef int index = <int> _normalize_index(i, self.num_columns)
        cdef ChunkedArray result = pyarrow_wrap_chunked_array(
            self.table.column(index))
        result._name = self.schema[index].name
        return result

    def itercolumns(self):
        """
        Iterator over all columns in their numerical order.

        Yields
        ------
        ChunkedArray
        """
        for i in range(self.num_columns):
            yield self._column(i)

    @property
    def columns(self):
        """
        List of all columns in numerical order.

        Returns
        -------
        list of ChunkedArray
        """
        return [self._column(i) for i in range(self.num_columns)]

    @property
    def num_columns(self):
        """
        Number of columns in this table.

        Returns
        -------
        int
        """
        return self.table.num_columns()

    @property
    def num_rows(self):
        """
        Number of rows in this table.

        Due to the definition of a table, all columns have the same number of
        rows.

        Returns
        -------
        int
        """
        return self.table.num_rows()

    def __len__(self):
        return self.num_rows

    @property
    def shape(self):
        """
        Dimensions of the table: (#rows, #columns).

        Returns
        -------
        (int, int)
            Number of rows and number of columns.
        """
        return (self.num_rows, self.num_columns)

    @property
    def nbytes(self):
        """
        Total number of bytes consumed by the elements of the table.

        Returns
        -------
        int
        """
        size = 0
        for column in self.itercolumns():
            size += column.nbytes
        return size

    def __sizeof__(self):
        return super(Table, self).__sizeof__() + self.nbytes

    def add_column(self, int i, field_, column):
        """
        Add column to Table at position.

        A new table is returned with the column added, the original table
        object is left unchanged.

        Parameters
        ----------
        i : int
            Index to place the column at.
        field_ : str or Field
            If a string is passed then the type is deduced from the column
            data.
        column : Array, list of Array, or values coercible to arrays
            Column data.

        Returns
        -------
        Table
            New table with the passed column added.
        """
        cdef:
            shared_ptr[CTable] c_table
            Field c_field
            ChunkedArray c_arr

        if isinstance(column, ChunkedArray):
            c_arr = column
        else:
            c_arr = chunked_array(column)

        if isinstance(field_, Field):
            c_field = field_
        else:
            c_field = field(field_, c_arr.type)

        with nogil:
            c_table = GetResultValue(self.table.AddColumn(
                i, c_field.sp_field, c_arr.sp_chunked_array))

        return pyarrow_wrap_table(c_table)

    def append_column(self, field_, column):
        """
        Append column at end of columns.

        Parameters
        ----------
        field_ : str or Field
            If a string is passed then the type is deduced from the column
            data.
        column : Array, list of Array, or values coercible to arrays
            Column data.

        Returns
        -------
        Table
            New table with the passed column added.
        """
        return self.add_column(self.num_columns, field_, column)

    def remove_column(self, int i):
        """
        Create new Table with the indicated column removed.

        Parameters
        ----------
        i : int
            Index of column to remove.

        Returns
        -------
        Table
            New table without the column.
        """
        cdef shared_ptr[CTable] c_table

        with nogil:
            c_table = GetResultValue(self.table.RemoveColumn(i))

        return pyarrow_wrap_table(c_table)

    def set_column(self, int i, field_, column):
        """
        Replace column in Table at position.

        Parameters
        ----------
        i : int
            Index to place the column at.
        field_ : str or Field
            If a string is passed then the type is deduced from the column
            data.
        column : Array, list of Array, or values coercible to arrays
            Column data.

        Returns
        -------
        Table
            New table with the passed column set.
        """
        cdef:
            shared_ptr[CTable] c_table
            Field c_field
            ChunkedArray c_arr

        if isinstance(column, ChunkedArray):
            c_arr = column
        else:
            c_arr = chunked_array(column)

        if isinstance(field_, Field):
            c_field = field_
        else:
            c_field = field(field_, c_arr.type)

        with nogil:
            c_table = GetResultValue(self.table.SetColumn(
                i, c_field.sp_field, c_arr.sp_chunked_array))

        return pyarrow_wrap_table(c_table)

    @property
    def column_names(self):
        """
        Names of the table's columns.

        Returns
        -------
        list of str
        """
        names = self.table.ColumnNames()
        return [frombytes(name) for name in names]

    def rename_columns(self, names):
        """
        Create new table with columns renamed to provided names.

        Parameters
        ----------
        names : list of str
            List of new column names.

        Returns
        -------
        Table
        """
        cdef:
            shared_ptr[CTable] c_table
            vector[c_string] c_names

        for name in names:
            c_names.push_back(tobytes(name))

        with nogil:
            c_table = GetResultValue(self.table.RenameColumns(move(c_names)))

        return pyarrow_wrap_table(c_table)

    def drop(self, columns):
        """
        Drop one or more columns and return a new table.

        Parameters
        ----------
        columns : list of str
            List of field names referencing existing columns.

        Raises
        ------
        KeyError
            If any of the passed columns name are not existing.

        Returns
        -------
        Table
            New table without the columns.
        """
        indices = []
        for col in columns:
            idx = self.schema.get_field_index(col)
            if idx == -1:
                raise KeyError("Column {!r} not found".format(col))
            indices.append(idx)

        indices.sort()
        indices.reverse()

        table = self
        for idx in indices:
            table = table.remove_column(idx)

        return table


def _reconstruct_table(arrays, schema):
    """
    Internal: reconstruct pa.Table from pickled components.
    """
    return Table.from_arrays(arrays, schema=schema)


def record_batch(data, names=None, schema=None, metadata=None):
    """
    Create a pyarrow.RecordBatch from another Python data structure or sequence
    of arrays.

    Parameters
    ----------
    data : pandas.DataFrame, list
        A DataFrame or list of arrays or chunked arrays.
    names : list, default None
        Column names if list of arrays passed as data. Mutually exclusive with
        'schema' argument.
    schema : Schema, default None
        The expected schema of the RecordBatch. If not passed, will be inferred
        from the data. Mutually exclusive with 'names' argument.
    metadata : dict or Mapping, default None
        Optional metadata for the schema (if schema not passed).

    Returns
    -------
    RecordBatch

    See Also
    --------
    RecordBatch.from_arrays, RecordBatch.from_pandas, table
    """
    # accept schema as first argument for backwards compatibility / usability
    if isinstance(names, Schema) and schema is None:
        schema = names
        names = None

    if isinstance(data, (list, tuple)):
        return RecordBatch.from_arrays(data, names=names, schema=schema,
                                       metadata=metadata)
    elif _pandas_api.is_data_frame(data):
        return RecordBatch.from_pandas(data, schema=schema)
    else:
        raise TypeError("Expected pandas DataFrame or list of arrays")


def table(data, names=None, schema=None, metadata=None, nthreads=None):
    """
    Create a pyarrow.Table from a Python data structure or sequence of arrays.

    Parameters
    ----------
    data : pandas.DataFrame, dict, list
        A DataFrame, mapping of strings to Arrays or Python lists, or list of
        arrays or chunked arrays.
    names : list, default None
        Column names if list of arrays passed as data. Mutually exclusive with
        'schema' argument.
    schema : Schema, default None
        The expected schema of the Arrow Table. If not passed, will be inferred
        from the data. Mutually exclusive with 'names' argument.
        If passed, the output will have exactly this schema (raising an error
        when columns are not found in the data and ignoring additional data not
        specified in the schema, when data is a dict or DataFrame).
    metadata : dict or Mapping, default None
        Optional metadata for the schema (if schema not passed).
    nthreads : int, default None (may use up to system CPU count threads)
        For pandas.DataFrame inputs: if greater than 1, convert columns to
        Arrow in parallel using indicated number of threads.

    Returns
    -------
    Table

    See Also
    --------
    Table.from_arrays, Table.from_pandas, Table.from_pydict
    """
    # accept schema as first argument for backwards compatibility / usability
    if isinstance(names, Schema) and schema is None:
        schema = names
        names = None

    if isinstance(data, (list, tuple)):
        return Table.from_arrays(data, names=names, schema=schema,
                                 metadata=metadata)
    elif isinstance(data, dict):
        if names is not None:
            raise ValueError(
                "The 'names' argument is not valid when passing a dictionary")
        return Table.from_pydict(data, schema=schema, metadata=metadata)
    elif _pandas_api.is_data_frame(data):
        if names is not None or metadata is not None:
            raise ValueError(
                "The 'names' and 'metadata' arguments are not valid when "
                "passing a pandas DataFrame")
        return Table.from_pandas(data, schema=schema, nthreads=nthreads)
    else:
        raise TypeError(
            "Expected pandas DataFrame, python dictionary or list of arrays")


def concat_tables(tables, c_bool promote=False, MemoryPool memory_pool=None):
    """
    Concatenate pyarrow.Table objects.

    If promote==False, a zero-copy concatenation will be performed. The schemas
    of all the Tables must be the same (except the metadata), otherwise an
    exception will be raised. The result Table will share the metadata with the
    first table.

    If promote==True, any null type arrays will be casted to the type of other
    arrays in the column of the same name. If a table is missing a particular
    field, null values of the appropriate type will be generated to take the
    place of the missing field. The new schema will share the metadata with the
    first table. Each field in the new schema will share the metadata with the
    first table which has the field defined. Note that type promotions may
    involve additional allocations on the given ``memory_pool``.

    Parameters
    ----------
    tables : iterable of pyarrow.Table objects
        Pyarrow tables to concatenate into a single Table.
    promote : bool, default False
        If True, concatenate tables with null-filling and null type promotion.
    memory_pool : MemoryPool, default None
        For memory allocations, if required, otherwise use default pool.
    """
    cdef:
        vector[shared_ptr[CTable]] c_tables
        shared_ptr[CTable] c_result_table
        CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool)
        Table table
        CConcatenateTablesOptions options = (
            CConcatenateTablesOptions.Defaults())

    for table in tables:
        c_tables.push_back(table.sp_table)

    with nogil:
        options.unify_schemas = promote
        c_result_table = GetResultValue(
            ConcatenateTables(c_tables, options, pool))

    return pyarrow_wrap_table(c_result_table)


def _from_pydict(cls, mapping, schema, metadata):
    """
    Construct a Table/RecordBatch from Arrow arrays or columns.

    Parameters
    ----------
    cls : Class Table/RecordBatch
    mapping : dict or Mapping
        A mapping of strings to Arrays or Python lists.
    schema : Schema, default None
        If not passed, will be inferred from the Mapping values.
    metadata : dict or Mapping, default None
        Optional metadata for the schema (if inferred).

    Returns
    -------
    Table/RecordBatch
    """

    arrays = []
    if schema is None:
        names = []
        for k, v in mapping.items():
            names.append(k)
            arrays.append(asarray(v))
        return cls.from_arrays(arrays, names, metadata=metadata)
    elif isinstance(schema, Schema):
        for field in schema:
            try:
                v = mapping[field.name]
            except KeyError:
                try:
                    v = mapping[tobytes(field.name)]
                except KeyError:
                    present = mapping.keys()
                    missing = [n for n in schema.names if n not in present]
                    raise KeyError(
                        "The passed mapping doesn't contain the "
                        "following field(s) of the schema: {}".
                        format(', '.join(missing))
                    )
            arrays.append(asarray(v, type=field.type))
        # Will raise if metadata is not None
        return cls.from_arrays(arrays, schema=schema, metadata=metadata)
    else:
        raise TypeError('Schema must be an instance of pyarrow.Schema')