diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 01:47:29 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 01:47:29 +0000 |
commit | 0ebf5bdf043a27fd3dfb7f92e0cb63d88954c44d (patch) | |
tree | a31f07c9bcca9d56ce61e9a1ffd30ef350d513aa /intl/icu/source/common/rbbitblb.cpp | |
parent | Initial commit. (diff) | |
download | firefox-esr-0ebf5bdf043a27fd3dfb7f92e0cb63d88954c44d.tar.xz firefox-esr-0ebf5bdf043a27fd3dfb7f92e0cb63d88954c44d.zip |
Adding upstream version 115.8.0esr.upstream/115.8.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'intl/icu/source/common/rbbitblb.cpp')
-rw-r--r-- | intl/icu/source/common/rbbitblb.cpp | 1810 |
1 files changed, 1810 insertions, 0 deletions
diff --git a/intl/icu/source/common/rbbitblb.cpp b/intl/icu/source/common/rbbitblb.cpp new file mode 100644 index 0000000000..0c2bcff4e5 --- /dev/null +++ b/intl/icu/source/common/rbbitblb.cpp @@ -0,0 +1,1810 @@ +// © 2016 and later: Unicode, Inc. and others. +// License & terms of use: http://www.unicode.org/copyright.html +/* +********************************************************************** +* Copyright (c) 2002-2016, International Business Machines +* Corporation and others. All Rights Reserved. +********************************************************************** +*/ +// +// rbbitblb.cpp +// + + +#include "unicode/utypes.h" + +#if !UCONFIG_NO_BREAK_ITERATION + +#include "unicode/unistr.h" +#include "rbbitblb.h" +#include "rbbirb.h" +#include "rbbiscan.h" +#include "rbbisetb.h" +#include "rbbidata.h" +#include "cstring.h" +#include "uassert.h" +#include "uvectr32.h" +#include "cmemory.h" + +U_NAMESPACE_BEGIN + +const int32_t kMaxStateFor8BitsTable = 255; + +RBBITableBuilder::RBBITableBuilder(RBBIRuleBuilder *rb, RBBINode **rootNode, UErrorCode &status) : + fRB(rb), + fTree(*rootNode), + fStatus(&status), + fDStates(nullptr), + fSafeTable(nullptr) { + if (U_FAILURE(status)) { + return; + } + // fDStates is UVector<RBBIStateDescriptor *> + fDStates = new UVector(status); + if (U_SUCCESS(status) && fDStates == nullptr ) { + status = U_MEMORY_ALLOCATION_ERROR; + } +} + + + +RBBITableBuilder::~RBBITableBuilder() { + int i; + for (i=0; i<fDStates->size(); i++) { + delete (RBBIStateDescriptor *)fDStates->elementAt(i); + } + delete fDStates; + delete fSafeTable; + delete fLookAheadRuleMap; +} + + +//----------------------------------------------------------------------------- +// +// RBBITableBuilder::buildForwardTable - This is the main function for building +// the DFA state transition table from the RBBI rules parse tree. +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::buildForwardTable() { + + if (U_FAILURE(*fStatus)) { + return; + } + + // If there were no rules, just return. This situation can easily arise + // for the reverse rules. + if (fTree==nullptr) { + return; + } + + // + // Walk through the tree, replacing any references to $variables with a copy of the + // parse tree for the substitution expression. + // + fTree = fTree->flattenVariables(); +#ifdef RBBI_DEBUG + if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ftree")) { + RBBIDebugPuts("\nParse tree after flattening variable references."); + RBBINode::printTree(fTree, true); + } +#endif + + // + // If the rules contained any references to {bof} + // add a {bof} <cat> <former root of tree> to the + // tree. Means that all matches must start out with the + // {bof} fake character. + // + if (fRB->fSetBuilder->sawBOF()) { + RBBINode *bofTop = new RBBINode(RBBINode::opCat); + RBBINode *bofLeaf = new RBBINode(RBBINode::leafChar); + // Delete and exit if memory allocation failed. + if (bofTop == nullptr || bofLeaf == nullptr) { + *fStatus = U_MEMORY_ALLOCATION_ERROR; + delete bofTop; + delete bofLeaf; + return; + } + bofTop->fLeftChild = bofLeaf; + bofTop->fRightChild = fTree; + bofLeaf->fParent = bofTop; + bofLeaf->fVal = 2; // Reserved value for {bof}. + fTree = bofTop; + } + + // + // Add a unique right-end marker to the expression. + // Appears as a cat-node, left child being the original tree, + // right child being the end marker. + // + RBBINode *cn = new RBBINode(RBBINode::opCat); + // Exit if memory allocation failed. + if (cn == nullptr) { + *fStatus = U_MEMORY_ALLOCATION_ERROR; + return; + } + cn->fLeftChild = fTree; + fTree->fParent = cn; + RBBINode *endMarkerNode = cn->fRightChild = new RBBINode(RBBINode::endMark); + // Delete and exit if memory allocation failed. + if (cn->fRightChild == nullptr) { + *fStatus = U_MEMORY_ALLOCATION_ERROR; + delete cn; + return; + } + cn->fRightChild->fParent = cn; + fTree = cn; + + // + // Replace all references to UnicodeSets with the tree for the equivalent + // expression. + // + fTree->flattenSets(); +#ifdef RBBI_DEBUG + if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "stree")) { + RBBIDebugPuts("\nParse tree after flattening Unicode Set references."); + RBBINode::printTree(fTree, true); + } +#endif + + + // + // calculate the functions nullable, firstpos, lastpos and followpos on + // nodes in the parse tree. + // See the algorithm description in Aho. + // Understanding how this works by looking at the code alone will be + // nearly impossible. + // + calcNullable(fTree); + calcFirstPos(fTree); + calcLastPos(fTree); + calcFollowPos(fTree); + if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "pos")) { + RBBIDebugPuts("\n"); + printPosSets(fTree); + } + + // + // For "chained" rules, modify the followPos sets + // + if (fRB->fChainRules) { + calcChainedFollowPos(fTree, endMarkerNode); + } + + // + // BOF (start of input) test fixup. + // + if (fRB->fSetBuilder->sawBOF()) { + bofFixup(); + } + + // + // Build the DFA state transition tables. + // + buildStateTable(); + mapLookAheadRules(); + flagAcceptingStates(); + flagLookAheadStates(); + flagTaggedStates(); + + // + // Update the global table of rule status {tag} values + // The rule builder has a global vector of status values that are common + // for all tables. Merge the ones from this table into the global set. + // + mergeRuleStatusVals(); +} + + + +//----------------------------------------------------------------------------- +// +// calcNullable. Impossible to explain succinctly. See Aho, section 3.9 +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::calcNullable(RBBINode *n) { + if (n == nullptr) { + return; + } + if (n->fType == RBBINode::setRef || + n->fType == RBBINode::endMark ) { + // These are non-empty leaf node types. + n->fNullable = false; + return; + } + + if (n->fType == RBBINode::lookAhead || n->fType == RBBINode::tag) { + // Lookahead marker node. It's a leaf, so no recursion on children. + // It's nullable because it does not match any literal text from the input stream. + n->fNullable = true; + return; + } + + + // The node is not a leaf. + // Calculate nullable on its children. + calcNullable(n->fLeftChild); + calcNullable(n->fRightChild); + + // Apply functions from table 3.40 in Aho + if (n->fType == RBBINode::opOr) { + n->fNullable = n->fLeftChild->fNullable || n->fRightChild->fNullable; + } + else if (n->fType == RBBINode::opCat) { + n->fNullable = n->fLeftChild->fNullable && n->fRightChild->fNullable; + } + else if (n->fType == RBBINode::opStar || n->fType == RBBINode::opQuestion) { + n->fNullable = true; + } + else { + n->fNullable = false; + } +} + + + + +//----------------------------------------------------------------------------- +// +// calcFirstPos. Impossible to explain succinctly. See Aho, section 3.9 +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::calcFirstPos(RBBINode *n) { + if (n == nullptr) { + return; + } + if (n->fType == RBBINode::leafChar || + n->fType == RBBINode::endMark || + n->fType == RBBINode::lookAhead || + n->fType == RBBINode::tag) { + // These are non-empty leaf node types. + // Note: In order to maintain the sort invariant on the set, + // this function should only be called on a node whose set is + // empty to start with. + n->fFirstPosSet->addElement(n, *fStatus); + return; + } + + // The node is not a leaf. + // Calculate firstPos on its children. + calcFirstPos(n->fLeftChild); + calcFirstPos(n->fRightChild); + + // Apply functions from table 3.40 in Aho + if (n->fType == RBBINode::opOr) { + setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet); + setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet); + } + else if (n->fType == RBBINode::opCat) { + setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet); + if (n->fLeftChild->fNullable) { + setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet); + } + } + else if (n->fType == RBBINode::opStar || + n->fType == RBBINode::opQuestion || + n->fType == RBBINode::opPlus) { + setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet); + } +} + + + +//----------------------------------------------------------------------------- +// +// calcLastPos. Impossible to explain succinctly. See Aho, section 3.9 +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::calcLastPos(RBBINode *n) { + if (n == nullptr) { + return; + } + if (n->fType == RBBINode::leafChar || + n->fType == RBBINode::endMark || + n->fType == RBBINode::lookAhead || + n->fType == RBBINode::tag) { + // These are non-empty leaf node types. + // Note: In order to maintain the sort invariant on the set, + // this function should only be called on a node whose set is + // empty to start with. + n->fLastPosSet->addElement(n, *fStatus); + return; + } + + // The node is not a leaf. + // Calculate lastPos on its children. + calcLastPos(n->fLeftChild); + calcLastPos(n->fRightChild); + + // Apply functions from table 3.40 in Aho + if (n->fType == RBBINode::opOr) { + setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet); + setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet); + } + else if (n->fType == RBBINode::opCat) { + setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet); + if (n->fRightChild->fNullable) { + setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet); + } + } + else if (n->fType == RBBINode::opStar || + n->fType == RBBINode::opQuestion || + n->fType == RBBINode::opPlus) { + setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet); + } +} + + + +//----------------------------------------------------------------------------- +// +// calcFollowPos. Impossible to explain succinctly. See Aho, section 3.9 +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::calcFollowPos(RBBINode *n) { + if (n == nullptr || + n->fType == RBBINode::leafChar || + n->fType == RBBINode::endMark) { + return; + } + + calcFollowPos(n->fLeftChild); + calcFollowPos(n->fRightChild); + + // Aho rule #1 + if (n->fType == RBBINode::opCat) { + RBBINode *i; // is 'i' in Aho's description + uint32_t ix; + + UVector *LastPosOfLeftChild = n->fLeftChild->fLastPosSet; + + for (ix=0; ix<(uint32_t)LastPosOfLeftChild->size(); ix++) { + i = (RBBINode *)LastPosOfLeftChild->elementAt(ix); + setAdd(i->fFollowPos, n->fRightChild->fFirstPosSet); + } + } + + // Aho rule #2 + if (n->fType == RBBINode::opStar || + n->fType == RBBINode::opPlus) { + RBBINode *i; // again, n and i are the names from Aho's description. + uint32_t ix; + + for (ix=0; ix<(uint32_t)n->fLastPosSet->size(); ix++) { + i = (RBBINode *)n->fLastPosSet->elementAt(ix); + setAdd(i->fFollowPos, n->fFirstPosSet); + } + } + + + +} + +//----------------------------------------------------------------------------- +// +// addRuleRootNodes Recursively walk a parse tree, adding all nodes flagged +// as roots of a rule to a destination vector. +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::addRuleRootNodes(UVector *dest, RBBINode *node) { + if (node == nullptr || U_FAILURE(*fStatus)) { + return; + } + U_ASSERT(!dest->hasDeleter()); + if (node->fRuleRoot) { + dest->addElement(node, *fStatus); + // Note: rules cannot nest. If we found a rule start node, + // no child node can also be a start node. + return; + } + addRuleRootNodes(dest, node->fLeftChild); + addRuleRootNodes(dest, node->fRightChild); +} + +//----------------------------------------------------------------------------- +// +// calcChainedFollowPos. Modify the previously calculated followPos sets +// to implement rule chaining. NOT described by Aho +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::calcChainedFollowPos(RBBINode *tree, RBBINode *endMarkNode) { + + UVector leafNodes(*fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + + // get a list all leaf nodes + tree->findNodes(&leafNodes, RBBINode::leafChar, *fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + + // Collect all leaf nodes that can start matches for rules + // with inbound chaining enabled, which is the union of the + // firstPosition sets from each of the rule root nodes. + + UVector ruleRootNodes(*fStatus); + addRuleRootNodes(&ruleRootNodes, tree); + + UVector matchStartNodes(*fStatus); + for (int j=0; j<ruleRootNodes.size(); ++j) { + RBBINode *node = static_cast<RBBINode *>(ruleRootNodes.elementAt(j)); + if (node->fChainIn) { + setAdd(&matchStartNodes, node->fFirstPosSet); + } + } + if (U_FAILURE(*fStatus)) { + return; + } + + int32_t endNodeIx; + int32_t startNodeIx; + + for (endNodeIx=0; endNodeIx<leafNodes.size(); endNodeIx++) { + RBBINode *endNode = (RBBINode *)leafNodes.elementAt(endNodeIx); + + // Identify leaf nodes that correspond to overall rule match positions. + // These include the endMarkNode in their followPos sets. + // + // Note: do not consider other end marker nodes, those that are added to + // look-ahead rules. These can't chain; a match immediately stops + // further matching. This leaves exactly one end marker node, the one + // at the end of the complete tree. + + if (!endNode->fFollowPos->contains(endMarkNode)) { + continue; + } + + // We've got a node that can end a match. + + // !!LBCMNoChain implementation: If this node's val correspond to + // the Line Break $CM char class, don't chain from it. + // TODO: Remove this. !!LBCMNoChain is deprecated, and is not used + // by any of the standard ICU rules. + if (fRB->fLBCMNoChain) { + UChar32 c = this->fRB->fSetBuilder->getFirstChar(endNode->fVal); + if (c != -1) { + // c == -1 occurs with sets containing only the {eof} marker string. + ULineBreak cLBProp = (ULineBreak)u_getIntPropertyValue(c, UCHAR_LINE_BREAK); + if (cLBProp == U_LB_COMBINING_MARK) { + continue; + } + } + } + + // Now iterate over the nodes that can start a match, looking for ones + // with the same char class as our ending node. + RBBINode *startNode; + for (startNodeIx = 0; startNodeIx<matchStartNodes.size(); startNodeIx++) { + startNode = (RBBINode *)matchStartNodes.elementAt(startNodeIx); + if (startNode->fType != RBBINode::leafChar) { + continue; + } + + if (endNode->fVal == startNode->fVal) { + // The end val (character class) of one possible match is the + // same as the start of another. + + // Add all nodes from the followPos of the start node to the + // followPos set of the end node, which will have the effect of + // letting matches transition from a match state at endNode + // to the second char of a match starting with startNode. + setAdd(endNode->fFollowPos, startNode->fFollowPos); + } + } + } +} + + +//----------------------------------------------------------------------------- +// +// bofFixup. Fixup for state tables that include {bof} beginning of input testing. +// Do an swizzle similar to chaining, modifying the followPos set of +// the bofNode to include the followPos nodes from other {bot} nodes +// scattered through the tree. +// +// This function has much in common with calcChainedFollowPos(). +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::bofFixup() { + + if (U_FAILURE(*fStatus)) { + return; + } + + // The parse tree looks like this ... + // fTree root ---> <cat> + // / \ . + // <cat> <#end node> + // / \ . + // <bofNode> rest + // of tree + // + // We will be adding things to the followPos set of the <bofNode> + // + RBBINode *bofNode = fTree->fLeftChild->fLeftChild; + U_ASSERT(bofNode->fType == RBBINode::leafChar); + U_ASSERT(bofNode->fVal == 2); + + // Get all nodes that can be the start a match of the user-written rules + // (excluding the fake bofNode) + // We want the nodes that can start a match in the + // part labeled "rest of tree" + // + UVector *matchStartNodes = fTree->fLeftChild->fRightChild->fFirstPosSet; + + RBBINode *startNode; + int startNodeIx; + for (startNodeIx = 0; startNodeIx<matchStartNodes->size(); startNodeIx++) { + startNode = (RBBINode *)matchStartNodes->elementAt(startNodeIx); + if (startNode->fType != RBBINode::leafChar) { + continue; + } + + if (startNode->fVal == bofNode->fVal) { + // We found a leaf node corresponding to a {bof} that was + // explicitly written into a rule. + // Add everything from the followPos set of this node to the + // followPos set of the fake bofNode at the start of the tree. + // + setAdd(bofNode->fFollowPos, startNode->fFollowPos); + } + } +} + +//----------------------------------------------------------------------------- +// +// buildStateTable() Determine the set of runtime DFA states and the +// transition tables for these states, by the algorithm +// of fig. 3.44 in Aho. +// +// Most of the comments are quotes of Aho's psuedo-code. +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::buildStateTable() { + if (U_FAILURE(*fStatus)) { + return; + } + RBBIStateDescriptor *failState; + // Set it to nullptr to avoid uninitialized warning + RBBIStateDescriptor *initialState = nullptr; + // + // Add a dummy state 0 - the stop state. Not from Aho. + int lastInputSymbol = fRB->fSetBuilder->getNumCharCategories() - 1; + failState = new RBBIStateDescriptor(lastInputSymbol, fStatus); + if (failState == nullptr) { + *fStatus = U_MEMORY_ALLOCATION_ERROR; + goto ExitBuildSTdeleteall; + } + failState->fPositions = new UVector(*fStatus); + if (failState->fPositions == nullptr) { + *fStatus = U_MEMORY_ALLOCATION_ERROR; + } + if (failState->fPositions == nullptr || U_FAILURE(*fStatus)) { + goto ExitBuildSTdeleteall; + } + fDStates->addElement(failState, *fStatus); + if (U_FAILURE(*fStatus)) { + goto ExitBuildSTdeleteall; + } + + // initially, the only unmarked state in Dstates is firstpos(root), + // where toot is the root of the syntax tree for (r)#; + initialState = new RBBIStateDescriptor(lastInputSymbol, fStatus); + if (initialState == nullptr) { + *fStatus = U_MEMORY_ALLOCATION_ERROR; + } + if (U_FAILURE(*fStatus)) { + goto ExitBuildSTdeleteall; + } + initialState->fPositions = new UVector(*fStatus); + if (initialState->fPositions == nullptr) { + *fStatus = U_MEMORY_ALLOCATION_ERROR; + } + if (U_FAILURE(*fStatus)) { + goto ExitBuildSTdeleteall; + } + setAdd(initialState->fPositions, fTree->fFirstPosSet); + fDStates->addElement(initialState, *fStatus); + if (U_FAILURE(*fStatus)) { + goto ExitBuildSTdeleteall; + } + + // while there is an unmarked state T in Dstates do begin + for (;;) { + RBBIStateDescriptor *T = nullptr; + int32_t tx; + for (tx=1; tx<fDStates->size(); tx++) { + RBBIStateDescriptor *temp; + temp = (RBBIStateDescriptor *)fDStates->elementAt(tx); + if (temp->fMarked == false) { + T = temp; + break; + } + } + if (T == nullptr) { + break; + } + + // mark T; + T->fMarked = true; + + // for each input symbol a do begin + int32_t a; + for (a = 1; a<=lastInputSymbol; a++) { + // let U be the set of positions that are in followpos(p) + // for some position p in T + // such that the symbol at position p is a; + UVector *U = nullptr; + RBBINode *p; + int32_t px; + for (px=0; px<T->fPositions->size(); px++) { + p = (RBBINode *)T->fPositions->elementAt(px); + if ((p->fType == RBBINode::leafChar) && (p->fVal == a)) { + if (U == nullptr) { + U = new UVector(*fStatus); + if (U == nullptr) { + *fStatus = U_MEMORY_ALLOCATION_ERROR; + goto ExitBuildSTdeleteall; + } + } + setAdd(U, p->fFollowPos); + } + } + + // if U is not empty and not in DStates then + int32_t ux = 0; + UBool UinDstates = false; + if (U != nullptr) { + U_ASSERT(U->size() > 0); + int ix; + for (ix=0; ix<fDStates->size(); ix++) { + RBBIStateDescriptor *temp2; + temp2 = (RBBIStateDescriptor *)fDStates->elementAt(ix); + if (setEquals(U, temp2->fPositions)) { + delete U; + U = temp2->fPositions; + ux = ix; + UinDstates = true; + break; + } + } + + // Add U as an unmarked state to Dstates + if (!UinDstates) + { + RBBIStateDescriptor *newState = new RBBIStateDescriptor(lastInputSymbol, fStatus); + if (newState == nullptr) { + *fStatus = U_MEMORY_ALLOCATION_ERROR; + } + if (U_FAILURE(*fStatus)) { + goto ExitBuildSTdeleteall; + } + newState->fPositions = U; + fDStates->addElement(newState, *fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + ux = fDStates->size()-1; + } + + // Dtran[T, a] := U; + T->fDtran->setElementAt(ux, a); + } + } + } + return; + // delete local pointers only if error occurred. +ExitBuildSTdeleteall: + delete initialState; + delete failState; +} + + +/** + * mapLookAheadRules + * + */ +void RBBITableBuilder::mapLookAheadRules() { + fLookAheadRuleMap = new UVector32(fRB->fScanner->numRules() + 1, *fStatus); + if (fLookAheadRuleMap == nullptr) { + *fStatus = U_MEMORY_ALLOCATION_ERROR; + } + if (U_FAILURE(*fStatus)) { + return; + } + fLookAheadRuleMap->setSize(fRB->fScanner->numRules() + 1); + + for (int32_t n=0; n<fDStates->size(); n++) { + RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); + int32_t laSlotForState = 0; + + // Establish the look-ahead slot for this state, if the state covers + // any look-ahead nodes - corresponding to the '/' in look-ahead rules. + + // If any of the look-ahead nodes already have a slot assigned, use it, + // otherwise assign a new one. + + bool sawLookAheadNode = false; + for (int32_t ipos=0; ipos<sd->fPositions->size(); ++ipos) { + RBBINode *node = static_cast<RBBINode *>(sd->fPositions->elementAt(ipos)); + if (node->fType != RBBINode::NodeType::lookAhead) { + continue; + } + sawLookAheadNode = true; + int32_t ruleNum = node->fVal; // Set when rule was originally parsed. + U_ASSERT(ruleNum < fLookAheadRuleMap->size()); + U_ASSERT(ruleNum > 0); + int32_t laSlot = fLookAheadRuleMap->elementAti(ruleNum); + if (laSlot != 0) { + if (laSlotForState == 0) { + laSlotForState = laSlot; + } else { + // TODO: figure out if this can fail, change to setting an error code if so. + U_ASSERT(laSlot == laSlotForState); + } + } + } + if (!sawLookAheadNode) { + continue; + } + + if (laSlotForState == 0) { + laSlotForState = ++fLASlotsInUse; + } + + // For each look ahead node covered by this state, + // set the mapping from the node's rule number to the look ahead slot. + // There can be multiple nodes/rule numbers going to the same la slot. + + for (int32_t ipos=0; ipos<sd->fPositions->size(); ++ipos) { + RBBINode *node = static_cast<RBBINode *>(sd->fPositions->elementAt(ipos)); + if (node->fType != RBBINode::NodeType::lookAhead) { + continue; + } + int32_t ruleNum = node->fVal; // Set when rule was originally parsed. + int32_t existingVal = fLookAheadRuleMap->elementAti(ruleNum); + (void)existingVal; + U_ASSERT(existingVal == 0 || existingVal == laSlotForState); + fLookAheadRuleMap->setElementAt(laSlotForState, ruleNum); + } + } + +} + +//----------------------------------------------------------------------------- +// +// flagAcceptingStates Identify accepting states. +// First get a list of all of the end marker nodes. +// Then, for each state s, +// if s contains one of the end marker nodes in its list of tree positions then +// s is an accepting state. +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::flagAcceptingStates() { + if (U_FAILURE(*fStatus)) { + return; + } + UVector endMarkerNodes(*fStatus); + RBBINode *endMarker; + int32_t i; + int32_t n; + + if (U_FAILURE(*fStatus)) { + return; + } + + fTree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + + for (i=0; i<endMarkerNodes.size(); i++) { + endMarker = (RBBINode *)endMarkerNodes.elementAt(i); + for (n=0; n<fDStates->size(); n++) { + RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); + if (sd->fPositions->indexOf(endMarker) >= 0) { + // Any non-zero value for fAccepting means this is an accepting node. + // The value is what will be returned to the user as the break status. + // If no other value was specified, force it to ACCEPTING_UNCONDITIONAL (1). + + if (sd->fAccepting==0) { + // State hasn't been marked as accepting yet. Do it now. + sd->fAccepting = fLookAheadRuleMap->elementAti(endMarker->fVal); + if (sd->fAccepting == 0) { + sd->fAccepting = ACCEPTING_UNCONDITIONAL; + } + } + if (sd->fAccepting==ACCEPTING_UNCONDITIONAL && endMarker->fVal != 0) { + // Both lookahead and non-lookahead accepting for this state. + // Favor the look-ahead, because a look-ahead match needs to + // immediately stop the run-time engine. First match, not longest. + sd->fAccepting = fLookAheadRuleMap->elementAti(endMarker->fVal); + } + // implicit else: + // if sd->fAccepting already had a value other than 0 or 1, leave it be. + } + } + } +} + + +//----------------------------------------------------------------------------- +// +// flagLookAheadStates Very similar to flagAcceptingStates, above. +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::flagLookAheadStates() { + if (U_FAILURE(*fStatus)) { + return; + } + UVector lookAheadNodes(*fStatus); + RBBINode *lookAheadNode; + int32_t i; + int32_t n; + + fTree->findNodes(&lookAheadNodes, RBBINode::lookAhead, *fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + for (i=0; i<lookAheadNodes.size(); i++) { + lookAheadNode = (RBBINode *)lookAheadNodes.elementAt(i); + U_ASSERT(lookAheadNode->fType == RBBINode::NodeType::lookAhead); + + for (n=0; n<fDStates->size(); n++) { + RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); + int32_t positionsIdx = sd->fPositions->indexOf(lookAheadNode); + if (positionsIdx >= 0) { + U_ASSERT(lookAheadNode == sd->fPositions->elementAt(positionsIdx)); + uint32_t lookaheadSlot = fLookAheadRuleMap->elementAti(lookAheadNode->fVal); + U_ASSERT(sd->fLookAhead == 0 || sd->fLookAhead == lookaheadSlot); + // if (sd->fLookAhead != 0 && sd->fLookAhead != lookaheadSlot) { + // printf("%s:%d Bingo. sd->fLookAhead:%d lookaheadSlot:%d\n", + // __FILE__, __LINE__, sd->fLookAhead, lookaheadSlot); + // } + sd->fLookAhead = lookaheadSlot; + } + } + } +} + + + + +//----------------------------------------------------------------------------- +// +// flagTaggedStates +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::flagTaggedStates() { + if (U_FAILURE(*fStatus)) { + return; + } + UVector tagNodes(*fStatus); + RBBINode *tagNode; + int32_t i; + int32_t n; + + if (U_FAILURE(*fStatus)) { + return; + } + fTree->findNodes(&tagNodes, RBBINode::tag, *fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + for (i=0; i<tagNodes.size(); i++) { // For each tag node t (all of 'em) + tagNode = (RBBINode *)tagNodes.elementAt(i); + + for (n=0; n<fDStates->size(); n++) { // For each state s (row in the state table) + RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); + if (sd->fPositions->indexOf(tagNode) >= 0) { // if s include the tag node t + sortedAdd(&sd->fTagVals, tagNode->fVal); + } + } + } +} + + + + +//----------------------------------------------------------------------------- +// +// mergeRuleStatusVals +// +// Update the global table of rule status {tag} values +// The rule builder has a global vector of status values that are common +// for all tables. Merge the ones from this table into the global set. +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::mergeRuleStatusVals() { + // + // The basic outline of what happens here is this... + // + // for each state in this state table + // if the status tag list for this state is in the global statuses list + // record where and + // continue with the next state + // else + // add the tag list for this state to the global list. + // + int i; + int n; + + // Pre-set a single tag of {0} into the table. + // We will need this as a default, for rule sets with no explicit tagging. + if (fRB->fRuleStatusVals->size() == 0) { + fRB->fRuleStatusVals->addElement(1, *fStatus); // Num of statuses in group + fRB->fRuleStatusVals->addElement((int32_t)0, *fStatus); // and our single status of zero + } + + // For each state + for (n=0; n<fDStates->size(); n++) { + RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); + UVector *thisStatesTagValues = sd->fTagVals; + if (thisStatesTagValues == nullptr) { + // No tag values are explicitly associated with this state. + // Set the default tag value. + sd->fTagsIdx = 0; + continue; + } + + // There are tag(s) associated with this state. + // fTagsIdx will be the index into the global tag list for this state's tag values. + // Initial value of -1 flags that we haven't got it set yet. + sd->fTagsIdx = -1; + int32_t thisTagGroupStart = 0; // indexes into the global rule status vals list + int32_t nextTagGroupStart = 0; + + // Loop runs once per group of tags in the global list + while (nextTagGroupStart < fRB->fRuleStatusVals->size()) { + thisTagGroupStart = nextTagGroupStart; + nextTagGroupStart += fRB->fRuleStatusVals->elementAti(thisTagGroupStart) + 1; + if (thisStatesTagValues->size() != fRB->fRuleStatusVals->elementAti(thisTagGroupStart)) { + // The number of tags for this state is different from + // the number of tags in this group from the global list. + // Continue with the next group from the global list. + continue; + } + // The lengths match, go ahead and compare the actual tag values + // between this state and the group from the global list. + for (i=0; i<thisStatesTagValues->size(); i++) { + if (thisStatesTagValues->elementAti(i) != + fRB->fRuleStatusVals->elementAti(thisTagGroupStart + 1 + i) ) { + // Mismatch. + break; + } + } + + if (i == thisStatesTagValues->size()) { + // We found a set of tag values in the global list that match + // those for this state. Use them. + sd->fTagsIdx = thisTagGroupStart; + break; + } + } + + if (sd->fTagsIdx == -1) { + // No suitable entry in the global tag list already. Add one + sd->fTagsIdx = fRB->fRuleStatusVals->size(); + fRB->fRuleStatusVals->addElement(thisStatesTagValues->size(), *fStatus); + for (i=0; i<thisStatesTagValues->size(); i++) { + fRB->fRuleStatusVals->addElement(thisStatesTagValues->elementAti(i), *fStatus); + } + } + } +} + + + + + + + +//----------------------------------------------------------------------------- +// +// sortedAdd Add a value to a vector of sorted values (ints). +// Do not replicate entries; if the value is already there, do not +// add a second one. +// Lazily create the vector if it does not already exist. +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::sortedAdd(UVector **vector, int32_t val) { + int32_t i; + + if (*vector == nullptr) { + *vector = new UVector(*fStatus); + } + if (*vector == nullptr || U_FAILURE(*fStatus)) { + return; + } + UVector *vec = *vector; + int32_t vSize = vec->size(); + for (i=0; i<vSize; i++) { + int32_t valAtI = vec->elementAti(i); + if (valAtI == val) { + // The value is already in the vector. Don't add it again. + return; + } + if (valAtI > val) { + break; + } + } + vec->insertElementAt(val, i, *fStatus); +} + + + +//----------------------------------------------------------------------------- +// +// setAdd Set operation on UVector +// dest = dest union source +// Elements may only appear once and must be sorted. +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::setAdd(UVector *dest, UVector *source) { + U_ASSERT(!dest->hasDeleter()); + U_ASSERT(!source->hasDeleter()); + int32_t destOriginalSize = dest->size(); + int32_t sourceSize = source->size(); + int32_t di = 0; + MaybeStackArray<void *, 16> destArray, sourceArray; // Handle small cases without malloc + void **destPtr, **sourcePtr; + void **destLim, **sourceLim; + + if (destOriginalSize > destArray.getCapacity()) { + if (destArray.resize(destOriginalSize) == nullptr) { + return; + } + } + destPtr = destArray.getAlias(); + destLim = destPtr + destOriginalSize; // destArray.getArrayLimit()? + + if (sourceSize > sourceArray.getCapacity()) { + if (sourceArray.resize(sourceSize) == nullptr) { + return; + } + } + sourcePtr = sourceArray.getAlias(); + sourceLim = sourcePtr + sourceSize; // sourceArray.getArrayLimit()? + + // Avoid multiple "get element" calls by getting the contents into arrays + (void) dest->toArray(destPtr); + (void) source->toArray(sourcePtr); + + dest->setSize(sourceSize+destOriginalSize, *fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + + while (sourcePtr < sourceLim && destPtr < destLim) { + if (*destPtr == *sourcePtr) { + dest->setElementAt(*sourcePtr++, di++); + destPtr++; + } + // This check is required for machines with segmented memory, like i5/OS. + // Direct pointer comparison is not recommended. + else if (uprv_memcmp(destPtr, sourcePtr, sizeof(void *)) < 0) { + dest->setElementAt(*destPtr++, di++); + } + else { /* *sourcePtr < *destPtr */ + dest->setElementAt(*sourcePtr++, di++); + } + } + + // At most one of these two cleanup loops will execute + while (destPtr < destLim) { + dest->setElementAt(*destPtr++, di++); + } + while (sourcePtr < sourceLim) { + dest->setElementAt(*sourcePtr++, di++); + } + + dest->setSize(di, *fStatus); +} + + + +//----------------------------------------------------------------------------- +// +// setEqual Set operation on UVector. +// Compare for equality. +// Elements must be sorted. +// +//----------------------------------------------------------------------------- +UBool RBBITableBuilder::setEquals(UVector *a, UVector *b) { + return a->equals(*b); +} + + +//----------------------------------------------------------------------------- +// +// printPosSets Debug function. Dump Nullable, firstpos, lastpos and followpos +// for each node in the tree. +// +//----------------------------------------------------------------------------- +#ifdef RBBI_DEBUG +void RBBITableBuilder::printPosSets(RBBINode *n) { + if (n==nullptr) { + return; + } + printf("\n"); + RBBINode::printNodeHeader(); + RBBINode::printNode(n); + RBBIDebugPrintf(" Nullable: %s\n", n->fNullable?"true":"false"); + + RBBIDebugPrintf(" firstpos: "); + printSet(n->fFirstPosSet); + + RBBIDebugPrintf(" lastpos: "); + printSet(n->fLastPosSet); + + RBBIDebugPrintf(" followpos: "); + printSet(n->fFollowPos); + + printPosSets(n->fLeftChild); + printPosSets(n->fRightChild); +} +#endif + +// +// findDuplCharClassFrom() +// +bool RBBITableBuilder::findDuplCharClassFrom(IntPair *categories) { + int32_t numStates = fDStates->size(); + int32_t numCols = fRB->fSetBuilder->getNumCharCategories(); + + for (; categories->first < numCols-1; categories->first++) { + // Note: dictionary & non-dictionary columns cannot be merged. + // The limitSecond value prevents considering mixed pairs. + // Dictionary categories are >= DictCategoriesStart. + // Non dict categories are < DictCategoriesStart. + int limitSecond = categories->first < fRB->fSetBuilder->getDictCategoriesStart() ? + fRB->fSetBuilder->getDictCategoriesStart() : numCols; + for (categories->second=categories->first+1; categories->second < limitSecond; categories->second++) { + // Initialized to different values to prevent returning true if numStates = 0 (implies no duplicates). + uint16_t table_base = 0; + uint16_t table_dupl = 1; + for (int32_t state=0; state<numStates; state++) { + RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state); + table_base = (uint16_t)sd->fDtran->elementAti(categories->first); + table_dupl = (uint16_t)sd->fDtran->elementAti(categories->second); + if (table_base != table_dupl) { + break; + } + } + if (table_base == table_dupl) { + return true; + } + } + } + return false; +} + + +// +// removeColumn() +// +void RBBITableBuilder::removeColumn(int32_t column) { + int32_t numStates = fDStates->size(); + for (int32_t state=0; state<numStates; state++) { + RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state); + U_ASSERT(column < sd->fDtran->size()); + sd->fDtran->removeElementAt(column); + } +} + +/* + * findDuplicateState + */ +bool RBBITableBuilder::findDuplicateState(IntPair *states) { + int32_t numStates = fDStates->size(); + int32_t numCols = fRB->fSetBuilder->getNumCharCategories(); + + for (; states->first<numStates-1; states->first++) { + RBBIStateDescriptor *firstSD = (RBBIStateDescriptor *)fDStates->elementAt(states->first); + for (states->second=states->first+1; states->second<numStates; states->second++) { + RBBIStateDescriptor *duplSD = (RBBIStateDescriptor *)fDStates->elementAt(states->second); + if (firstSD->fAccepting != duplSD->fAccepting || + firstSD->fLookAhead != duplSD->fLookAhead || + firstSD->fTagsIdx != duplSD->fTagsIdx) { + continue; + } + bool rowsMatch = true; + for (int32_t col=0; col < numCols; ++col) { + int32_t firstVal = firstSD->fDtran->elementAti(col); + int32_t duplVal = duplSD->fDtran->elementAti(col); + if (!((firstVal == duplVal) || + ((firstVal == states->first || firstVal == states->second) && + (duplVal == states->first || duplVal == states->second)))) { + rowsMatch = false; + break; + } + } + if (rowsMatch) { + return true; + } + } + } + return false; +} + + +bool RBBITableBuilder::findDuplicateSafeState(IntPair *states) { + int32_t numStates = fSafeTable->size(); + + for (; states->first<numStates-1; states->first++) { + UnicodeString *firstRow = static_cast<UnicodeString *>(fSafeTable->elementAt(states->first)); + for (states->second=states->first+1; states->second<numStates; states->second++) { + UnicodeString *duplRow = static_cast<UnicodeString *>(fSafeTable->elementAt(states->second)); + bool rowsMatch = true; + int32_t numCols = firstRow->length(); + for (int32_t col=0; col < numCols; ++col) { + int32_t firstVal = firstRow->charAt(col); + int32_t duplVal = duplRow->charAt(col); + if (!((firstVal == duplVal) || + ((firstVal == states->first || firstVal == states->second) && + (duplVal == states->first || duplVal == states->second)))) { + rowsMatch = false; + break; + } + } + if (rowsMatch) { + return true; + } + } + } + return false; +} + + +void RBBITableBuilder::removeState(IntPair duplStates) { + const int32_t keepState = duplStates.first; + const int32_t duplState = duplStates.second; + U_ASSERT(keepState < duplState); + U_ASSERT(duplState < fDStates->size()); + + RBBIStateDescriptor *duplSD = (RBBIStateDescriptor *)fDStates->elementAt(duplState); + fDStates->removeElementAt(duplState); + delete duplSD; + + int32_t numStates = fDStates->size(); + int32_t numCols = fRB->fSetBuilder->getNumCharCategories(); + for (int32_t state=0; state<numStates; ++state) { + RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state); + for (int32_t col=0; col<numCols; col++) { + int32_t existingVal = sd->fDtran->elementAti(col); + int32_t newVal = existingVal; + if (existingVal == duplState) { + newVal = keepState; + } else if (existingVal > duplState) { + newVal = existingVal - 1; + } + sd->fDtran->setElementAt(newVal, col); + } + } +} + +void RBBITableBuilder::removeSafeState(IntPair duplStates) { + const int32_t keepState = duplStates.first; + const int32_t duplState = duplStates.second; + U_ASSERT(keepState < duplState); + U_ASSERT(duplState < fSafeTable->size()); + + fSafeTable->removeElementAt(duplState); // Note that fSafeTable has a deleter function + // and will auto-delete the removed element. + int32_t numStates = fSafeTable->size(); + for (int32_t state=0; state<numStates; ++state) { + UnicodeString *sd = (UnicodeString *)fSafeTable->elementAt(state); + int32_t numCols = sd->length(); + for (int32_t col=0; col<numCols; col++) { + int32_t existingVal = sd->charAt(col); + int32_t newVal = existingVal; + if (existingVal == duplState) { + newVal = keepState; + } else if (existingVal > duplState) { + newVal = existingVal - 1; + } + sd->setCharAt(col, static_cast<char16_t>(newVal)); + } + } +} + + +/* + * RemoveDuplicateStates + */ +int32_t RBBITableBuilder::removeDuplicateStates() { + IntPair dupls = {3, 0}; + int32_t numStatesRemoved = 0; + + while (findDuplicateState(&dupls)) { + // printf("Removing duplicate states (%d, %d)\n", dupls.first, dupls.second); + removeState(dupls); + ++numStatesRemoved; + } + return numStatesRemoved; +} + + +//----------------------------------------------------------------------------- +// +// getTableSize() Calculate the size of the runtime form of this +// state transition table. +// +//----------------------------------------------------------------------------- +int32_t RBBITableBuilder::getTableSize() const { + int32_t size = 0; + int32_t numRows; + int32_t numCols; + int32_t rowSize; + + if (fTree == nullptr) { + return 0; + } + + size = offsetof(RBBIStateTable, fTableData); // The header, with no rows to the table. + + numRows = fDStates->size(); + numCols = fRB->fSetBuilder->getNumCharCategories(); + + if (use8BitsForTable()) { + rowSize = offsetof(RBBIStateTableRow8, fNextState) + sizeof(int8_t)*numCols; + } else { + rowSize = offsetof(RBBIStateTableRow16, fNextState) + sizeof(int16_t)*numCols; + } + size += numRows * rowSize; + return size; +} + +bool RBBITableBuilder::use8BitsForTable() const { + return fDStates->size() <= kMaxStateFor8BitsTable; +} + +//----------------------------------------------------------------------------- +// +// exportTable() export the state transition table in the format required +// by the runtime engine. getTableSize() bytes of memory +// must be available at the output address "where". +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::exportTable(void *where) { + RBBIStateTable *table = (RBBIStateTable *)where; + uint32_t state; + int col; + + if (U_FAILURE(*fStatus) || fTree == nullptr) { + return; + } + + int32_t catCount = fRB->fSetBuilder->getNumCharCategories(); + if (catCount > 0x7fff || + fDStates->size() > 0x7fff) { + *fStatus = U_BRK_INTERNAL_ERROR; + return; + } + + table->fNumStates = fDStates->size(); + table->fDictCategoriesStart = fRB->fSetBuilder->getDictCategoriesStart(); + table->fLookAheadResultsSize = fLASlotsInUse == ACCEPTING_UNCONDITIONAL ? 0 : fLASlotsInUse + 1; + table->fFlags = 0; + if (use8BitsForTable()) { + table->fRowLen = offsetof(RBBIStateTableRow8, fNextState) + sizeof(uint8_t) * catCount; + table->fFlags |= RBBI_8BITS_ROWS; + } else { + table->fRowLen = offsetof(RBBIStateTableRow16, fNextState) + sizeof(int16_t) * catCount; + } + if (fRB->fLookAheadHardBreak) { + table->fFlags |= RBBI_LOOKAHEAD_HARD_BREAK; + } + if (fRB->fSetBuilder->sawBOF()) { + table->fFlags |= RBBI_BOF_REQUIRED; + } + + for (state=0; state<table->fNumStates; state++) { + RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state); + RBBIStateTableRow *row = (RBBIStateTableRow *)(table->fTableData + state*table->fRowLen); + if (use8BitsForTable()) { + U_ASSERT (sd->fAccepting <= 255); + U_ASSERT (sd->fLookAhead <= 255); + U_ASSERT (0 <= sd->fTagsIdx && sd->fTagsIdx <= 255); + RBBIStateTableRow8 *r8 = (RBBIStateTableRow8*)row; + r8->fAccepting = sd->fAccepting; + r8->fLookAhead = sd->fLookAhead; + r8->fTagsIdx = sd->fTagsIdx; + for (col=0; col<catCount; col++) { + U_ASSERT (sd->fDtran->elementAti(col) <= kMaxStateFor8BitsTable); + r8->fNextState[col] = sd->fDtran->elementAti(col); + } + } else { + U_ASSERT (sd->fAccepting <= 0xffff); + U_ASSERT (sd->fLookAhead <= 0xffff); + U_ASSERT (0 <= sd->fTagsIdx && sd->fTagsIdx <= 0xffff); + row->r16.fAccepting = sd->fAccepting; + row->r16.fLookAhead = sd->fLookAhead; + row->r16.fTagsIdx = sd->fTagsIdx; + for (col=0; col<catCount; col++) { + row->r16.fNextState[col] = sd->fDtran->elementAti(col); + } + } + } +} + + +/** + * Synthesize a safe state table from the main state table. + */ +void RBBITableBuilder::buildSafeReverseTable(UErrorCode &status) { + // The safe table creation has three steps: + + // 1. Identify pairs of character classes that are "safe." Safe means that boundaries + // following the pair do not depend on context or state before the pair. To test + // whether a pair is safe, run it through the main forward state table, starting + // from each state. If the the final state is the same, no matter what the starting state, + // the pair is safe. + // + // 2. Build a state table that recognizes the safe pairs. It's similar to their + // forward table, with a column for each input character [class], and a row for + // each state. Row 1 is the start state, and row 0 is the stop state. Initially + // create an additional state for each input character category; being in + // one of these states means that the character has been seen, and is potentially + // the first of a pair. In each of these rows, the entry for the second character + // of a safe pair is set to the stop state (0), indicating that a match was found. + // All other table entries are set to the state corresponding the current input + // character, allowing that character to be the of a start following pair. + // + // Because the safe rules are to be run in reverse, moving backwards in the text, + // the first and second pair categories are swapped when building the table. + // + // 3. Compress the table. There are typically many rows (states) that are + // equivalent - that have zeroes (match completed) in the same columns - + // and can be folded together. + + // Each safe pair is stored as two UChars in the safePair string. + UnicodeString safePairs; + + int32_t numCharClasses = fRB->fSetBuilder->getNumCharCategories(); + int32_t numStates = fDStates->size(); + + for (int32_t c1=0; c1<numCharClasses; ++c1) { + for (int32_t c2=0; c2 < numCharClasses; ++c2) { + int32_t wantedEndState = -1; + int32_t endState = 0; + for (int32_t startState = 1; startState < numStates; ++startState) { + RBBIStateDescriptor *startStateD = static_cast<RBBIStateDescriptor *>(fDStates->elementAt(startState)); + int32_t s2 = startStateD->fDtran->elementAti(c1); + RBBIStateDescriptor *s2StateD = static_cast<RBBIStateDescriptor *>(fDStates->elementAt(s2)); + endState = s2StateD->fDtran->elementAti(c2); + if (wantedEndState < 0) { + wantedEndState = endState; + } else { + if (wantedEndState != endState) { + break; + } + } + } + if (wantedEndState == endState) { + safePairs.append((char16_t)c1); + safePairs.append((char16_t)c2); + // printf("(%d, %d) ", c1, c2); + } + } + // printf("\n"); + } + + // Populate the initial safe table. + // The table as a whole is UVector<UnicodeString> + // Each row is represented by a UnicodeString, being used as a Vector<int16>. + // Row 0 is the stop state. + // Row 1 is the start state. + // Row 2 and beyond are other states, initially one per char class, but + // after initial construction, many of the states will be combined, compacting the table. + // The String holds the nextState data only. The four leading fields of a row, fAccepting, + // fLookAhead, etc. are not needed for the safe table, and are omitted at this stage of building. + + U_ASSERT(fSafeTable == nullptr); + LocalPointer<UVector> lpSafeTable( + new UVector(uprv_deleteUObject, uhash_compareUnicodeString, numCharClasses + 2, status), status); + if (U_FAILURE(status)) { + return; + } + fSafeTable = lpSafeTable.orphan(); + for (int32_t row=0; row<numCharClasses + 2; ++row) { + LocalPointer<UnicodeString> lpString(new UnicodeString(numCharClasses, 0, numCharClasses+4), status); + fSafeTable->adoptElement(lpString.orphan(), status); + } + if (U_FAILURE(status)) { + return; + } + + // From the start state, each input char class transitions to the state for that input. + UnicodeString &startState = *static_cast<UnicodeString *>(fSafeTable->elementAt(1)); + for (int32_t charClass=0; charClass < numCharClasses; ++charClass) { + // Note: +2 for the start & stop state. + startState.setCharAt(charClass, static_cast<char16_t>(charClass+2)); + } + + // Initially make every other state table row look like the start state row, + for (int32_t row=2; row<numCharClasses+2; ++row) { + UnicodeString &rowState = *static_cast<UnicodeString *>(fSafeTable->elementAt(row)); + rowState = startState; // UnicodeString assignment, copies contents. + } + + // Run through the safe pairs, set the next state to zero when pair has been seen. + // Zero being the stop state, meaning we found a safe point. + for (int32_t pairIdx=0; pairIdx<safePairs.length(); pairIdx+=2) { + int32_t c1 = safePairs.charAt(pairIdx); + int32_t c2 = safePairs.charAt(pairIdx + 1); + + UnicodeString &rowState = *static_cast<UnicodeString *>(fSafeTable->elementAt(c2 + 2)); + rowState.setCharAt(c1, 0); + } + + // Remove duplicate or redundant rows from the table. + IntPair states = {1, 0}; + while (findDuplicateSafeState(&states)) { + // printf("Removing duplicate safe states (%d, %d)\n", states.first, states.second); + removeSafeState(states); + } +} + + +//----------------------------------------------------------------------------- +// +// getSafeTableSize() Calculate the size of the runtime form of this +// safe state table. +// +//----------------------------------------------------------------------------- +int32_t RBBITableBuilder::getSafeTableSize() const { + int32_t size = 0; + int32_t numRows; + int32_t numCols; + int32_t rowSize; + + if (fSafeTable == nullptr) { + return 0; + } + + size = offsetof(RBBIStateTable, fTableData); // The header, with no rows to the table. + + numRows = fSafeTable->size(); + numCols = fRB->fSetBuilder->getNumCharCategories(); + + if (use8BitsForSafeTable()) { + rowSize = offsetof(RBBIStateTableRow8, fNextState) + sizeof(int8_t)*numCols; + } else { + rowSize = offsetof(RBBIStateTableRow16, fNextState) + sizeof(int16_t)*numCols; + } + size += numRows * rowSize; + return size; +} + +bool RBBITableBuilder::use8BitsForSafeTable() const { + return fSafeTable->size() <= kMaxStateFor8BitsTable; +} + +//----------------------------------------------------------------------------- +// +// exportSafeTable() export the state transition table in the format required +// by the runtime engine. getTableSize() bytes of memory +// must be available at the output address "where". +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::exportSafeTable(void *where) { + RBBIStateTable *table = (RBBIStateTable *)where; + uint32_t state; + int col; + + if (U_FAILURE(*fStatus) || fSafeTable == nullptr) { + return; + } + + int32_t catCount = fRB->fSetBuilder->getNumCharCategories(); + if (catCount > 0x7fff || + fSafeTable->size() > 0x7fff) { + *fStatus = U_BRK_INTERNAL_ERROR; + return; + } + + table->fNumStates = fSafeTable->size(); + table->fFlags = 0; + if (use8BitsForSafeTable()) { + table->fRowLen = offsetof(RBBIStateTableRow8, fNextState) + sizeof(uint8_t) * catCount; + table->fFlags |= RBBI_8BITS_ROWS; + } else { + table->fRowLen = offsetof(RBBIStateTableRow16, fNextState) + sizeof(int16_t) * catCount; + } + + for (state=0; state<table->fNumStates; state++) { + UnicodeString *rowString = (UnicodeString *)fSafeTable->elementAt(state); + RBBIStateTableRow *row = (RBBIStateTableRow *)(table->fTableData + state*table->fRowLen); + if (use8BitsForSafeTable()) { + RBBIStateTableRow8 *r8 = (RBBIStateTableRow8*)row; + r8->fAccepting = 0; + r8->fLookAhead = 0; + r8->fTagsIdx = 0; + for (col=0; col<catCount; col++) { + U_ASSERT(rowString->charAt(col) <= kMaxStateFor8BitsTable); + r8->fNextState[col] = static_cast<uint8_t>(rowString->charAt(col)); + } + } else { + row->r16.fAccepting = 0; + row->r16.fLookAhead = 0; + row->r16.fTagsIdx = 0; + for (col=0; col<catCount; col++) { + row->r16.fNextState[col] = rowString->charAt(col); + } + } + } +} + + + + +//----------------------------------------------------------------------------- +// +// printSet Debug function. Print the contents of a UVector +// +//----------------------------------------------------------------------------- +#ifdef RBBI_DEBUG +void RBBITableBuilder::printSet(UVector *s) { + int32_t i; + for (i=0; i<s->size(); i++) { + const RBBINode *v = static_cast<const RBBINode *>(s->elementAt(i)); + RBBIDebugPrintf("%5d", v==nullptr? -1 : v->fSerialNum); + } + RBBIDebugPrintf("\n"); +} +#endif + + +//----------------------------------------------------------------------------- +// +// printStates Debug Function. Dump the fully constructed state transition table. +// +//----------------------------------------------------------------------------- +#ifdef RBBI_DEBUG +void RBBITableBuilder::printStates() { + int c; // input "character" + int n; // state number + + RBBIDebugPrintf("state | i n p u t s y m b o l s \n"); + RBBIDebugPrintf(" | Acc LA Tag"); + for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { + RBBIDebugPrintf(" %3d", c); + } + RBBIDebugPrintf("\n"); + RBBIDebugPrintf(" |---------------"); + for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { + RBBIDebugPrintf("----"); + } + RBBIDebugPrintf("\n"); + + for (n=0; n<fDStates->size(); n++) { + RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); + RBBIDebugPrintf(" %3d | " , n); + RBBIDebugPrintf("%3d %3d %5d ", sd->fAccepting, sd->fLookAhead, sd->fTagsIdx); + for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { + RBBIDebugPrintf(" %3d", sd->fDtran->elementAti(c)); + } + RBBIDebugPrintf("\n"); + } + RBBIDebugPrintf("\n\n"); +} +#endif + + +//----------------------------------------------------------------------------- +// +// printSafeTable Debug Function. Dump the fully constructed safe table. +// +//----------------------------------------------------------------------------- +#ifdef RBBI_DEBUG +void RBBITableBuilder::printReverseTable() { + int c; // input "character" + int n; // state number + + RBBIDebugPrintf(" Safe Reverse Table \n"); + if (fSafeTable == nullptr) { + RBBIDebugPrintf(" --- nullptr ---\n"); + return; + } + RBBIDebugPrintf("state | i n p u t s y m b o l s \n"); + RBBIDebugPrintf(" | Acc LA Tag"); + for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { + RBBIDebugPrintf(" %2d", c); + } + RBBIDebugPrintf("\n"); + RBBIDebugPrintf(" |---------------"); + for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { + RBBIDebugPrintf("---"); + } + RBBIDebugPrintf("\n"); + + for (n=0; n<fSafeTable->size(); n++) { + UnicodeString *rowString = (UnicodeString *)fSafeTable->elementAt(n); + RBBIDebugPrintf(" %3d | " , n); + RBBIDebugPrintf("%3d %3d %5d ", 0, 0, 0); // Accepting, LookAhead, Tags + for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { + RBBIDebugPrintf(" %2d", rowString->charAt(c)); + } + RBBIDebugPrintf("\n"); + } + RBBIDebugPrintf("\n\n"); +} +#endif + + + +//----------------------------------------------------------------------------- +// +// printRuleStatusTable Debug Function. Dump the common rule status table +// +//----------------------------------------------------------------------------- +#ifdef RBBI_DEBUG +void RBBITableBuilder::printRuleStatusTable() { + int32_t thisRecord = 0; + int32_t nextRecord = 0; + int i; + UVector *tbl = fRB->fRuleStatusVals; + + RBBIDebugPrintf("index | tags \n"); + RBBIDebugPrintf("-------------------\n"); + + while (nextRecord < tbl->size()) { + thisRecord = nextRecord; + nextRecord = thisRecord + tbl->elementAti(thisRecord) + 1; + RBBIDebugPrintf("%4d ", thisRecord); + for (i=thisRecord+1; i<nextRecord; i++) { + RBBIDebugPrintf(" %5d", tbl->elementAti(i)); + } + RBBIDebugPrintf("\n"); + } + RBBIDebugPrintf("\n\n"); +} +#endif + + +//----------------------------------------------------------------------------- +// +// RBBIStateDescriptor Methods. This is a very struct-like class +// Most access is directly to the fields. +// +//----------------------------------------------------------------------------- + +RBBIStateDescriptor::RBBIStateDescriptor(int lastInputSymbol, UErrorCode *fStatus) { + fMarked = false; + fAccepting = 0; + fLookAhead = 0; + fTagsIdx = 0; + fTagVals = nullptr; + fPositions = nullptr; + fDtran = nullptr; + + fDtran = new UVector32(lastInputSymbol+1, *fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + if (fDtran == nullptr) { + *fStatus = U_MEMORY_ALLOCATION_ERROR; + return; + } + fDtran->setSize(lastInputSymbol+1); // fDtran needs to be pre-sized. + // It is indexed by input symbols, and will + // hold the next state number for each + // symbol. +} + + +RBBIStateDescriptor::~RBBIStateDescriptor() { + delete fPositions; + delete fDtran; + delete fTagVals; + fPositions = nullptr; + fDtran = nullptr; + fTagVals = nullptr; +} + +U_NAMESPACE_END + +#endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |