summaryrefslogtreecommitdiffstats
path: root/testing/web-platform/tests/webnn/resources/utils.js
diff options
context:
space:
mode:
Diffstat (limited to 'testing/web-platform/tests/webnn/resources/utils.js')
-rw-r--r--testing/web-platform/tests/webnn/resources/utils.js664
1 files changed, 664 insertions, 0 deletions
diff --git a/testing/web-platform/tests/webnn/resources/utils.js b/testing/web-platform/tests/webnn/resources/utils.js
new file mode 100644
index 0000000000..37748fd57a
--- /dev/null
+++ b/testing/web-platform/tests/webnn/resources/utils.js
@@ -0,0 +1,664 @@
+'use strict';
+
+const ExecutionArray = ['sync', 'async'];
+
+// https://webmachinelearning.github.io/webnn/#enumdef-mloperandtype
+const TypedArrayDict = {
+ float32: Float32Array,
+ int32: Int32Array,
+ uint32: Uint32Array,
+ int8: Int8Array,
+ uint8: Uint8Array,
+};
+
+const sizeOfShape = (array) => {
+ return array.reduce((accumulator, currentValue) => accumulator * currentValue, 1);
+};
+
+/**
+ * Get tests resources from test data JSON file of specified operation name.
+ * @param {String} operationName - An operation name
+ * @returns {Object} Tests resources
+ */
+const loadTests = (operationName) => {
+ const loadJSON = (file) => {
+ let xmlhttp = new XMLHttpRequest();
+ xmlhttp.open("GET", file, false);
+ xmlhttp.overrideMimeType("application/json");
+ xmlhttp.send();
+ if (xmlhttp.status == 200 && xmlhttp.readyState == 4) {
+ return xmlhttp.responseText;
+ } else {
+ throw new Error(`Failed to load ${file}`);
+ }
+ };
+
+ const capitalLetterMatches = operationName.match(/[A-Z]/g);
+ if (capitalLetterMatches !== null) {
+ // for example: the test data JSON file for leakyRelu is leaky_relu.json and for reduceLogSum is reduce_log_sum.json
+ capitalLetterMatches.forEach(
+ capitalLetter => operationName = operationName.replace(capitalLetter, `_${capitalLetter.toLowerCase()}`)
+ )
+ }
+ const json = loadJSON(`/webnn/resources/test_data/${operationName}.json`);
+ const resources = JSON.parse(json.replace(/\\"|"(?:\\"|[^"])*"|(\/\/.*|\/\*[\s\S]*?\*\/)/g, (m, g) => g ? "" : m));
+ return resources.tests;
+};
+
+/**
+ * Get exptected data and data type from given resources with output name.
+ * @param {Array} resources - An array of expected resources
+ * @param {String} outputName - An output name
+ * @returns {Array.<[Number[], String]>} An array of expected data array and data type
+ */
+const getExpectedDataAndType = (resources, outputName) => {
+ let ret;
+ for (let subResources of resources) {
+ if (subResources.name === outputName) {
+ ret = [subResources.data, subResources.type];
+ break;
+ }
+ }
+ if (ret === undefined) {
+ throw new Error(`Failed to get expected data sources and type by ${outputName}`);
+ }
+ return ret;
+};
+
+/**
+ * Get ULP tolerance of conv2d/convTranspose2d operation.
+ * @param {Object} resources - Resources used for building a graph
+ * @param {String} operationName - An operation name
+ * @returns {Number} A tolerance number
+ */
+const getConv2dPrecisionTolerance = (resources, operationName) => {
+ // number of reduced input elements multiplied by filter and summed (a sliding dot product like pooling)
+ const inputNameArray = Object.keys(resources.inputs);
+ const inputShape = resources.inputs[inputNameArray[0]].shape;
+ const filterShape = resources.inputs[inputNameArray[1]].shape;
+ const options = resources.options;
+ let groups = 1;
+ let inputChannels = inputShape[1]; // default nchw inputLayout
+ // default oihw filterLayout for conv2d or default iohw filterLayout for convTranspose2d
+ let filterWidth = filterShape[3];
+ let filterHeight = filterShape[2];
+ if (options) {
+ if (options.groups) {
+ groups = options.groups;
+ }
+ if (options.inputLayout) {
+ if (!['nchw', 'nhwc'].includes(options.inputLayout)) {
+ throw new Error(`Unsupported inputLayout ${options.inputLayout}`);
+ }
+ inputChannels = options.inputLayout === 'nchw' ? inputChannels : inputShape[3];
+ }
+ if (options.filterLayout) {
+ let filterLayouts = ['oihw', 'hwio', 'ohwi', 'ihwo']; // default for conv2d
+ if (operationName === 'convTranspose2d') {
+ filterLayouts = ['iohw', 'hwoi', 'ohwi'];
+ }
+ if (!filterLayouts.includes(options.filterLayout)) {
+ throw new Error(`Unsupported filterLayout ${options.filterLayout}`);
+ }
+ switch (options.filterLayout) {
+ case 'oihw':
+ case 'iohw':
+ // Just use the existing filterWidth and filterHeight above.
+ break;
+ case 'hwio':
+ case 'hwoi':
+ filterWidth = filterShape[1];
+ filterHeight = filterShape[0];
+ break;
+ case 'ohwi':
+ case 'ihwo':
+ filterWidth = filterShape[2];
+ filterHeight = filterShape[1];
+ break;
+ default:
+ break;
+ }
+ }
+ }
+ const tolerance = filterWidth * filterHeight * (inputChannels / groups) * 2;
+ return tolerance;
+};
+
+/**
+ * Get ULP tolerance of gemm operation.
+ * @param {Object} resources - Resources used for building a graph
+ * @param {String} operationName - An operation name
+ * @returns {Number} A tolerance number
+ */
+const getGemmPrecisionTolerance = (resources, operationName) => {
+ // GEMM : alpha * (A x B) + beta * C
+ // An upper bound for the worst serial ordering is bounded by
+ // the number of lossy operations, where matrix multiplication
+ // is a dot product (mul and add times the number of elements)
+ // plus bias operations.
+ const shapeA = resources.inputs[Object.keys(resources.inputs)[0]].shape;
+ const options = {...resources.options};
+ const width = options.aTranspose ? shapeA[0] : shapeA[1];
+ let tolerance = width * 2;
+ // default options.alpha is 1.0
+ if (options.alpha !== undefined && options.alpha !== 1.0) {
+ tolerance++;
+ }
+ if (options.c && options.beta !== 0.0) {
+ // default options.beta is 1.0
+ if (options.beta !== undefined && options.beta !== 1.0) {
+ tolerance++;
+ }
+ tolerance++;
+ }
+ return tolerance;
+};
+
+/**
+ * Get ULP tolerance of matmul operation.
+ * @param {Object} resources - Resources used for building a graph
+ * @param {String} operationName - An operation name
+ * @returns {Number} A tolerance number
+ */
+const getMatmulPrecisionTolerance = (resources, operationName) => {
+ // Matmul : Compute the matrix product of two input tensors.
+ // If a is 1-D, WebNN converts it to a 2-D tensor by prepending a 1 to its dimensions, [n] -> [1, n].
+ // So we can just always check the last dimension here.
+ const shapeA = resources.inputs[Object.keys(resources.inputs)[0]].shape;
+ const tolerance = shapeA[shapeA.length - 1] * 2;
+ return tolerance;
+};
+
+/**
+ * Get ULP tolerance of averagePool2d operation.
+ * @param {Object} resources - Resources used for building a graph
+ * @param {String} operationName - An operation name
+ * @returns {Number} A tolerance number
+ */
+const getAveragePool2dPrecisionTolerance = (resources, operationName) => {
+ const inputShape = resources.inputs[Object.keys(resources.inputs)[0]].shape;
+ let height;
+ let width;
+ const options = {...resources.options};
+ if (options.windowDimensions) {
+ height = options.windowDimensions[0];
+ width = options.windowDimensions[1];
+ } else {
+ // If not present, the window dimensions are assumed to be the height and width dimensions of the input shape
+ if (options.layout && options.layout === 'nhwc') {
+ height = inputShape[1];
+ width = inputShape[2];
+ } else {
+ // nhwc layout of input
+ height = inputShape[2];
+ width = inputShape[3];
+ }
+ }
+
+ const tolerance = height * width + 2;
+ return tolerance;
+};
+
+/**
+ * Get ULP tolerance of softmax operation.
+ * @param {Object} resources - Resources used for building a graph
+ * @param {String} operationName - An operation name
+ * @returns {Number} A tolerance number
+ */
+const getSoftmaxPrecisionTolerance = (resources, operationName) => {
+ // Compute the softmax values of the 2-D input tensor along axis 1.
+ const inputShape = resources.inputs[Object.keys(resources.inputs)[0]].shape;
+ const tolerance = inputShape[1] * 3 + 3;
+ return tolerance;
+};
+
+/**
+ * Get ULP tolerance of reduction operations.
+ * @param {Object} resources - Resources used for building a graph
+ * @param {String} operationName - An operation name
+ * @returns {Number} A tolerance number
+ */
+const getReductionPrecisionTolerance = (resources, operationName) => {
+ const inputShape = resources.inputs[Object.keys(resources.inputs)[0]].shape;
+ const rank = inputShape.length;
+ const options = {...resources.options};
+ let sizes;
+ if (options && options.axes) {
+ sizes = options.axes.map(
+ (axis) => axis < 0 ? inputShape[axis + rank] : inputShape[axis]
+ );
+ } else {
+ sizes = inputShape;
+ }
+ const reducedElementCount = sizes.reduce(
+ (accumulator, currentValue) => accumulator * currentValue
+ );
+ let tolerance;
+ switch (operationName) {
+ case 'reduceL1':
+ case 'reduceProduct':
+ case 'reduceSum':
+ tolerance = reducedElementCount;
+ break;
+ case 'reduceL2':
+ tolerance = reducedElementCount * 2 + 1;
+ break;
+ case 'reduceMean':
+ tolerance = reducedElementCount + 2;
+ break;
+ case 'reduceLogSum':
+ tolerance = reducedElementCount + 18;
+ break;
+ case 'reduceLogSumExp':
+ tolerance = reducedElementCount * 2 + 18;
+ break;
+ case 'reduceSumSquare':
+ tolerance = reducedElementCount * 2;
+ break;
+ default:
+ break;
+ }
+ return tolerance;
+};
+
+// Refer to precision metrics on https://github.com/webmachinelearning/webnn/issues/265#issuecomment-1256242643
+const PrecisionMetrics = {
+ batchNormalization: {ULP: {float32: 6, float16: 6}},
+ clamp: {ULP: {float32: 0, float16: 0}},
+ concat: {ULP: {float32: 0, float16: 0}},
+ conv2d: {ULP: {float32: getConv2dPrecisionTolerance, float16: getConv2dPrecisionTolerance}},
+ convTranspose2d: {ULP: {float32: getConv2dPrecisionTolerance, float16: getConv2dPrecisionTolerance}},
+ // Begin Element-wise binary operations
+ add: {ULP: {float32: 1, float16: 1}},
+ sub: {ULP: {float32: 1, float16: 1}},
+ mul: {ULP: {float32: 1, float16: 1}},
+ div: {ULP: {float32: 2, float16: 2}},
+ max: {ULP: {float32: 0, float16: 0}},
+ min: {ULP: {float32: 0, float16: 0}},
+ pow: {ULP: {float32: 32, float16: 2}},
+ // End Element-wise binary operations
+ // Begin Element-wise unary operations
+ abs: {ULP: {float32: 0, float16: 0}},
+ ceil: {ULP: {float32: 0, float16: 0}},
+ cos: {ATOL: {float32: 1/1024, float16: 1/512}},
+ exp: {ULP: {float32: 32, float16: 1}},
+ floor: {ULP: {float32: 0, float16: 0}},
+ log: {ATOL: {float32: 1/1024, float16: 1/1024}},
+ neg: {ULP: {float32: 0, float16: 0}},
+ sin: {ATOL: {float32: 1/1024, float16: 1/512}},
+ tan: {ATOL: {float32: 1/1024, float16: 1/512}},
+ // End Element-wise unary operations
+ elu: {ULP: {float32: 18, float16: 18}},
+ gemm: {ULP: {float32: getGemmPrecisionTolerance, float16: getGemmPrecisionTolerance}},
+ hardSigmoid: {ULP: {float32: 2, float16: 2}},
+ hardSwish: {ULP: {float32: 4, float16: 4}},
+ leakyRelu: {ULP: {float32: 1, float16: 1}},
+ linear: {ULP: {float32: 2, float16: 2}},
+ matmul: {ULP: {float32: getMatmulPrecisionTolerance, float16: getMatmulPrecisionTolerance}},
+ pad: {ULP: {float32: 0, float16: 0}},
+ // Begin Pooling operations
+ averagePool2d: {ULP: {float32: getAveragePool2dPrecisionTolerance, float16: getAveragePool2dPrecisionTolerance}},
+ maxPool2d: {ULP: {float32: 0, float16: 0}},
+ // End Pooling operations
+ prelu: {ULP: {float32: 1, float16: 1}},
+ // Begin Reduction operations
+ reduceL1: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
+ reduceL2: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
+ reduceLogSum: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
+ reduceLogSumExp: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
+ reduceMax: {ULP: {float32: 0, float16: 0}},
+ reduceMean: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
+ reduceMin: {ULP: {float32: 0, float16: 0}},
+ reduceProduct: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
+ reduceSum: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
+ reduceSumSquare: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
+ // End Reduction operations
+ relu: {ULP: {float32: 0, float16: 0}},
+ reshape: {ULP: {float32: 0, float16: 0}},
+ sigmoid: {ULP: {float32: 32+2, float16: 3}}, // float32 (leaving a few ULP for roundoff)
+ slice: {ULP: {float32: 0, float16: 0}},
+ softmax: {ULP: {float32: getSoftmaxPrecisionTolerance, float16: getSoftmaxPrecisionTolerance}},
+ softsign: {ULP: {float32: 3, float16: 3}},
+ split: {ULP: {float32: 0, float16: 0}},
+ squeeze: {ULP: {float32: 0, float16: 0}},
+ tanh: {ATOL: {float32: 1/1024, float16: 1/512}},
+ transpose: {ULP: {float32: 0, float16: 0}},
+};
+
+/**
+ * Get precison tolerance value.
+ * @param {String} operationName - An operation name
+ * @param {String} metricType - Value: 'ULP', 'ATOL'
+ * @param {Object} resources - Resources used for building a graph
+ * @returns {Number} A tolerance number
+ */
+const getPrecisonTolerance = (operationName, metricType, resources) => {
+ // the outputs by split or gru is a sequence
+ const precisionType = Array.isArray(resources.expected) ? resources.expected[0].type : resources.expected.type;
+ let tolerance = PrecisionMetrics[operationName][metricType][precisionType];
+ // If the tolerance is dynamic, then evaluate the function to get the value.
+ if (tolerance instanceof Function) {
+ tolerance = tolerance(resources, operationName);
+ }
+ return tolerance;
+};
+
+/**
+ * Get bitwise of the given value.
+ * @param {Number} value
+ * @param {String} dataType - A data type string, like "float32", "float16",
+ * more types, please see:
+ * https://webmachinelearning.github.io/webnn/#enumdef-mloperandtype
+ * @return {Number} A 64-bit signed integer.
+ */
+const getBitwise = (value, dataType) => {
+ const buffer = new ArrayBuffer(8);
+ const int64Array = new BigInt64Array(buffer);
+ int64Array[0] = value < 0 ? ~BigInt(0) : BigInt(0);
+ let typedArray;
+ if (dataType === "float32") {
+ typedArray = new Float32Array(buffer);
+ } else {
+ throw new AssertionError(`Data type ${dataType} is not supported`);
+ }
+ typedArray[0] = value;
+ return int64Array[0];
+};
+
+/**
+ * Assert that each array property in ``actual`` is a number being close enough to the corresponding
+ * property in ``expected`` by the acceptable ULP distance ``nulp`` with given ``dataType`` data type.
+ *
+ * @param {Array} actual - Array of test values.
+ * @param {Array} expected - Array of values expected to be close to the values in ``actual``.
+ * @param {Number} nulp - A BigInt value indicates acceptable ULP distance.
+ * @param {String} dataType - A data type string, value: "float32",
+ * more types, please see:
+ * https://webmachinelearning.github.io/webnn/#enumdef-mloperandtype
+ * @param {String} description - Description of the condition being tested.
+ */
+const assert_array_approx_equals_ulp = (actual, expected, nulp, dataType, description) => {
+ /*
+ * Test if two primitive arrays are equal within acceptable ULP distance
+ */
+ assert_true(actual.length === expected.length,
+ `assert_array_approx_equals_ulp: ${description} lengths differ, expected ${expected.length} but got ${actual.length}`);
+ let actualBitwise, expectedBitwise, distance;
+ for (let i = 0; i < actual.length; i++) {
+ if (actual[i] === expected[i]) {
+ continue;
+ } else {
+ // measure the ULP distance
+ actualBitwise = getBitwise(actual[i], dataType);
+ expectedBitwise = getBitwise(expected[i], dataType);
+ distance = actualBitwise - expectedBitwise;
+ distance = distance >= 0 ? distance : -distance;
+ assert_true(distance <= nulp,
+ `assert_array_approx_equals_ulp: ${description} actual ${actual[i]} should be close enough to expected ${expected[i]} by the acceptable ${nulp} ULP distance, but they have ${distance} ULP distance`);
+ }
+ }
+};
+
+/**
+ * Assert actual results with expected results.
+ * @param {String} operationName - An operation name
+ * @param {(Number[]|Number)} actual
+ * @param {(Number[]|Number)} expected
+ * @param {Number} tolerance
+ * @param {String} operandType - An operand type string, value: "float32",
+ * more types, please see:
+ * https://webmachinelearning.github.io/webnn/#enumdef-mloperandtype
+ * @param {String} metricType - Value: 'ULP', 'ATOL'
+ */
+const doAssert = (operationName, actual, expected, tolerance, operandType, metricType) => {
+ const description = `test ${operationName} ${operandType}`;
+ if (typeof expected === 'number') {
+ // for checking a scalar output by matmul 1D x 1D
+ expected = [expected];
+ actual = [actual];
+ }
+ if (metricType === 'ULP') {
+ assert_array_approx_equals_ulp(actual, expected, tolerance, operandType, description);
+ } else if (metricType === 'ATOL') {
+ assert_array_approx_equals(actual, expected, tolerance, description);
+ }
+};
+
+/**
+ * Check computed results with expected data.
+ * @param {String} operationName - An operation name
+ * @param {Object.<String, MLOperand>} namedOutputOperands
+ * @param {Object.<MLNamedArrayBufferViews>} outputs - The resources of required outputs
+ * @param {Object} resources - Resources used for building a graph
+ */
+const checkResults = (operationName, namedOutputOperands, outputs, resources) => {
+ const metricType = Object.keys(PrecisionMetrics[operationName])[0];
+ const expected = resources.expected;
+ let tolerance;
+ let operandType;
+ let outputData;
+ let expectedData;
+ if (Array.isArray(expected)) {
+ // the outputs of split() or gru() is a sequence
+ for (let operandName in namedOutputOperands) {
+ outputData = outputs[operandName];
+ // for some operations which may have multi outputs of different types
+ [expectedData, operandType] = getExpectedDataAndType(expected, operandName);
+ tolerance = getPrecisonTolerance(operationName, metricType, resources);
+ doAssert(operationName, outputData, expectedData, tolerance, operandType, metricType)
+ }
+ } else {
+ outputData = outputs[expected.name];
+ expectedData = expected.data;
+ operandType = expected.type;
+ tolerance = getPrecisonTolerance(operationName, metricType, resources);
+ doAssert(operationName, outputData, expectedData, tolerance, operandType, metricType)
+ }
+};
+
+/**
+ * Create a constant operand
+ * @param {MLGraphBuilder} builder - A ML graph builder
+ * @param {Object} resources - Resources used for constant operand
+ * @returns {MLOperand} A constant operand
+ */
+const createConstantOperand = (builder, resources) => {
+ const bufferView = new TypedArrayDict[resources.type](resources.data);
+ return builder.constant({type: resources.type, dimensions: resources.shape}, bufferView);
+};
+
+/**
+ * Create single input operands for a graph.
+ * @param {MLGraphBuilder} builder - A ML graph builder
+ * @param {Object} resources - Resources used for building a graph
+ * @param {String} [inputOperandName] - An inputOperand name
+ * @returns {MLOperand} An input operand
+ */
+const createSingleInputOperand = (builder, resources, inputOperandName) => {
+ inputOperandName = inputOperandName ? inputOperandName : Object.keys(resources.inputs)[0];
+ const inputResources = resources.inputs[inputOperandName];
+ return builder.input(inputOperandName, {type: inputResources.type, dimensions: inputResources.shape});
+};
+
+/**
+ * Create multi input operands for a graph.
+ * @param {MLGraphBuilder} builder - A ML graph builder
+ * @param {Object} resources - Resources used for building a graph
+ * @returns {MLOperand[]} Input operands array
+ */
+const createMultiInputOperands = (builder, resources) => {
+ let inputOperands = [];
+ const inputOperandNameArray = Object.keys(resources.inputs);
+ inputOperandNameArray.forEach(inputOperandName => {
+ let operand;
+ if (resources.inputs[inputOperandName].hasOwnProperty('constant') && resources.inputs[inputOperandName]['constant']) {
+ operand = createConstantOperand(builder, resources.inputs[inputOperandName]);
+ } else {
+ operand = createSingleInputOperand(builder, resources, inputOperandName);
+ }
+ inputOperands.push(operand);
+ });
+ return inputOperands;
+};
+
+/**
+ * Build an operation which has a single input.
+ * @param {String} operationName - An operation name
+ * @param {MLGraphBuilder} builder - A ML graph builder
+ * @param {Object} resources - Resources used for building a graph
+ * @returns {MLNamedOperands}
+ */
+const buildOperationWithSingleInput = (operationName, builder, resources) => {
+ const namedOutputOperand = {};
+ const inputOperand = createSingleInputOperand(builder, resources);
+ const outputOperand = resources.options ?
+ builder[operationName](inputOperand, resources.options) : builder[operationName](inputOperand);
+ namedOutputOperand[resources.expected.name] = outputOperand;
+ return namedOutputOperand;
+};
+
+/**
+ * Build an operation which has two inputs.
+ * @param {String} operationName - An operation name
+ * @param {MLGraphBuilder} builder - A ML graph builder
+ * @param {Object} resources - Resources used for building a graph
+ * @returns {MLNamedOperands}
+ */
+const buildOperationWithTwoInputs= (operationName, builder, resources) => {
+ // For example: MLOperand matmul(MLOperand a, MLOperand b);
+ const namedOutputOperand = {};
+ const [inputOperandA, inputOperandB] = createMultiInputOperands(builder, resources);
+ const outputOperand = resources.options ?
+ builder[operationName](inputOperandA, inputOperandB, resources.options) : builder[operationName](inputOperandA, inputOperandB);
+ namedOutputOperand[resources.expected.name] = outputOperand;
+ return namedOutputOperand;
+};
+
+/**
+ * Build a graph.
+ * @param {String} operationName - An operation name
+ * @param {MLGraphBuilder} builder - A ML graph builder
+ * @param {Object} resources - Resources used for building a graph
+ * @param {Function} buildFunc - A build function for an operation
+ * @returns [namedOperands, inputs, outputs]
+ */
+const buildGraph = (operationName, builder, resources, buildFunc) => {
+ const namedOperands = buildFunc(operationName, builder, resources);
+ let inputs = {};
+ if (Array.isArray(resources.inputs)) {
+ // the inputs of concat() is a sequence
+ for (let subInput of resources.inputs) {
+ if (!subInput.hasOwnProperty('constant') || !subInput.constant) {
+ inputs[subInput.name] = new TypedArrayDict[subInput.type](subInput.data);
+ }
+ }
+ } else {
+ for (let inputName in resources.inputs) {
+ const subTestByName = resources.inputs[inputName];
+ if (!subTestByName.hasOwnProperty('constant') || !subTestByName.constant) {
+ inputs[inputName] = new TypedArrayDict[subTestByName.type](subTestByName.data);
+ }
+ }
+ }
+ let outputs = {};
+ if (Array.isArray(resources.expected)) {
+ // the outputs of split() or gru() is a sequence
+ for (let i = 0; i < resources.expected.length; i++) {
+ const subExpected = resources.expected[i];
+ outputs[subExpected.name] = new TypedArrayDict[subExpected.type](sizeOfShape(subExpected.shape));
+ }
+ } else {
+ // matmul 1D with 1D produces a scalar which doesn't have its shape
+ const shape = resources.expected.shape ? resources.expected.shape : [1];
+ outputs[resources.expected.name] = new TypedArrayDict[resources.expected.type](sizeOfShape(shape));
+ }
+ return [namedOperands, inputs, outputs];
+};
+
+/**
+ * Build a graph, synchronously compile graph and execute, then check computed results.
+ * @param {String} operationName - An operation name
+ * @param {MLContext} context - A ML context
+ * @param {MLGraphBuilder} builder - A ML graph builder
+ * @param {Object} resources - Resources used for building a graph
+ * @param {Function} buildFunc - A build function for an operation
+ */
+const runSync = (operationName, context, builder, resources, buildFunc) => {
+ // build a graph
+ const [namedOutputOperands, inputs, outputs] = buildGraph(operationName, builder, resources, buildFunc);
+ // synchronously compile the graph up to the output operand
+ const graph = builder.buildSync(namedOutputOperands);
+ // synchronously execute the compiled graph.
+ context.computeSync(graph, inputs, outputs);
+ checkResults(operationName, namedOutputOperands, outputs, resources);
+};
+
+/**
+ * Build a graph, asynchronously compile graph and execute, then check computed results.
+ * @param {String} operationName - An operation name
+ * @param {MLContext} context - A ML context
+ * @param {MLGraphBuilder} builder - A ML graph builder
+ * @param {Object} resources - Resources used for building a graph
+ * @param {Function} buildFunc - A build function for an operation
+ */
+const run = async (operationName, context, builder, resources, buildFunc) => {
+ // build a graph
+ const [namedOutputOperands, inputs, outputs] = buildGraph(operationName, builder, resources, buildFunc);
+ // asynchronously compile the graph up to the output operand
+ const graph = await builder.build(namedOutputOperands);
+ // asynchronously execute the compiled graph
+ const result = await context.compute(graph, inputs, outputs);
+ checkResults(operationName, namedOutputOperands, result.outputs, resources);
+};
+
+/**
+ * Run WebNN operation tests.
+ * @param {(String[]|String)} operationName - An operation name array or an operation name
+ * @param {Function} buildFunc - A build function for an operation
+ */
+const testWebNNOperation = (operationName, buildFunc) => {
+ let operationNameArray;
+ if (typeof operationName === 'string') {
+ operationNameArray = [operationName];
+ } else if (Array.isArray(operationName)) {
+ operationNameArray = operationName;
+ }
+
+ ExecutionArray.forEach(executionType => {
+ const isSync = executionType === 'sync';
+ if (self.GLOBAL.isWindow() && isSync) {
+ return;
+ }
+ let context;
+ let builder;
+ if (isSync) {
+ // test sync
+ operationNameArray.forEach((subOperationName) => {
+ const tests = loadTests(subOperationName);
+ setup(() => {
+ context = navigator.ml.createContextSync();
+ builder = new MLGraphBuilder(context);
+ });
+ for (const subTest of tests) {
+ test(() => {
+ runSync(subOperationName, context, builder, subTest, buildFunc);
+ }, `${subTest.name} / ${executionType}`);
+ }
+ });
+ } else {
+ // test async
+ operationNameArray.forEach((subOperationName) => {
+ const tests = loadTests(subOperationName);
+ promise_setup(async () => {
+ context = await navigator.ml.createContext();
+ builder = new MLGraphBuilder(context);
+ });
+ for (const subTest of tests) {
+ promise_test(async () => {
+ await run(subOperationName, context, builder, subTest, buildFunc);
+ }, `${subTest.name} / ${executionType}`);
+ }
+ });
+ }
+ });
+}; \ No newline at end of file