summaryrefslogtreecommitdiffstats
path: root/testing/web-platform/tests/webnn/resources/utils.js
blob: 37748fd57a405e645798a3bb92e3138d48a9941a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
'use strict';

const ExecutionArray = ['sync', 'async'];

// https://webmachinelearning.github.io/webnn/#enumdef-mloperandtype
const TypedArrayDict = {
  float32: Float32Array,
  int32: Int32Array,
  uint32: Uint32Array,
  int8: Int8Array,
  uint8: Uint8Array,
};

const sizeOfShape = (array) => {
  return array.reduce((accumulator, currentValue) => accumulator * currentValue, 1);
};

/**
 * Get tests resources from test data JSON file of specified operation name.
 * @param {String} operationName - An operation name
 * @returns {Object} Tests resources
 */
const loadTests = (operationName) => {
  const loadJSON = (file) => {
    let xmlhttp = new XMLHttpRequest();
    xmlhttp.open("GET", file, false);
    xmlhttp.overrideMimeType("application/json");
    xmlhttp.send();
    if (xmlhttp.status == 200 && xmlhttp.readyState == 4) {
      return xmlhttp.responseText;
    } else {
      throw new Error(`Failed to load ${file}`);
    }
  };

  const capitalLetterMatches = operationName.match(/[A-Z]/g);
  if (capitalLetterMatches !== null) {
    // for example: the test data JSON file for leakyRelu is leaky_relu.json and for reduceLogSum is reduce_log_sum.json
    capitalLetterMatches.forEach(
      capitalLetter => operationName = operationName.replace(capitalLetter, `_${capitalLetter.toLowerCase()}`)
    )
  }
  const json = loadJSON(`/webnn/resources/test_data/${operationName}.json`);
  const resources = JSON.parse(json.replace(/\\"|"(?:\\"|[^"])*"|(\/\/.*|\/\*[\s\S]*?\*\/)/g, (m, g) => g ? "" : m));
  return resources.tests;
};

/**
 * Get exptected data and data type from given resources with output name.
 * @param {Array} resources - An array of expected resources
 * @param {String} outputName - An output name
 * @returns {Array.<[Number[], String]>} An array of expected data array and data type
 */
const getExpectedDataAndType = (resources, outputName) => {
  let ret;
  for (let subResources of resources) {
    if (subResources.name === outputName) {
      ret = [subResources.data, subResources.type];
      break;
    }
  }
  if (ret === undefined) {
    throw new Error(`Failed to get expected data sources and type by ${outputName}`);
  }
  return ret;
};

/**
 * Get ULP tolerance of conv2d/convTranspose2d operation.
 * @param {Object} resources - Resources used for building a graph
 * @param {String} operationName - An operation name
 * @returns {Number} A tolerance number
 */
const getConv2dPrecisionTolerance = (resources, operationName) => {
  // number of reduced input elements multiplied by filter and summed (a sliding dot product like pooling)
  const inputNameArray = Object.keys(resources.inputs);
  const inputShape = resources.inputs[inputNameArray[0]].shape;
  const filterShape = resources.inputs[inputNameArray[1]].shape;
  const options = resources.options;
  let groups = 1;
  let inputChannels = inputShape[1]; // default nchw inputLayout
  // default oihw filterLayout for conv2d or default iohw filterLayout for convTranspose2d
  let filterWidth = filterShape[3];
  let filterHeight = filterShape[2];
  if (options) {
    if (options.groups) {
      groups = options.groups;
    }
    if (options.inputLayout) {
      if (!['nchw', 'nhwc'].includes(options.inputLayout)) {
        throw new Error(`Unsupported inputLayout ${options.inputLayout}`);
      }
      inputChannels = options.inputLayout === 'nchw' ? inputChannels : inputShape[3];
    }
    if (options.filterLayout) {
      let filterLayouts = ['oihw', 'hwio', 'ohwi', 'ihwo']; // default for conv2d
      if (operationName === 'convTranspose2d') {
        filterLayouts = ['iohw', 'hwoi', 'ohwi'];
      }
      if (!filterLayouts.includes(options.filterLayout)) {
        throw new Error(`Unsupported filterLayout ${options.filterLayout}`);
      }
      switch (options.filterLayout) {
        case 'oihw':
        case 'iohw':
          // Just use the existing filterWidth and filterHeight above.
          break;
        case 'hwio':
        case 'hwoi':
          filterWidth = filterShape[1];
          filterHeight = filterShape[0];
          break;
        case 'ohwi':
        case 'ihwo':
          filterWidth = filterShape[2];
          filterHeight = filterShape[1];
          break;
        default:
          break;
      }
    }
  }
  const tolerance = filterWidth * filterHeight * (inputChannels / groups) * 2;
  return tolerance;
};

/**
 * Get ULP tolerance of gemm operation.
 * @param {Object} resources - Resources used for building a graph
 * @param {String} operationName - An operation name
 * @returns {Number} A tolerance number
 */
const getGemmPrecisionTolerance = (resources, operationName) => {
  // GEMM : alpha * (A x B) + beta * C
  // An upper bound for the worst serial ordering is bounded by
  // the number of lossy operations, where matrix multiplication
  // is a dot product (mul and add times the number of elements)
  // plus bias operations.
  const shapeA = resources.inputs[Object.keys(resources.inputs)[0]].shape;
  const options = {...resources.options};
  const width = options.aTranspose ? shapeA[0] : shapeA[1];
  let tolerance = width * 2;
  // default options.alpha is 1.0
  if (options.alpha !== undefined && options.alpha !== 1.0) {
    tolerance++;
  }
  if (options.c && options.beta !== 0.0) {
    // default options.beta is 1.0
    if (options.beta !== undefined && options.beta !== 1.0) {
      tolerance++;
    }
    tolerance++;
  }
  return tolerance;
};

/**
 * Get ULP tolerance of matmul operation.
 * @param {Object} resources - Resources used for building a graph
 * @param {String} operationName - An operation name
 * @returns {Number} A tolerance number
 */
const getMatmulPrecisionTolerance = (resources, operationName) => {
  // Matmul : Compute the matrix product of two input tensors.
  // If a is 1-D, WebNN converts it to a 2-D tensor by prepending a 1 to its dimensions, [n] -> [1, n].
  // So we can just always check the last dimension here.
  const shapeA = resources.inputs[Object.keys(resources.inputs)[0]].shape;
  const tolerance = shapeA[shapeA.length - 1] * 2;
  return tolerance;
};

/**
 * Get ULP tolerance of averagePool2d operation.
 * @param {Object} resources - Resources used for building a graph
 * @param {String} operationName - An operation name
 * @returns {Number} A tolerance number
 */
const getAveragePool2dPrecisionTolerance = (resources, operationName) => {
  const inputShape = resources.inputs[Object.keys(resources.inputs)[0]].shape;
  let height;
  let width;
  const options = {...resources.options};
  if (options.windowDimensions) {
    height = options.windowDimensions[0];
    width = options.windowDimensions[1];
  } else {
    // If not present, the window dimensions are assumed to be the height and width dimensions of the input shape
    if (options.layout && options.layout === 'nhwc') {
      height = inputShape[1];
      width = inputShape[2];
    } else {
      // nhwc layout of input
      height = inputShape[2];
      width = inputShape[3];
    }
  }

  const tolerance = height * width + 2;
  return tolerance;
};

/**
 * Get ULP tolerance of softmax operation.
 * @param {Object} resources - Resources used for building a graph
 * @param {String} operationName - An operation name
 * @returns {Number} A tolerance number
 */
const getSoftmaxPrecisionTolerance = (resources, operationName) => {
  // Compute the softmax values of the 2-D input tensor along axis 1.
  const inputShape = resources.inputs[Object.keys(resources.inputs)[0]].shape;
  const tolerance = inputShape[1] * 3 + 3;
  return tolerance;
};

/**
 * Get ULP tolerance of reduction operations.
 * @param {Object} resources - Resources used for building a graph
 * @param {String} operationName - An operation name
 * @returns {Number} A tolerance number
 */
const getReductionPrecisionTolerance = (resources, operationName) => {
  const inputShape = resources.inputs[Object.keys(resources.inputs)[0]].shape;
  const rank = inputShape.length;
  const options = {...resources.options};
  let sizes;
  if (options && options.axes) {
    sizes = options.axes.map(
                (axis) => axis < 0 ? inputShape[axis + rank] : inputShape[axis]
    );
  } else {
    sizes = inputShape;
  }
  const reducedElementCount = sizes.reduce(
                                  (accumulator, currentValue) => accumulator * currentValue
  );
  let tolerance;
  switch (operationName) {
    case 'reduceL1':
    case 'reduceProduct':
    case 'reduceSum':
      tolerance = reducedElementCount;
      break;
    case 'reduceL2':
      tolerance = reducedElementCount * 2 + 1;
      break;
    case 'reduceMean':
      tolerance = reducedElementCount + 2;
      break;
    case 'reduceLogSum':
      tolerance = reducedElementCount + 18;
      break;
    case 'reduceLogSumExp':
      tolerance = reducedElementCount * 2 + 18;
      break;
    case 'reduceSumSquare':
      tolerance = reducedElementCount * 2;
      break;
    default:
      break;
  }
  return tolerance;
};

// Refer to precision metrics on https://github.com/webmachinelearning/webnn/issues/265#issuecomment-1256242643
const PrecisionMetrics = {
  batchNormalization: {ULP: {float32: 6, float16: 6}},
  clamp: {ULP: {float32: 0, float16: 0}},
  concat: {ULP: {float32: 0, float16: 0}},
  conv2d: {ULP: {float32: getConv2dPrecisionTolerance, float16: getConv2dPrecisionTolerance}},
  convTranspose2d: {ULP: {float32: getConv2dPrecisionTolerance, float16: getConv2dPrecisionTolerance}},
  // Begin Element-wise binary operations
  add: {ULP: {float32: 1, float16: 1}},
  sub: {ULP: {float32: 1, float16: 1}},
  mul: {ULP: {float32: 1, float16: 1}},
  div: {ULP: {float32: 2, float16: 2}},
  max: {ULP: {float32: 0, float16: 0}},
  min: {ULP: {float32: 0, float16: 0}},
  pow: {ULP: {float32: 32, float16: 2}},
  // End Element-wise binary operations
  // Begin Element-wise unary operations
  abs: {ULP: {float32: 0, float16: 0}},
  ceil: {ULP: {float32: 0, float16: 0}},
  cos: {ATOL: {float32: 1/1024, float16: 1/512}},
  exp: {ULP: {float32: 32, float16: 1}},
  floor: {ULP: {float32: 0, float16: 0}},
  log: {ATOL: {float32: 1/1024, float16:  1/1024}},
  neg: {ULP: {float32: 0, float16: 0}},
  sin: {ATOL: {float32: 1/1024, float16: 1/512}},
  tan: {ATOL: {float32: 1/1024, float16: 1/512}},
  // End Element-wise unary operations
  elu: {ULP: {float32: 18, float16: 18}},
  gemm: {ULP: {float32: getGemmPrecisionTolerance, float16: getGemmPrecisionTolerance}},
  hardSigmoid: {ULP: {float32: 2, float16: 2}},
  hardSwish: {ULP: {float32: 4, float16: 4}},
  leakyRelu: {ULP: {float32: 1, float16: 1}},
  linear: {ULP: {float32: 2, float16: 2}},
  matmul: {ULP: {float32: getMatmulPrecisionTolerance, float16: getMatmulPrecisionTolerance}},
  pad: {ULP: {float32: 0, float16: 0}},
  // Begin Pooling operations
  averagePool2d: {ULP: {float32: getAveragePool2dPrecisionTolerance, float16: getAveragePool2dPrecisionTolerance}},
  maxPool2d: {ULP: {float32: 0, float16: 0}},
  // End Pooling operations
  prelu: {ULP: {float32: 1, float16: 1}},
  // Begin Reduction operations
  reduceL1: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
  reduceL2: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
  reduceLogSum: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
  reduceLogSumExp: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
  reduceMax: {ULP: {float32: 0, float16: 0}},
  reduceMean: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
  reduceMin: {ULP: {float32: 0, float16: 0}},
  reduceProduct: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
  reduceSum: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
  reduceSumSquare: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
  // End Reduction operations
  relu: {ULP: {float32: 0, float16: 0}},
  reshape: {ULP: {float32: 0, float16: 0}},
  sigmoid: {ULP: {float32: 32+2, float16: 3}}, // float32 (leaving a few ULP for roundoff)
  slice: {ULP: {float32: 0, float16: 0}},
  softmax: {ULP: {float32: getSoftmaxPrecisionTolerance, float16: getSoftmaxPrecisionTolerance}},
  softsign: {ULP: {float32: 3, float16: 3}},
  split: {ULP: {float32: 0, float16: 0}},
  squeeze: {ULP: {float32: 0, float16: 0}},
  tanh: {ATOL: {float32: 1/1024, float16: 1/512}},
  transpose: {ULP: {float32: 0, float16: 0}},
};

/**
 * Get precison tolerance value.
 * @param {String} operationName - An operation name
 * @param {String} metricType - Value: 'ULP', 'ATOL'
 * @param {Object} resources - Resources used for building a graph
 * @returns {Number} A tolerance number
 */
const getPrecisonTolerance = (operationName, metricType, resources) => {
  // the outputs by split or gru is a sequence
  const precisionType = Array.isArray(resources.expected) ? resources.expected[0].type : resources.expected.type;
  let tolerance = PrecisionMetrics[operationName][metricType][precisionType];
  // If the tolerance is dynamic, then evaluate the function to get the value.
  if (tolerance instanceof Function) {
    tolerance = tolerance(resources, operationName);
  }
  return tolerance;
};

/**
 * Get bitwise of the given value.
 * @param {Number} value
 * @param {String} dataType - A data type string, like "float32", "float16",
 *     more types, please see:
 *     https://webmachinelearning.github.io/webnn/#enumdef-mloperandtype
 * @return {Number} A 64-bit signed integer.
 */
const getBitwise = (value, dataType) => {
  const buffer = new ArrayBuffer(8);
  const int64Array = new BigInt64Array(buffer);
  int64Array[0] = value < 0 ? ~BigInt(0) : BigInt(0);
  let typedArray;
  if (dataType === "float32") {
    typedArray = new Float32Array(buffer);
  } else {
    throw new AssertionError(`Data type ${dataType} is not supported`);
  }
  typedArray[0] = value;
  return int64Array[0];
};

/**
 * Assert that each array property in ``actual`` is a number being close enough to the corresponding
 * property in ``expected`` by the acceptable ULP distance ``nulp`` with given ``dataType`` data type.
 *
 * @param {Array} actual - Array of test values.
 * @param {Array} expected - Array of values expected to be close to the values in ``actual``.
 * @param {Number} nulp - A BigInt value indicates acceptable ULP distance.
 * @param {String} dataType - A data type string, value: "float32",
 *     more types, please see:
 *     https://webmachinelearning.github.io/webnn/#enumdef-mloperandtype
 * @param {String} description - Description of the condition being tested.
 */
const assert_array_approx_equals_ulp = (actual, expected, nulp, dataType, description) => {
  /*
    * Test if two primitive arrays are equal within acceptable ULP distance
    */
  assert_true(actual.length === expected.length,
              `assert_array_approx_equals_ulp: ${description} lengths differ, expected ${expected.length} but got ${actual.length}`);
  let actualBitwise, expectedBitwise, distance;
  for (let i = 0; i < actual.length; i++) {
    if (actual[i] === expected[i]) {
      continue;
    } else {
      // measure the ULP distance
      actualBitwise = getBitwise(actual[i], dataType);
      expectedBitwise = getBitwise(expected[i], dataType);
      distance = actualBitwise - expectedBitwise;
      distance = distance >= 0 ? distance : -distance;
      assert_true(distance <= nulp,
                  `assert_array_approx_equals_ulp: ${description} actual ${actual[i]} should be close enough to expected ${expected[i]} by the acceptable ${nulp} ULP distance, but they have ${distance} ULP distance`);
    }
  }
};

/**
 * Assert actual results with expected results.
 * @param {String} operationName - An operation name
 * @param {(Number[]|Number)} actual
 * @param {(Number[]|Number)} expected
 * @param {Number} tolerance
 * @param {String} operandType  - An operand type string, value: "float32",
 *     more types, please see:
 *     https://webmachinelearning.github.io/webnn/#enumdef-mloperandtype
 * @param {String} metricType - Value: 'ULP', 'ATOL'
 */
const doAssert = (operationName, actual, expected, tolerance, operandType, metricType) => {
  const description = `test ${operationName} ${operandType}`;
  if (typeof expected === 'number') {
    // for checking a scalar output by matmul 1D x 1D
    expected = [expected];
    actual = [actual];
  }
  if (metricType === 'ULP') {
    assert_array_approx_equals_ulp(actual, expected, tolerance, operandType, description);
  } else if (metricType === 'ATOL') {
    assert_array_approx_equals(actual, expected, tolerance, description);
  }
};

/**
 * Check computed results with expected data.
 * @param {String} operationName - An operation name
 * @param {Object.<String, MLOperand>} namedOutputOperands
 * @param {Object.<MLNamedArrayBufferViews>} outputs - The resources of required outputs
 * @param {Object} resources - Resources used for building a graph
 */
const checkResults = (operationName, namedOutputOperands, outputs, resources) => {
  const metricType = Object.keys(PrecisionMetrics[operationName])[0];
  const expected = resources.expected;
  let tolerance;
  let operandType;
  let outputData;
  let expectedData;
  if (Array.isArray(expected)) {
    // the outputs of split() or gru() is a sequence
    for (let operandName in namedOutputOperands) {
      outputData = outputs[operandName];
      // for some operations which may have multi outputs of different types
      [expectedData, operandType] = getExpectedDataAndType(expected, operandName);
      tolerance = getPrecisonTolerance(operationName, metricType, resources);
      doAssert(operationName, outputData, expectedData, tolerance, operandType, metricType)
    }
  } else {
    outputData = outputs[expected.name];
    expectedData = expected.data;
    operandType = expected.type;
    tolerance = getPrecisonTolerance(operationName, metricType, resources);
    doAssert(operationName, outputData, expectedData, tolerance, operandType, metricType)
  }
};

/**
 * Create a constant operand
 * @param {MLGraphBuilder} builder - A ML graph builder
 * @param {Object} resources - Resources used for constant operand
 * @returns {MLOperand} A constant operand
 */
const createConstantOperand = (builder, resources) => {
  const bufferView = new TypedArrayDict[resources.type](resources.data);
  return builder.constant({type: resources.type, dimensions: resources.shape}, bufferView);
};

/**
 * Create single input operands for a graph.
 * @param {MLGraphBuilder} builder - A ML graph builder
 * @param {Object} resources - Resources used for building a graph
 * @param {String} [inputOperandName] - An inputOperand name
 * @returns {MLOperand} An input operand
 */
const createSingleInputOperand = (builder, resources, inputOperandName) => {
  inputOperandName = inputOperandName ? inputOperandName : Object.keys(resources.inputs)[0];
  const inputResources = resources.inputs[inputOperandName];
  return builder.input(inputOperandName, {type: inputResources.type, dimensions: inputResources.shape});
};

/**
 * Create multi input operands for a graph.
 * @param {MLGraphBuilder} builder - A ML graph builder
 * @param {Object} resources - Resources used for building a graph
 * @returns {MLOperand[]} Input operands array
 */
const createMultiInputOperands = (builder, resources) => {
  let inputOperands = [];
  const inputOperandNameArray = Object.keys(resources.inputs);
  inputOperandNameArray.forEach(inputOperandName => {
    let operand;
    if (resources.inputs[inputOperandName].hasOwnProperty('constant') && resources.inputs[inputOperandName]['constant']) {
      operand = createConstantOperand(builder, resources.inputs[inputOperandName]);
    } else {
      operand = createSingleInputOperand(builder, resources, inputOperandName);
    }
    inputOperands.push(operand);
  });
  return inputOperands;
};

/**
 * Build an operation which has a single input.
 * @param {String} operationName - An operation name
 * @param {MLGraphBuilder} builder - A ML graph builder
 * @param {Object} resources - Resources used for building a graph
 * @returns {MLNamedOperands}
 */
const buildOperationWithSingleInput = (operationName, builder, resources) => {
  const namedOutputOperand = {};
  const inputOperand = createSingleInputOperand(builder, resources);
  const outputOperand = resources.options ?
      builder[operationName](inputOperand, resources.options) : builder[operationName](inputOperand);
  namedOutputOperand[resources.expected.name] = outputOperand;
  return namedOutputOperand;
};

/**
 * Build an operation which has two inputs.
 * @param {String} operationName - An operation name
 * @param {MLGraphBuilder} builder - A ML graph builder
 * @param {Object} resources - Resources used for building a graph
 * @returns {MLNamedOperands}
 */
const buildOperationWithTwoInputs= (operationName, builder, resources) => {
  // For example: MLOperand matmul(MLOperand a, MLOperand b);
  const namedOutputOperand = {};
  const [inputOperandA, inputOperandB] = createMultiInputOperands(builder, resources);
  const outputOperand = resources.options ?
      builder[operationName](inputOperandA, inputOperandB, resources.options) : builder[operationName](inputOperandA, inputOperandB);
  namedOutputOperand[resources.expected.name] = outputOperand;
  return namedOutputOperand;
};

/**
 * Build a graph.
 * @param {String} operationName - An operation name
 * @param {MLGraphBuilder} builder - A ML graph builder
 * @param {Object} resources - Resources used for building a graph
 * @param {Function} buildFunc - A build function for an operation
 * @returns [namedOperands, inputs, outputs]
 */
const buildGraph = (operationName, builder, resources, buildFunc) => {
  const namedOperands = buildFunc(operationName, builder, resources);
  let inputs = {};
  if (Array.isArray(resources.inputs)) {
    // the inputs of concat() is a sequence
    for (let subInput of resources.inputs) {
      if (!subInput.hasOwnProperty('constant') || !subInput.constant) {
        inputs[subInput.name] = new TypedArrayDict[subInput.type](subInput.data);
      }
    }
  } else {
    for (let inputName in resources.inputs) {
      const subTestByName = resources.inputs[inputName];
      if (!subTestByName.hasOwnProperty('constant') || !subTestByName.constant) {
        inputs[inputName] = new TypedArrayDict[subTestByName.type](subTestByName.data);
      }
    }
  }
  let outputs = {};
  if (Array.isArray(resources.expected)) {
    // the outputs of split() or gru() is a sequence
    for (let i = 0; i < resources.expected.length; i++) {
      const subExpected = resources.expected[i];
      outputs[subExpected.name] = new TypedArrayDict[subExpected.type](sizeOfShape(subExpected.shape));
    }
  } else {
    // matmul 1D with 1D produces a scalar which doesn't have its shape
    const shape = resources.expected.shape ? resources.expected.shape : [1];
    outputs[resources.expected.name] = new TypedArrayDict[resources.expected.type](sizeOfShape(shape));
  }
  return [namedOperands, inputs, outputs];
};

/**
 * Build a graph, synchronously compile graph and execute, then check computed results.
 * @param {String} operationName - An operation name
 * @param {MLContext} context - A ML context
 * @param {MLGraphBuilder} builder - A ML graph builder
 * @param {Object} resources - Resources used for building a graph
 * @param {Function} buildFunc - A build function for an operation
 */
const runSync = (operationName, context, builder, resources, buildFunc) => {
  // build a graph
  const [namedOutputOperands, inputs, outputs] = buildGraph(operationName, builder, resources, buildFunc);
  // synchronously compile the graph up to the output operand
  const graph = builder.buildSync(namedOutputOperands);
  // synchronously execute the compiled graph.
  context.computeSync(graph, inputs, outputs);
  checkResults(operationName, namedOutputOperands, outputs, resources);
};

/**
 * Build a graph, asynchronously compile graph and execute, then check computed results.
 * @param {String} operationName - An operation name
 * @param {MLContext} context - A ML context
 * @param {MLGraphBuilder} builder - A ML graph builder
 * @param {Object} resources - Resources used for building a graph
 * @param {Function} buildFunc - A build function for an operation
 */
const run = async (operationName, context, builder, resources, buildFunc) => {
  // build a graph
  const [namedOutputOperands, inputs, outputs] = buildGraph(operationName, builder, resources, buildFunc);
  // asynchronously compile the graph up to the output operand
  const graph = await builder.build(namedOutputOperands);
  // asynchronously execute the compiled graph
  const result = await context.compute(graph, inputs, outputs);
  checkResults(operationName, namedOutputOperands, result.outputs, resources);
};

/**
 * Run WebNN operation tests.
 * @param {(String[]|String)} operationName - An operation name array or an operation name
 * @param {Function} buildFunc - A build function for an operation
 */
const testWebNNOperation = (operationName, buildFunc) => {
  let operationNameArray;
  if (typeof operationName === 'string') {
    operationNameArray = [operationName];
  } else if (Array.isArray(operationName)) {
    operationNameArray = operationName;
  }

  ExecutionArray.forEach(executionType => {
    const isSync = executionType === 'sync';
    if (self.GLOBAL.isWindow() && isSync) {
      return;
    }
    let context;
    let builder;
    if (isSync) {
      // test sync
      operationNameArray.forEach((subOperationName) => {
        const tests = loadTests(subOperationName);
        setup(() => {
          context = navigator.ml.createContextSync();
          builder = new MLGraphBuilder(context);
        });
        for (const subTest of tests) {
          test(() => {
            runSync(subOperationName, context, builder, subTest, buildFunc);
          }, `${subTest.name} / ${executionType}`);
        }
      });
    } else {
      // test async
      operationNameArray.forEach((subOperationName) => {
        const tests = loadTests(subOperationName);
        promise_setup(async () => {
          context = await navigator.ml.createContext();
          builder = new MLGraphBuilder(context);
        });
        for (const subTest of tests) {
          promise_test(async () => {
            await run(subOperationName, context, builder, subTest, buildFunc);
          }, `${subTest.name} / ${executionType}`);
        }
      });
    }
  });
};