summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/av1_common_int.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /third_party/aom/av1/common/av1_common_int.h
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/aom/av1/common/av1_common_int.h')
-rw-r--r--third_party/aom/av1/common/av1_common_int.h1882
1 files changed, 1882 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/av1_common_int.h b/third_party/aom/av1/common/av1_common_int.h
new file mode 100644
index 0000000000..4c0cb99d2b
--- /dev/null
+++ b/third_party/aom/av1/common/av1_common_int.h
@@ -0,0 +1,1882 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_
+#define AOM_AV1_COMMON_AV1_COMMON_INT_H_
+
+#include "config/aom_config.h"
+#include "config/av1_rtcd.h"
+
+#include "aom/internal/aom_codec_internal.h"
+#include "aom_dsp/flow_estimation/corner_detect.h"
+#include "aom_util/aom_thread.h"
+#include "av1/common/alloccommon.h"
+#include "av1/common/av1_loopfilter.h"
+#include "av1/common/entropy.h"
+#include "av1/common/entropymode.h"
+#include "av1/common/entropymv.h"
+#include "av1/common/enums.h"
+#include "av1/common/frame_buffers.h"
+#include "av1/common/mv.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/restoration.h"
+#include "av1/common/tile_common.h"
+#include "av1/common/timing.h"
+#include "aom_dsp/grain_params.h"
+#include "aom_dsp/grain_table.h"
+#include "aom_dsp/odintrin.h"
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#if defined(__clang__) && defined(__has_warning)
+#if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
+#define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT
+#endif
+#elif defined(__GNUC__) && __GNUC__ >= 7
+#define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT
+#endif
+
+#ifndef AOM_FALLTHROUGH_INTENDED
+#define AOM_FALLTHROUGH_INTENDED \
+ do { \
+ } while (0)
+#endif
+
+#define CDEF_MAX_STRENGTHS 16
+
+/* Constant values while waiting for the sequence header */
+#define FRAME_ID_LENGTH 15
+#define DELTA_FRAME_ID_LENGTH 14
+
+#define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
+// Extra frame context which is always kept at default values
+#define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
+#define PRIMARY_REF_BITS 3
+#define PRIMARY_REF_NONE 7
+
+#define NUM_PING_PONG_BUFFERS 2
+
+#define MAX_NUM_TEMPORAL_LAYERS 8
+#define MAX_NUM_SPATIAL_LAYERS 4
+/* clang-format off */
+// clang-format seems to think this is a pointer dereference and not a
+// multiplication.
+#define MAX_NUM_OPERATING_POINTS \
+ (MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS)
+/* clang-format on */
+
+// TODO(jingning): Turning this on to set up transform coefficient
+// processing timer.
+#define TXCOEFF_TIMER 0
+#define TXCOEFF_COST_TIMER 0
+
+/*!\cond */
+
+enum {
+ SINGLE_REFERENCE = 0,
+ COMPOUND_REFERENCE = 1,
+ REFERENCE_MODE_SELECT = 2,
+ REFERENCE_MODES = 3,
+} UENUM1BYTE(REFERENCE_MODE);
+
+enum {
+ /**
+ * Frame context updates are disabled
+ */
+ REFRESH_FRAME_CONTEXT_DISABLED,
+ /**
+ * Update frame context to values resulting from backward probability
+ * updates based on entropy/counts in the decoded frame
+ */
+ REFRESH_FRAME_CONTEXT_BACKWARD,
+} UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE);
+
+#define MFMV_STACK_SIZE 3
+typedef struct {
+ int_mv mfmv0;
+ uint8_t ref_frame_offset;
+} TPL_MV_REF;
+
+typedef struct {
+ int_mv mv;
+ MV_REFERENCE_FRAME ref_frame;
+} MV_REF;
+
+typedef struct RefCntBuffer {
+ // For a RefCntBuffer, the following are reference-holding variables:
+ // - cm->ref_frame_map[]
+ // - cm->cur_frame
+ // - cm->scaled_ref_buf[] (encoder only)
+ // - pbi->output_frame_index[] (decoder only)
+ // With that definition, 'ref_count' is the number of reference-holding
+ // variables that are currently referencing this buffer.
+ // For example:
+ // - suppose this buffer is at index 'k' in the buffer pool, and
+ // - Total 'n' of the variables / array elements above have value 'k' (that
+ // is, they are pointing to buffer at index 'k').
+ // Then, pool->frame_bufs[k].ref_count = n.
+ int ref_count;
+
+ unsigned int order_hint;
+ unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
+
+ // These variables are used only in encoder and compare the absolute
+ // display order hint to compute the relative distance and overcome
+ // the limitation of get_relative_dist() which returns incorrect
+ // distance when a very old frame is used as a reference.
+ unsigned int display_order_hint;
+ unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME];
+ // Frame's level within the hierarchical structure.
+ unsigned int pyramid_level;
+ MV_REF *mvs;
+ uint8_t *seg_map;
+ struct segmentation seg;
+ int mi_rows;
+ int mi_cols;
+ // Width and height give the size of the buffer (before any upscaling, unlike
+ // the sizes that can be derived from the buf structure)
+ int width;
+ int height;
+ WarpedMotionParams global_motion[REF_FRAMES];
+ int showable_frame; // frame can be used as show existing frame in future
+ uint8_t film_grain_params_present;
+ aom_film_grain_t film_grain_params;
+ aom_codec_frame_buffer_t raw_frame_buffer;
+ YV12_BUFFER_CONFIG buf;
+ int temporal_id; // Temporal layer ID of the frame
+ int spatial_id; // Spatial layer ID of the frame
+ FRAME_TYPE frame_type;
+
+ // This is only used in the encoder but needs to be indexed per ref frame
+ // so it's extremely convenient to keep it here.
+ int interp_filter_selected[SWITCHABLE];
+
+ // Inter frame reference frame delta for loop filter
+ int8_t ref_deltas[REF_FRAMES];
+
+ // 0 = ZERO_MV, MV
+ int8_t mode_deltas[MAX_MODE_LF_DELTAS];
+
+ FRAME_CONTEXT frame_context;
+} RefCntBuffer;
+
+typedef struct BufferPool {
+// Protect BufferPool from being accessed by several FrameWorkers at
+// the same time during frame parallel decode.
+// TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
+// TODO(wtc): Remove this. See
+// https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
+#if CONFIG_MULTITHREAD
+ pthread_mutex_t pool_mutex;
+#endif
+
+ // Private data associated with the frame buffer callbacks.
+ void *cb_priv;
+
+ aom_get_frame_buffer_cb_fn_t get_fb_cb;
+ aom_release_frame_buffer_cb_fn_t release_fb_cb;
+
+ RefCntBuffer *frame_bufs;
+ uint8_t num_frame_bufs;
+
+ // Frame buffers allocated internally by the codec.
+ InternalFrameBufferList int_frame_buffers;
+} BufferPool;
+
+/*!\endcond */
+
+/*!\brief Parameters related to CDEF */
+typedef struct {
+ //! CDEF column line buffer
+ uint16_t *colbuf[MAX_MB_PLANE];
+ //! CDEF top & bottom line buffer
+ uint16_t *linebuf[MAX_MB_PLANE];
+ //! CDEF intermediate buffer
+ uint16_t *srcbuf;
+ //! CDEF column line buffer sizes
+ size_t allocated_colbuf_size[MAX_MB_PLANE];
+ //! CDEF top and bottom line buffer sizes
+ size_t allocated_linebuf_size[MAX_MB_PLANE];
+ //! CDEF intermediate buffer size
+ size_t allocated_srcbuf_size;
+ //! CDEF damping factor
+ int cdef_damping;
+ //! Number of CDEF strength values
+ int nb_cdef_strengths;
+ //! CDEF strength values for luma
+ int cdef_strengths[CDEF_MAX_STRENGTHS];
+ //! CDEF strength values for chroma
+ int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
+ //! Number of CDEF strength values in bits
+ int cdef_bits;
+ //! Number of rows in the frame in 4 pixel
+ int allocated_mi_rows;
+ //! Number of CDEF workers
+ int allocated_num_workers;
+} CdefInfo;
+
+/*!\cond */
+
+typedef struct {
+ int delta_q_present_flag;
+ // Resolution of delta quant
+ int delta_q_res;
+ int delta_lf_present_flag;
+ // Resolution of delta lf level
+ int delta_lf_res;
+ // This is a flag for number of deltas of loop filter level
+ // 0: use 1 delta, for y_vertical, y_horizontal, u, and v
+ // 1: use separate deltas for each filter level
+ int delta_lf_multi;
+} DeltaQInfo;
+
+typedef struct {
+ int enable_order_hint; // 0 - disable order hint, and related tools
+ int order_hint_bits_minus_1; // dist_wtd_comp, ref_frame_mvs,
+ // frame_sign_bias
+ // if 0, enable_dist_wtd_comp and
+ // enable_ref_frame_mvs must be set as 0.
+ int enable_dist_wtd_comp; // 0 - disable dist-wtd compound modes
+ // 1 - enable it
+ int enable_ref_frame_mvs; // 0 - disable ref frame mvs
+ // 1 - enable it
+} OrderHintInfo;
+
+// Sequence header structure.
+// Note: All syntax elements of sequence_header_obu that need to be
+// bit-identical across multiple sequence headers must be part of this struct,
+// so that consistency is checked by are_seq_headers_consistent() function.
+// One exception is the last member 'op_params' that is ignored by
+// are_seq_headers_consistent() function.
+typedef struct SequenceHeader {
+ int num_bits_width;
+ int num_bits_height;
+ int max_frame_width;
+ int max_frame_height;
+ // Whether current and reference frame IDs are signaled in the bitstream.
+ // Frame id numbers are additional information that do not affect the
+ // decoding process, but provide decoders with a way of detecting missing
+ // reference frames so that appropriate action can be taken.
+ uint8_t frame_id_numbers_present_flag;
+ int frame_id_length;
+ int delta_frame_id_length;
+ BLOCK_SIZE sb_size; // Size of the superblock used for this frame
+ int mib_size; // Size of the superblock in units of MI blocks
+ int mib_size_log2; // Log 2 of above.
+
+ OrderHintInfo order_hint_info;
+
+ uint8_t force_screen_content_tools; // 0 - force off
+ // 1 - force on
+ // 2 - adaptive
+ uint8_t still_picture; // Video is a single frame still picture
+ uint8_t reduced_still_picture_hdr; // Use reduced header for still picture
+ uint8_t force_integer_mv; // 0 - Don't force. MV can use subpel
+ // 1 - force to integer
+ // 2 - adaptive
+ uint8_t enable_filter_intra; // enables/disables filterintra
+ uint8_t enable_intra_edge_filter; // enables/disables edge upsampling
+ uint8_t enable_interintra_compound; // enables/disables interintra_compound
+ uint8_t enable_masked_compound; // enables/disables masked compound
+ uint8_t enable_dual_filter; // 0 - disable dual interpolation filter
+ // 1 - enable vert/horz filter selection
+ uint8_t enable_warped_motion; // 0 - disable warp for the sequence
+ // 1 - enable warp for the sequence
+ uint8_t enable_superres; // 0 - Disable superres for the sequence
+ // and no frame level superres flag
+ // 1 - Enable superres for the sequence
+ // enable per-frame superres flag
+ uint8_t enable_cdef; // To turn on/off CDEF
+ uint8_t enable_restoration; // To turn on/off loop restoration
+ BITSTREAM_PROFILE profile;
+
+ // Color config.
+ aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1,
+ // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
+ uint8_t use_highbitdepth; // If true, we need to use 16bit frame buffers.
+ uint8_t monochrome; // Monochrome video
+ aom_color_primaries_t color_primaries;
+ aom_transfer_characteristics_t transfer_characteristics;
+ aom_matrix_coefficients_t matrix_coefficients;
+ int color_range;
+ int subsampling_x; // Chroma subsampling for x
+ int subsampling_y; // Chroma subsampling for y
+ aom_chroma_sample_position_t chroma_sample_position;
+ uint8_t separate_uv_delta_q;
+ uint8_t film_grain_params_present;
+
+ // Operating point info.
+ int operating_points_cnt_minus_1;
+ int operating_point_idc[MAX_NUM_OPERATING_POINTS];
+ int timing_info_present;
+ aom_timing_info_t timing_info;
+ uint8_t decoder_model_info_present_flag;
+ aom_dec_model_info_t decoder_model_info;
+ uint8_t display_model_info_present_flag;
+ AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS];
+ uint8_t tier[MAX_NUM_OPERATING_POINTS]; // seq_tier in spec. One bit: 0 or 1.
+
+ // IMPORTANT: the op_params member must be at the end of the struct so that
+ // are_seq_headers_consistent() can be implemented with a memcmp() call.
+ // TODO(urvang): We probably don't need the +1 here.
+ aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
+} SequenceHeader;
+
+typedef struct {
+ int skip_mode_allowed;
+ int skip_mode_flag;
+ int ref_frame_idx_0;
+ int ref_frame_idx_1;
+} SkipModeInfo;
+
+typedef struct {
+ FRAME_TYPE frame_type;
+ REFERENCE_MODE reference_mode;
+
+ unsigned int order_hint;
+ unsigned int display_order_hint;
+ // Frame's level within the hierarchical structure.
+ unsigned int pyramid_level;
+ unsigned int frame_number;
+ SkipModeInfo skip_mode_info;
+ int refresh_frame_flags; // Which ref frames are overwritten by this frame
+ int frame_refs_short_signaling;
+} CurrentFrame;
+
+/*!\endcond */
+
+/*!
+ * \brief Frame level features.
+ */
+typedef struct {
+ /*!
+ * If true, CDF update in the symbol encoding/decoding process is disabled.
+ */
+ bool disable_cdf_update;
+ /*!
+ * If true, motion vectors are specified to eighth pel precision; and
+ * if false, motion vectors are specified to quarter pel precision.
+ */
+ bool allow_high_precision_mv;
+ /*!
+ * If true, force integer motion vectors; if false, use the default.
+ */
+ bool cur_frame_force_integer_mv;
+ /*!
+ * If true, palette tool and/or intra block copy tools may be used.
+ */
+ bool allow_screen_content_tools;
+ bool allow_intrabc; /*!< If true, intra block copy tool may be used. */
+ bool allow_warped_motion; /*!< If true, frame may use warped motion mode. */
+ /*!
+ * If true, using previous frames' motion vectors for prediction is allowed.
+ */
+ bool allow_ref_frame_mvs;
+ /*!
+ * If true, frame is fully lossless at coded resolution.
+ * */
+ bool coded_lossless;
+ /*!
+ * If true, frame is fully lossless at upscaled resolution.
+ */
+ bool all_lossless;
+ /*!
+ * If true, the frame is restricted to a reduced subset of the full set of
+ * transform types.
+ */
+ bool reduced_tx_set_used;
+ /*!
+ * If true, error resilient mode is enabled.
+ * Note: Error resilient mode allows the syntax of a frame to be parsed
+ * independently of previously decoded frames.
+ */
+ bool error_resilient_mode;
+ /*!
+ * If false, only MOTION_MODE that may be used is SIMPLE_TRANSLATION;
+ * if true, all MOTION_MODES may be used.
+ */
+ bool switchable_motion_mode;
+ TX_MODE tx_mode; /*!< Transform mode at frame level. */
+ InterpFilter interp_filter; /*!< Interpolation filter at frame level. */
+ /*!
+ * The reference frame that contains the CDF values and other state that
+ * should be loaded at the start of the frame.
+ */
+ int primary_ref_frame;
+ /*!
+ * Byte alignment of the planes in the reference buffers.
+ */
+ int byte_alignment;
+ /*!
+ * Flag signaling how frame contexts should be updated at the end of
+ * a frame decode.
+ */
+ REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
+} FeatureFlags;
+
+/*!
+ * \brief Params related to tiles.
+ */
+typedef struct CommonTileParams {
+ int cols; /*!< number of tile columns that frame is divided into */
+ int rows; /*!< number of tile rows that frame is divided into */
+ int max_width_sb; /*!< maximum tile width in superblock units. */
+ int max_height_sb; /*!< maximum tile height in superblock units. */
+
+ /*!
+ * Min width of non-rightmost tile in MI units. Only valid if cols > 1.
+ */
+ int min_inner_width;
+
+ /*!
+ * If true, tiles are uniformly spaced with power-of-two number of rows and
+ * columns.
+ * If false, tiles have explicitly configured widths and heights.
+ */
+ int uniform_spacing;
+
+ /**
+ * \name Members only valid when uniform_spacing == 1
+ */
+ /**@{*/
+ int log2_cols; /*!< log2 of 'cols'. */
+ int log2_rows; /*!< log2 of 'rows'. */
+ int width; /*!< tile width in MI units */
+ int height; /*!< tile height in MI units */
+ /**@}*/
+
+ /*!
+ * Min num of tile columns possible based on 'max_width_sb' and frame width.
+ */
+ int min_log2_cols;
+ /*!
+ * Min num of tile rows possible based on 'max_height_sb' and frame height.
+ */
+ int min_log2_rows;
+ /*!
+ * Max num of tile columns possible based on frame width.
+ */
+ int max_log2_cols;
+ /*!
+ * Max num of tile rows possible based on frame height.
+ */
+ int max_log2_rows;
+ /*!
+ * log2 of min number of tiles (same as min_log2_cols + min_log2_rows).
+ */
+ int min_log2;
+ /*!
+ * col_start_sb[i] is the start position of tile column i in superblock units.
+ * valid for 0 <= i <= cols
+ */
+ int col_start_sb[MAX_TILE_COLS + 1];
+ /*!
+ * row_start_sb[i] is the start position of tile row i in superblock units.
+ * valid for 0 <= i <= rows
+ */
+ int row_start_sb[MAX_TILE_ROWS + 1];
+ /*!
+ * If true, we are using large scale tile mode.
+ */
+ unsigned int large_scale;
+ /*!
+ * Only relevant when large_scale == 1.
+ * If true, the independent decoding of a single tile or a section of a frame
+ * is allowed.
+ */
+ unsigned int single_tile_decoding;
+} CommonTileParams;
+
+typedef struct CommonModeInfoParams CommonModeInfoParams;
+/*!
+ * \brief Params related to MB_MODE_INFO arrays and related info.
+ */
+struct CommonModeInfoParams {
+ /*!
+ * Number of rows in the frame in 16 pixel units.
+ * This is computed from frame height aligned to a multiple of 8.
+ */
+ int mb_rows;
+ /*!
+ * Number of cols in the frame in 16 pixel units.
+ * This is computed from frame width aligned to a multiple of 8.
+ */
+ int mb_cols;
+
+ /*!
+ * Total MBs = mb_rows * mb_cols.
+ */
+ int MBs;
+
+ /*!
+ * Number of rows in the frame in 4 pixel (MB_MODE_INFO) units.
+ * This is computed from frame height aligned to a multiple of 8.
+ */
+ int mi_rows;
+ /*!
+ * Number of cols in the frame in 4 pixel (MB_MODE_INFO) units.
+ * This is computed from frame width aligned to a multiple of 8.
+ */
+ int mi_cols;
+
+ /*!
+ * An array of MB_MODE_INFO structs for every 'mi_alloc_bsize' sized block
+ * in the frame.
+ * Note: This array should be treated like a scratch memory, and should NOT be
+ * accessed directly, in most cases. Please use 'mi_grid_base' array instead.
+ */
+ MB_MODE_INFO *mi_alloc;
+ /*!
+ * Number of allocated elements in 'mi_alloc'.
+ */
+ int mi_alloc_size;
+ /*!
+ * Stride for 'mi_alloc' array.
+ */
+ int mi_alloc_stride;
+ /*!
+ * The minimum block size that each element in 'mi_alloc' can correspond to.
+ * For decoder, this is always BLOCK_4X4.
+ * For encoder, this is BLOCK_8X8 for resolution >= 4k case or REALTIME mode
+ * case. Otherwise, this is BLOCK_4X4.
+ */
+ BLOCK_SIZE mi_alloc_bsize;
+
+ /*!
+ * Grid of pointers to 4x4 MB_MODE_INFO structs allocated in 'mi_alloc'.
+ * It's possible that:
+ * - Multiple pointers in the grid point to the same element in 'mi_alloc'
+ * (for example, for all 4x4 blocks that belong to the same partition block).
+ * - Some pointers can be NULL (for example, for blocks outside visible area).
+ */
+ MB_MODE_INFO **mi_grid_base;
+ /*!
+ * Number of allocated elements in 'mi_grid_base' (and 'tx_type_map' also).
+ */
+ int mi_grid_size;
+ /*!
+ * Stride for 'mi_grid_base' (and 'tx_type_map' also).
+ */
+ int mi_stride;
+
+ /*!
+ * An array of tx types for each 4x4 block in the frame.
+ * Number of allocated elements is same as 'mi_grid_size', and stride is
+ * same as 'mi_grid_size'. So, indexing into 'tx_type_map' is same as that of
+ * 'mi_grid_base'.
+ */
+ TX_TYPE *tx_type_map;
+
+ /**
+ * \name Function pointers to allow separate logic for encoder and decoder.
+ */
+ /**@{*/
+ /*!
+ * Free the memory allocated to arrays in 'mi_params'.
+ * \param[in,out] mi_params object containing common mode info parameters
+ */
+ void (*free_mi)(struct CommonModeInfoParams *mi_params);
+ /*!
+ * Initialize / reset appropriate arrays in 'mi_params'.
+ * \param[in,out] mi_params object containing common mode info parameters
+ */
+ void (*setup_mi)(struct CommonModeInfoParams *mi_params);
+ /*!
+ * Allocate required memory for arrays in 'mi_params'.
+ * \param[in,out] mi_params object containing common mode info
+ * parameters
+ * \param width frame width
+ * \param height frame height
+ * \param min_partition_size minimum partition size allowed while
+ * encoding
+ */
+ void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width,
+ int height, BLOCK_SIZE min_partition_size);
+ /**@}*/
+};
+
+typedef struct CommonQuantParams CommonQuantParams;
+/*!
+ * \brief Parameters related to quantization at the frame level.
+ */
+struct CommonQuantParams {
+ /*!
+ * Base qindex of the frame in the range 0 to 255.
+ */
+ int base_qindex;
+
+ /*!
+ * Delta of qindex (from base_qindex) for Y plane DC coefficient.
+ * Note: y_ac_delta_q is implicitly 0.
+ */
+ int y_dc_delta_q;
+
+ /*!
+ * Delta of qindex (from base_qindex) for U plane DC coefficients.
+ */
+ int u_dc_delta_q;
+ /*!
+ * Delta of qindex (from base_qindex) for U plane AC coefficients.
+ */
+ int v_dc_delta_q;
+
+ /*!
+ * Delta of qindex (from base_qindex) for V plane DC coefficients.
+ * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0.
+ */
+ int u_ac_delta_q;
+ /*!
+ * Delta of qindex (from base_qindex) for V plane AC coefficients.
+ * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0.
+ */
+ int v_ac_delta_q;
+
+ /*
+ * Note: The qindex per superblock may have a delta from the qindex obtained
+ * at frame level from parameters above, based on 'cm->delta_q_info'.
+ */
+
+ /**
+ * \name True dequantizers.
+ * The dequantizers below are true dequantizers used only in the
+ * dequantization process. They have the same coefficient
+ * shift/scale as TX.
+ */
+ /**@{*/
+ int16_t y_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for Y plane */
+ int16_t u_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for U plane */
+ int16_t v_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for V plane */
+ /**@}*/
+
+ /**
+ * \name Global quantization matrix tables.
+ */
+ /**@{*/
+ /*!
+ * Global dequantization matrix table.
+ */
+ const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
+ /*!
+ * Global quantization matrix table.
+ */
+ const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
+ /**@}*/
+
+ /**
+ * \name Local dequantization matrix tables for each frame.
+ */
+ /**@{*/
+ /*!
+ * Local dequant matrix for Y plane.
+ */
+ const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
+ /*!
+ * Local dequant matrix for U plane.
+ */
+ const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
+ /*!
+ * Local dequant matrix for V plane.
+ */
+ const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
+ /**@}*/
+
+ /*!
+ * Flag indicating whether quantization matrices are being used:
+ * - If true, qm_level_y, qm_level_u and qm_level_v indicate the level
+ * indices to be used to access appropriate global quant matrix tables.
+ * - If false, we implicitly use level index 'NUM_QM_LEVELS - 1'.
+ */
+ bool using_qmatrix;
+ /**
+ * \name Valid only when using_qmatrix == true
+ * Indicate the level indices to be used to access appropriate global quant
+ * matrix tables.
+ */
+ /**@{*/
+ int qmatrix_level_y; /*!< Level index for Y plane */
+ int qmatrix_level_u; /*!< Level index for U plane */
+ int qmatrix_level_v; /*!< Level index for V plane */
+ /**@}*/
+};
+
+typedef struct CommonContexts CommonContexts;
+/*!
+ * \brief Contexts used for transmitting various symbols in the bitstream.
+ */
+struct CommonContexts {
+ /*!
+ * Context used by 'FRAME_CONTEXT.partition_cdf' to transmit partition type.
+ * partition[i][j] is the context for ith tile row, jth mi_col.
+ */
+ PARTITION_CONTEXT **partition;
+
+ /*!
+ * Context used to derive context for multiple symbols:
+ * - 'TXB_CTX.txb_skip_ctx' used by 'FRAME_CONTEXT.txb_skip_cdf' to transmit
+ * to transmit skip_txfm flag.
+ * - 'TXB_CTX.dc_sign_ctx' used by 'FRAME_CONTEXT.dc_sign_cdf' to transmit
+ * sign.
+ * entropy[i][j][k] is the context for ith plane, jth tile row, kth mi_col.
+ */
+ ENTROPY_CONTEXT **entropy[MAX_MB_PLANE];
+
+ /*!
+ * Context used to derive context for 'FRAME_CONTEXT.txfm_partition_cdf' to
+ * transmit 'is_split' flag to indicate if this transform block should be
+ * split into smaller sub-blocks.
+ * txfm[i][j] is the context for ith tile row, jth mi_col.
+ */
+ TXFM_CONTEXT **txfm;
+
+ /*!
+ * Dimensions that were used to allocate the arrays above.
+ * If these dimensions change, the arrays may have to be re-allocated.
+ */
+ int num_planes; /*!< Corresponds to av1_num_planes(cm) */
+ int num_tile_rows; /*!< Corresponds to cm->tiles.row */
+ int num_mi_cols; /*!< Corresponds to cm->mi_params.mi_cols */
+};
+
+/*!
+ * \brief Top level common structure used by both encoder and decoder.
+ */
+typedef struct AV1Common {
+ /*!
+ * Information about the current frame that is being coded.
+ */
+ CurrentFrame current_frame;
+ /*!
+ * Code and details about current error status.
+ */
+ struct aom_internal_error_info *error;
+
+ /*!
+ * AV1 allows two types of frame scaling operations:
+ * 1. Frame super-resolution: that allows coding a frame at lower resolution
+ * and after decoding the frame, normatively scales and restores the frame --
+ * inside the coding loop.
+ * 2. Frame resize: that allows coding frame at lower/higher resolution, and
+ * then non-normatively upscale the frame at the time of rendering -- outside
+ * the coding loop.
+ * Hence, the need for 3 types of dimensions.
+ */
+
+ /**
+ * \name Coded frame dimensions.
+ */
+ /**@{*/
+ int width; /*!< Coded frame width */
+ int height; /*!< Coded frame height */
+ /**@}*/
+
+ /**
+ * \name Rendered frame dimensions.
+ * Dimensions after applying both super-resolution and resize to the coded
+ * frame. Different from coded dimensions if super-resolution and/or resize
+ * are being used for this frame.
+ */
+ /**@{*/
+ int render_width; /*!< Rendered frame width */
+ int render_height; /*!< Rendered frame height */
+ /**@}*/
+
+ /**
+ * \name Super-resolved frame dimensions.
+ * Frame dimensions after applying super-resolution to the coded frame (if
+ * present), but before applying resize.
+ * Larger than the coded dimensions if super-resolution is being used for
+ * this frame.
+ * Different from rendered dimensions if resize is being used for this frame.
+ */
+ /**@{*/
+ int superres_upscaled_width; /*!< Super-resolved frame width */
+ int superres_upscaled_height; /*!< Super-resolved frame height */
+ /**@}*/
+
+ /*!
+ * The denominator of the superres scale used by this frame.
+ * Note: The numerator is fixed to be SCALE_NUMERATOR.
+ */
+ uint8_t superres_scale_denominator;
+
+ /*!
+ * buffer_removal_times[op_num] specifies the frame removal time in units of
+ * DecCT clock ticks counted from the removal time of the last random access
+ * point for operating point op_num.
+ * TODO(urvang): We probably don't need the +1 here.
+ */
+ uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1];
+ /*!
+ * Presentation time of the frame in clock ticks DispCT counted from the
+ * removal time of the last random access point for the operating point that
+ * is being decoded.
+ */
+ uint32_t frame_presentation_time;
+
+ /*!
+ * Buffer where previous frame is stored.
+ */
+ RefCntBuffer *prev_frame;
+
+ /*!
+ * Buffer into which the current frame will be stored and other related info.
+ * TODO(hkuang): Combine this with cur_buf in macroblockd.
+ */
+ RefCntBuffer *cur_frame;
+
+ /*!
+ * For encoder, we have a two-level mapping from reference frame type to the
+ * corresponding buffer in the buffer pool:
+ * * 'remapped_ref_idx[i - 1]' maps reference type 'i' (range: LAST_FRAME ...
+ * EXTREF_FRAME) to a remapped index 'j' (in range: 0 ... REF_FRAMES - 1)
+ * * Later, 'cm->ref_frame_map[j]' maps the remapped index 'j' to a pointer to
+ * the reference counted buffer structure RefCntBuffer, taken from the buffer
+ * pool cm->buffer_pool->frame_bufs.
+ *
+ * LAST_FRAME, ..., EXTREF_FRAME
+ * | |
+ * v v
+ * remapped_ref_idx[LAST_FRAME - 1], ..., remapped_ref_idx[EXTREF_FRAME - 1]
+ * | |
+ * v v
+ * ref_frame_map[], ..., ref_frame_map[]
+ *
+ * Note: INTRA_FRAME always refers to the current frame, so there's no need to
+ * have a remapped index for the same.
+ */
+ int remapped_ref_idx[REF_FRAMES];
+
+ /*!
+ * Scale of the current frame with respect to itself.
+ * This is currently used for intra block copy, which behaves like an inter
+ * prediction mode, where the reference frame is the current frame itself.
+ */
+ struct scale_factors sf_identity;
+
+ /*!
+ * Scale factors of the reference frame with respect to the current frame.
+ * This is required for generating inter prediction and will be non-identity
+ * for a reference frame, if it has different dimensions than the coded
+ * dimensions of the current frame.
+ */
+ struct scale_factors ref_scale_factors[REF_FRAMES];
+
+ /*!
+ * For decoder, ref_frame_map[i] maps reference type 'i' to a pointer to
+ * the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
+ * For encoder, ref_frame_map[j] (where j = remapped_ref_idx[i]) maps
+ * remapped reference index 'j' (that is, original reference type 'i') to
+ * a pointer to the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
+ */
+ RefCntBuffer *ref_frame_map[REF_FRAMES];
+
+ /*!
+ * If true, this frame is actually shown after decoding.
+ * If false, this frame is coded in the bitstream, but not shown. It is only
+ * used as a reference for other frames coded later.
+ */
+ int show_frame;
+
+ /*!
+ * If true, this frame can be used as a show-existing frame for other frames
+ * coded later.
+ * When 'show_frame' is true, this is always true for all non-keyframes.
+ * When 'show_frame' is false, this value is transmitted in the bitstream.
+ */
+ int showable_frame;
+
+ /*!
+ * If true, show an existing frame coded before, instead of actually coding a
+ * frame. The existing frame comes from one of the existing reference buffers,
+ * as signaled in the bitstream.
+ */
+ int show_existing_frame;
+
+ /*!
+ * Whether some features are allowed or not.
+ */
+ FeatureFlags features;
+
+ /*!
+ * Params related to MB_MODE_INFO arrays and related info.
+ */
+ CommonModeInfoParams mi_params;
+
+#if CONFIG_ENTROPY_STATS
+ /*!
+ * Context type used by token CDFs, in the range 0 .. (TOKEN_CDF_Q_CTXS - 1).
+ */
+ int coef_cdf_category;
+#endif // CONFIG_ENTROPY_STATS
+
+ /*!
+ * Quantization params.
+ */
+ CommonQuantParams quant_params;
+
+ /*!
+ * Segmentation info for current frame.
+ */
+ struct segmentation seg;
+
+ /*!
+ * Segmentation map for previous frame.
+ */
+ uint8_t *last_frame_seg_map;
+
+ /**
+ * \name Deblocking filter parameters.
+ */
+ /**@{*/
+ loop_filter_info_n lf_info; /*!< Loop filter info */
+ struct loopfilter lf; /*!< Loop filter parameters */
+ /**@}*/
+
+ /**
+ * \name Loop Restoration filter parameters.
+ */
+ /**@{*/
+ RestorationInfo rst_info[MAX_MB_PLANE]; /*!< Loop Restoration filter info */
+ int32_t *rst_tmpbuf; /*!< Scratch buffer for self-guided restoration */
+ RestorationLineBuffers *rlbs; /*!< Line buffers needed by loop restoration */
+ YV12_BUFFER_CONFIG rst_frame; /*!< Stores the output of loop restoration */
+ /**@}*/
+
+ /*!
+ * CDEF (Constrained Directional Enhancement Filter) parameters.
+ */
+ CdefInfo cdef_info;
+
+ /*!
+ * Parameters for film grain synthesis.
+ */
+ aom_film_grain_t film_grain_params;
+
+ /*!
+ * Parameters for delta quantization and delta loop filter level.
+ */
+ DeltaQInfo delta_q_info;
+
+ /*!
+ * Global motion parameters for each reference frame.
+ */
+ WarpedMotionParams global_motion[REF_FRAMES];
+
+ /*!
+ * Elements part of the sequence header, that are applicable for all the
+ * frames in the video.
+ */
+ SequenceHeader *seq_params;
+
+ /*!
+ * Current CDFs of all the symbols for the current frame.
+ */
+ FRAME_CONTEXT *fc;
+ /*!
+ * Default CDFs used when features.primary_ref_frame = PRIMARY_REF_NONE
+ * (e.g. for a keyframe). These default CDFs are defined by the bitstream and
+ * copied from default CDF tables for each symbol.
+ */
+ FRAME_CONTEXT *default_frame_context;
+
+ /*!
+ * Parameters related to tiling.
+ */
+ CommonTileParams tiles;
+
+ /*!
+ * External BufferPool passed from outside.
+ */
+ BufferPool *buffer_pool;
+
+ /*!
+ * Above context buffers and their sizes.
+ * Note: above contexts are allocated in this struct, as their size is
+ * dependent on frame width, while left contexts are declared and allocated in
+ * MACROBLOCKD struct, as they have a fixed size.
+ */
+ CommonContexts above_contexts;
+
+ /**
+ * \name Signaled when cm->seq_params->frame_id_numbers_present_flag == 1
+ */
+ /**@{*/
+ int current_frame_id; /*!< frame ID for the current frame. */
+ int ref_frame_id[REF_FRAMES]; /*!< frame IDs for the reference frames. */
+ /**@}*/
+
+ /*!
+ * Motion vectors provided by motion field estimation.
+ * tpl_mvs[row * stride + col] stores MV for block at [mi_row, mi_col] where:
+ * mi_row = 2 * row,
+ * mi_col = 2 * col, and
+ * stride = cm->mi_params.mi_stride / 2
+ */
+ TPL_MV_REF *tpl_mvs;
+ /*!
+ * Allocated size of 'tpl_mvs' array. Refer to 'ensure_mv_buffer()' function.
+ */
+ int tpl_mvs_mem_size;
+ /*!
+ * ref_frame_sign_bias[k] is 1 if relative distance between reference 'k' and
+ * current frame is positive; and 0 otherwise.
+ */
+ int ref_frame_sign_bias[REF_FRAMES];
+ /*!
+ * ref_frame_side[k] is 1 if relative distance between reference 'k' and
+ * current frame is positive, -1 if relative distance is 0; and 0 otherwise.
+ * TODO(jingning): This can be combined with sign_bias later.
+ */
+ int8_t ref_frame_side[REF_FRAMES];
+
+ /*!
+ * Temporal layer ID of this frame
+ * (in the range 0 ... (number_temporal_layers - 1)).
+ */
+ int temporal_layer_id;
+
+ /*!
+ * Spatial layer ID of this frame
+ * (in the range 0 ... (number_spatial_layers - 1)).
+ */
+ int spatial_layer_id;
+
+#if TXCOEFF_TIMER
+ int64_t cum_txcoeff_timer;
+ int64_t txcoeff_timer;
+ int txb_count;
+#endif // TXCOEFF_TIMER
+
+#if TXCOEFF_COST_TIMER
+ int64_t cum_txcoeff_cost_timer;
+ int64_t txcoeff_cost_timer;
+ int64_t txcoeff_cost_count;
+#endif // TXCOEFF_COST_TIMER
+} AV1_COMMON;
+
+/*!\cond */
+
+// TODO(hkuang): Don't need to lock the whole pool after implementing atomic
+// frame reference count.
+static void lock_buffer_pool(BufferPool *const pool) {
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(&pool->pool_mutex);
+#else
+ (void)pool;
+#endif
+}
+
+static void unlock_buffer_pool(BufferPool *const pool) {
+#if CONFIG_MULTITHREAD
+ pthread_mutex_unlock(&pool->pool_mutex);
+#else
+ (void)pool;
+#endif
+}
+
+static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
+ if (index < 0 || index >= REF_FRAMES) return NULL;
+ if (cm->ref_frame_map[index] == NULL) return NULL;
+ return &cm->ref_frame_map[index]->buf;
+}
+
+static INLINE int get_free_fb(AV1_COMMON *cm) {
+ RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
+ int i;
+
+ lock_buffer_pool(cm->buffer_pool);
+ const int num_frame_bufs = cm->buffer_pool->num_frame_bufs;
+ for (i = 0; i < num_frame_bufs; ++i)
+ if (frame_bufs[i].ref_count == 0) break;
+
+ if (i != num_frame_bufs) {
+ if (frame_bufs[i].buf.use_external_reference_buffers) {
+ // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
+ // external reference buffers. Restore the buffer pointers to point to the
+ // internally allocated memory.
+ YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
+ ybf->y_buffer = ybf->store_buf_adr[0];
+ ybf->u_buffer = ybf->store_buf_adr[1];
+ ybf->v_buffer = ybf->store_buf_adr[2];
+ ybf->use_external_reference_buffers = 0;
+ }
+
+ frame_bufs[i].ref_count = 1;
+ } else {
+ // We should never run out of free buffers. If this assertion fails, there
+ // is a reference leak.
+ assert(0 && "Ran out of free frame buffers. Likely a reference leak.");
+ // Reset i to be INVALID_IDX to indicate no free buffer found.
+ i = INVALID_IDX;
+ }
+
+ unlock_buffer_pool(cm->buffer_pool);
+ return i;
+}
+
+static INLINE RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
+ // Release the previously-used frame-buffer
+ if (cm->cur_frame != NULL) {
+ --cm->cur_frame->ref_count;
+ cm->cur_frame = NULL;
+ }
+
+ // Assign a new framebuffer
+ const int new_fb_idx = get_free_fb(cm);
+ if (new_fb_idx == INVALID_IDX) return NULL;
+
+ cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
+#if CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY
+ aom_invalidate_pyramid(cm->cur_frame->buf.y_pyramid);
+ av1_invalidate_corner_list(cm->cur_frame->buf.corners);
+#endif // CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY
+ av1_zero(cm->cur_frame->interp_filter_selected);
+ return cm->cur_frame;
+}
+
+// Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
+// counts accordingly.
+static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
+ RefCntBuffer *rhs_ptr) {
+ RefCntBuffer *const old_ptr = *lhs_ptr;
+ if (old_ptr != NULL) {
+ assert(old_ptr->ref_count > 0);
+ // One less reference to the buffer at 'old_ptr', so decrease ref count.
+ --old_ptr->ref_count;
+ }
+
+ *lhs_ptr = rhs_ptr;
+ // One more reference to the buffer at 'rhs_ptr', so increase ref count.
+ ++rhs_ptr->ref_count;
+}
+
+static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
+ return cm->current_frame.frame_type == KEY_FRAME ||
+ cm->current_frame.frame_type == INTRA_ONLY_FRAME;
+}
+
+static INLINE int frame_is_sframe(const AV1_COMMON *cm) {
+ return cm->current_frame.frame_type == S_FRAME;
+}
+
+// These functions take a reference frame label between LAST_FRAME and
+// EXTREF_FRAME inclusive. Note that this is different to the indexing
+// previously used by the frame_refs[] array.
+static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm,
+ const MV_REFERENCE_FRAME ref_frame) {
+ return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
+ ? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
+ : INVALID_IDX;
+}
+
+static INLINE RefCntBuffer *get_ref_frame_buf(
+ const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
+ const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
+ return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
+}
+
+// Both const and non-const versions of this function are provided so that it
+// can be used with a const AV1_COMMON if needed.
+static INLINE const struct scale_factors *get_ref_scale_factors_const(
+ const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
+ const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
+ return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
+}
+
+static INLINE struct scale_factors *get_ref_scale_factors(
+ AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
+ const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
+ return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
+}
+
+static INLINE RefCntBuffer *get_primary_ref_frame_buf(
+ const AV1_COMMON *const cm) {
+ const int primary_ref_frame = cm->features.primary_ref_frame;
+ if (primary_ref_frame == PRIMARY_REF_NONE) return NULL;
+ const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1);
+ return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
+}
+
+// Returns 1 if this frame might allow mvs from some reference frame.
+static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
+ return !cm->features.error_resilient_mode &&
+ cm->seq_params->order_hint_info.enable_ref_frame_mvs &&
+ cm->seq_params->order_hint_info.enable_order_hint &&
+ !frame_is_intra_only(cm);
+}
+
+// Returns 1 if this frame might use warped_motion
+static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
+ return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) &&
+ cm->seq_params->enable_warped_motion;
+}
+
+static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
+ const int buf_rows = buf->mi_rows;
+ const int buf_cols = buf->mi_cols;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+
+ if (buf->mvs == NULL || buf_rows != mi_params->mi_rows ||
+ buf_cols != mi_params->mi_cols) {
+ aom_free(buf->mvs);
+ buf->mi_rows = mi_params->mi_rows;
+ buf->mi_cols = mi_params->mi_cols;
+ CHECK_MEM_ERROR(cm, buf->mvs,
+ (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) *
+ ((mi_params->mi_cols + 1) >> 1),
+ sizeof(*buf->mvs)));
+ aom_free(buf->seg_map);
+ CHECK_MEM_ERROR(
+ cm, buf->seg_map,
+ (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols,
+ sizeof(*buf->seg_map)));
+ }
+
+ const int mem_size =
+ ((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1);
+
+ if (cm->tpl_mvs == NULL || cm->tpl_mvs_mem_size < mem_size) {
+ aom_free(cm->tpl_mvs);
+ CHECK_MEM_ERROR(cm, cm->tpl_mvs,
+ (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
+ cm->tpl_mvs_mem_size = mem_size;
+ }
+}
+
+void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
+
+static INLINE int av1_num_planes(const AV1_COMMON *cm) {
+ return cm->seq_params->monochrome ? 1 : MAX_MB_PLANE;
+}
+
+static INLINE void av1_init_above_context(CommonContexts *above_contexts,
+ int num_planes, int tile_row,
+ MACROBLOCKD *xd) {
+ for (int i = 0; i < num_planes; ++i) {
+ xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row];
+ }
+ xd->above_partition_context = above_contexts->partition[tile_row];
+ xd->above_txfm_context = above_contexts->txfm[tile_row];
+}
+
+static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) {
+ const int num_planes = av1_num_planes(cm);
+ const CommonQuantParams *const quant_params = &cm->quant_params;
+
+ for (int i = 0; i < num_planes; ++i) {
+ if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
+ memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX,
+ sizeof(quant_params->y_dequant_QTX));
+ memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix,
+ sizeof(quant_params->y_iqmatrix));
+
+ } else {
+ if (i == AOM_PLANE_U) {
+ memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX,
+ sizeof(quant_params->u_dequant_QTX));
+ memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix,
+ sizeof(quant_params->u_iqmatrix));
+ } else {
+ memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX,
+ sizeof(quant_params->v_dequant_QTX));
+ memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix,
+ sizeof(quant_params->v_iqmatrix));
+ }
+ }
+ }
+ xd->mi_stride = cm->mi_params.mi_stride;
+ xd->error_info = cm->error;
+ cfl_init(&xd->cfl, cm->seq_params);
+}
+
+static INLINE void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col,
+ const int num_planes) {
+ int i;
+ int row_offset = mi_row;
+ int col_offset = mi_col;
+ for (i = 0; i < num_planes; ++i) {
+ struct macroblockd_plane *const pd = &xd->plane[i];
+ // Offset the buffer pointer
+ const BLOCK_SIZE bsize = xd->mi[0]->bsize;
+ if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
+ row_offset = mi_row - 1;
+ if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
+ col_offset = mi_col - 1;
+ int above_idx = col_offset;
+ int left_idx = row_offset & MAX_MIB_MASK;
+ pd->above_entropy_context =
+ &xd->above_entropy_context[i][above_idx >> pd->subsampling_x];
+ pd->left_entropy_context =
+ &xd->left_entropy_context[i][left_idx >> pd->subsampling_y];
+ }
+}
+
+static INLINE int calc_mi_size(int len) {
+ // len is in mi units. Align to a multiple of SBs.
+ return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
+}
+
+static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
+ const int num_planes) {
+ int i;
+ for (i = 0; i < num_planes; i++) {
+ xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
+ xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
+
+ xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
+ xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
+ }
+}
+
+static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
+ int mi_row, int bh, int mi_col, int bw,
+ int mi_rows, int mi_cols) {
+ xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
+ xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE);
+ xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE));
+ xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE);
+
+ xd->mi_row = mi_row;
+ xd->mi_col = mi_col;
+
+ // Are edges available for intra prediction?
+ xd->up_available = (mi_row > tile->mi_row_start);
+
+ const int ss_x = xd->plane[1].subsampling_x;
+ const int ss_y = xd->plane[1].subsampling_y;
+
+ xd->left_available = (mi_col > tile->mi_col_start);
+ xd->chroma_up_available = xd->up_available;
+ xd->chroma_left_available = xd->left_available;
+ if (ss_x && bw < mi_size_wide[BLOCK_8X8])
+ xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
+ if (ss_y && bh < mi_size_high[BLOCK_8X8])
+ xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
+ if (xd->up_available) {
+ xd->above_mbmi = xd->mi[-xd->mi_stride];
+ } else {
+ xd->above_mbmi = NULL;
+ }
+
+ if (xd->left_available) {
+ xd->left_mbmi = xd->mi[-1];
+ } else {
+ xd->left_mbmi = NULL;
+ }
+
+ const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
+ ((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
+ xd->is_chroma_ref = chroma_ref;
+ if (chroma_ref) {
+ // To help calculate the "above" and "left" chroma blocks, note that the
+ // current block may cover multiple luma blocks (e.g., if partitioned into
+ // 4x4 luma blocks).
+ // First, find the top-left-most luma block covered by this chroma block
+ MB_MODE_INFO **base_mi =
+ &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
+
+ // Then, we consider the luma region covered by the left or above 4x4 chroma
+ // prediction. We want to point to the chroma reference block in that
+ // region, which is the bottom-right-most mi unit.
+ // This leads to the following offsets:
+ MB_MODE_INFO *chroma_above_mi =
+ xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
+ xd->chroma_above_mbmi = chroma_above_mi;
+
+ MB_MODE_INFO *chroma_left_mi =
+ xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
+ xd->chroma_left_mbmi = chroma_left_mi;
+ }
+
+ xd->height = bh;
+ xd->width = bw;
+
+ xd->is_last_vertical_rect = 0;
+ if (xd->width < xd->height) {
+ if (!((mi_col + xd->width) & (xd->height - 1))) {
+ xd->is_last_vertical_rect = 1;
+ }
+ }
+
+ xd->is_first_horizontal_rect = 0;
+ if (xd->width > xd->height)
+ if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1;
+}
+
+static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
+ const MB_MODE_INFO *above_mi,
+ const MB_MODE_INFO *left_mi) {
+ const PREDICTION_MODE above = av1_above_block_mode(above_mi);
+ const PREDICTION_MODE left = av1_left_block_mode(left_mi);
+ const int above_ctx = intra_mode_context[above];
+ const int left_ctx = intra_mode_context[left];
+ return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
+}
+
+static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
+ int mi_col, BLOCK_SIZE subsize,
+ BLOCK_SIZE bsize) {
+ PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col;
+ PARTITION_CONTEXT *const left_ctx =
+ xd->left_partition_context + (mi_row & MAX_MIB_MASK);
+
+ const int bw = mi_size_wide[bsize];
+ const int bh = mi_size_high[bsize];
+ memset(above_ctx, partition_context_lookup[subsize].above, bw);
+ memset(left_ctx, partition_context_lookup[subsize].left, bh);
+}
+
+static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
+ int subsampling_x, int subsampling_y) {
+ assert(bsize < BLOCK_SIZES_ALL);
+ const int bw = mi_size_wide[bsize];
+ const int bh = mi_size_high[bsize];
+ int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
+ ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
+ return ref_pos;
+}
+
+static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
+ size_t element) {
+ assert(cdf != NULL);
+ return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
+}
+
+static INLINE void partition_gather_horz_alike(aom_cdf_prob *out,
+ const aom_cdf_prob *const in,
+ BLOCK_SIZE bsize) {
+ (void)bsize;
+ out[0] = CDF_PROB_TOP;
+ out[0] -= cdf_element_prob(in, PARTITION_HORZ);
+ out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
+ out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
+ out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
+ out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
+ if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
+ out[0] = AOM_ICDF(out[0]);
+ out[1] = AOM_ICDF(CDF_PROB_TOP);
+}
+
+static INLINE void partition_gather_vert_alike(aom_cdf_prob *out,
+ const aom_cdf_prob *const in,
+ BLOCK_SIZE bsize) {
+ (void)bsize;
+ out[0] = CDF_PROB_TOP;
+ out[0] -= cdf_element_prob(in, PARTITION_VERT);
+ out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
+ out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
+ out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
+ out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
+ if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
+ out[0] = AOM_ICDF(out[0]);
+ out[1] = AOM_ICDF(CDF_PROB_TOP);
+}
+
+static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
+ int mi_col, BLOCK_SIZE subsize,
+ BLOCK_SIZE bsize,
+ PARTITION_TYPE partition) {
+ if (bsize >= BLOCK_8X8) {
+ const int hbs = mi_size_wide[bsize] / 2;
+ BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
+ switch (partition) {
+ case PARTITION_SPLIT:
+ if (bsize != BLOCK_8X8) break;
+ AOM_FALLTHROUGH_INTENDED;
+ case PARTITION_NONE:
+ case PARTITION_HORZ:
+ case PARTITION_VERT:
+ case PARTITION_HORZ_4:
+ case PARTITION_VERT_4:
+ update_partition_context(xd, mi_row, mi_col, subsize, bsize);
+ break;
+ case PARTITION_HORZ_A:
+ update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
+ update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
+ break;
+ case PARTITION_HORZ_B:
+ update_partition_context(xd, mi_row, mi_col, subsize, subsize);
+ update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
+ break;
+ case PARTITION_VERT_A:
+ update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
+ update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
+ break;
+ case PARTITION_VERT_B:
+ update_partition_context(xd, mi_row, mi_col, subsize, subsize);
+ update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
+ break;
+ default: assert(0 && "Invalid partition type");
+ }
+ }
+}
+
+static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
+ int mi_col, BLOCK_SIZE bsize) {
+ const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col;
+ const PARTITION_CONTEXT *left_ctx =
+ xd->left_partition_context + (mi_row & MAX_MIB_MASK);
+ // Minimum partition point is 8x8. Offset the bsl accordingly.
+ const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
+ int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
+
+ assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
+ assert(bsl >= 0);
+
+ return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
+}
+
+// Return the number of elements in the partition CDF when
+// partitioning the (square) block with luma block size of bsize.
+static INLINE int partition_cdf_length(BLOCK_SIZE bsize) {
+ if (bsize <= BLOCK_8X8)
+ return PARTITION_TYPES;
+ else if (bsize == BLOCK_128X128)
+ return EXT_PARTITION_TYPES - 2;
+ else
+ return EXT_PARTITION_TYPES;
+}
+
+static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
+ int plane) {
+ assert(bsize < BLOCK_SIZES_ALL);
+ int max_blocks_wide = block_size_wide[bsize];
+
+ if (xd->mb_to_right_edge < 0) {
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
+ }
+
+ // Scale the width in the transform block unit.
+ return max_blocks_wide >> MI_SIZE_LOG2;
+}
+
+static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
+ int plane) {
+ int max_blocks_high = block_size_high[bsize];
+
+ if (xd->mb_to_bottom_edge < 0) {
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
+ }
+
+ // Scale the height in the transform block unit.
+ return max_blocks_high >> MI_SIZE_LOG2;
+}
+
+static INLINE void av1_zero_above_context(AV1_COMMON *const cm,
+ const MACROBLOCKD *xd,
+ int mi_col_start, int mi_col_end,
+ const int tile_row) {
+ const SequenceHeader *const seq_params = cm->seq_params;
+ const int num_planes = av1_num_planes(cm);
+ const int width = mi_col_end - mi_col_start;
+ const int aligned_width =
+ ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
+ const int offset_y = mi_col_start;
+ const int width_y = aligned_width;
+ const int offset_uv = offset_y >> seq_params->subsampling_x;
+ const int width_uv = width_y >> seq_params->subsampling_x;
+ CommonContexts *const above_contexts = &cm->above_contexts;
+
+ av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y);
+ if (num_planes > 1) {
+ if (above_contexts->entropy[1][tile_row] &&
+ above_contexts->entropy[2][tile_row]) {
+ av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv,
+ width_uv);
+ av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv,
+ width_uv);
+ } else {
+ aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
+ "Invalid value of planes");
+ }
+ }
+
+ av1_zero_array(above_contexts->partition[tile_row] + mi_col_start,
+ aligned_width);
+
+ memset(above_contexts->txfm[tile_row] + mi_col_start,
+ tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT));
+}
+
+static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
+ av1_zero(xd->left_entropy_context);
+ av1_zero(xd->left_partition_context);
+
+ memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
+ sizeof(xd->left_txfm_context_buffer));
+}
+
+static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
+ int i;
+ for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
+}
+
+static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
+ const MACROBLOCKD *xd) {
+ uint8_t bw = tx_size_wide[tx_size];
+ uint8_t bh = tx_size_high[tx_size];
+
+ if (skip) {
+ bw = n4_w * MI_SIZE;
+ bh = n4_h * MI_SIZE;
+ }
+
+ set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
+ set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
+}
+
+static INLINE int get_mi_grid_idx(const CommonModeInfoParams *const mi_params,
+ int mi_row, int mi_col) {
+ return mi_row * mi_params->mi_stride + mi_col;
+}
+
+static INLINE int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params,
+ int mi_row, int mi_col) {
+ const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
+ const int mi_alloc_row = mi_row / mi_alloc_size_1d;
+ const int mi_alloc_col = mi_col / mi_alloc_size_1d;
+
+ return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col;
+}
+
+// For this partition block, set pointers in mi_params->mi_grid_base and xd->mi.
+static INLINE void set_mi_offsets(const CommonModeInfoParams *const mi_params,
+ MACROBLOCKD *const xd, int mi_row,
+ int mi_col) {
+ // 'mi_grid_base' should point to appropriate memory in 'mi'.
+ const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
+ const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
+ mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx];
+ // 'xd->mi' should point to an offset in 'mi_grid_base';
+ xd->mi = mi_params->mi_grid_base + mi_grid_idx;
+ // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'.
+ xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx;
+ xd->tx_type_map_stride = mi_params->mi_stride;
+}
+
+static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
+ TXFM_CONTEXT *left_ctx,
+ TX_SIZE tx_size, TX_SIZE txb_size) {
+ BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
+ int bh = mi_size_high[bsize];
+ int bw = mi_size_wide[bsize];
+ uint8_t txw = tx_size_wide[tx_size];
+ uint8_t txh = tx_size_high[tx_size];
+ int i;
+ for (i = 0; i < bh; ++i) left_ctx[i] = txh;
+ for (i = 0; i < bw; ++i) above_ctx[i] = txw;
+}
+
+static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) {
+ switch (tx_dim) {
+ case 128:
+ case 64: return TX_64X64; break;
+ case 32: return TX_32X32; break;
+ case 16: return TX_16X16; break;
+ case 8: return TX_8X8; break;
+ default: return TX_4X4;
+ }
+}
+
+static INLINE TX_SIZE get_tx_size(int width, int height) {
+ if (width == height) {
+ return get_sqr_tx_size(width);
+ }
+ if (width < height) {
+ if (width + width == height) {
+ switch (width) {
+ case 4: return TX_4X8; break;
+ case 8: return TX_8X16; break;
+ case 16: return TX_16X32; break;
+ case 32: return TX_32X64; break;
+ }
+ } else {
+ switch (width) {
+ case 4: return TX_4X16; break;
+ case 8: return TX_8X32; break;
+ case 16: return TX_16X64; break;
+ }
+ }
+ } else {
+ if (height + height == width) {
+ switch (height) {
+ case 4: return TX_8X4; break;
+ case 8: return TX_16X8; break;
+ case 16: return TX_32X16; break;
+ case 32: return TX_64X32; break;
+ }
+ } else {
+ switch (height) {
+ case 4: return TX_16X4; break;
+ case 8: return TX_32X8; break;
+ case 16: return TX_64X16; break;
+ }
+ }
+ }
+ assert(0);
+ return TX_4X4;
+}
+
+static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
+ const TXFM_CONTEXT *const left_ctx,
+ BLOCK_SIZE bsize, TX_SIZE tx_size) {
+ const uint8_t txw = tx_size_wide[tx_size];
+ const uint8_t txh = tx_size_high[tx_size];
+ const int above = *above_ctx < txw;
+ const int left = *left_ctx < txh;
+ int category = TXFM_PARTITION_CONTEXTS;
+
+ // dummy return, not used by others.
+ if (tx_size <= TX_4X4) return 0;
+
+ TX_SIZE max_tx_size =
+ get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
+
+ if (max_tx_size >= TX_8X8) {
+ category =
+ (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
+ (TX_SIZES - 1 - max_tx_size) * 2;
+ }
+ assert(category != TXFM_PARTITION_CONTEXTS);
+ return category * 3 + above + left;
+}
+
+// Compute the next partition in the direction of the sb_type stored in the mi
+// array, starting with bsize.
+static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols)
+ return PARTITION_INVALID;
+
+ const int offset = mi_row * mi_params->mi_stride + mi_col;
+ MB_MODE_INFO **mi = mi_params->mi_grid_base + offset;
+ const BLOCK_SIZE subsize = mi[0]->bsize;
+
+ assert(bsize < BLOCK_SIZES_ALL);
+
+ if (subsize == bsize) return PARTITION_NONE;
+
+ const int bhigh = mi_size_high[bsize];
+ const int bwide = mi_size_wide[bsize];
+ const int sshigh = mi_size_high[subsize];
+ const int sswide = mi_size_wide[subsize];
+
+ if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows &&
+ mi_col + bhigh / 2 < mi_params->mi_cols) {
+ // In this case, the block might be using an extended partition
+ // type.
+ const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
+ const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride];
+
+ if (sswide == bwide) {
+ // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
+ // PARTITION_HORZ_B. To distinguish the latter two, check if the lower
+ // half was split.
+ if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
+ assert(sshigh * 2 == bhigh);
+
+ if (mbmi_below->bsize == subsize)
+ return PARTITION_HORZ;
+ else
+ return PARTITION_HORZ_B;
+ } else if (sshigh == bhigh) {
+ // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
+ // PARTITION_VERT_B. To distinguish the latter two, check if the right
+ // half was split.
+ if (sswide * 4 == bwide) return PARTITION_VERT_4;
+ assert(sswide * 2 == bhigh);
+
+ if (mbmi_right->bsize == subsize)
+ return PARTITION_VERT;
+ else
+ return PARTITION_VERT_B;
+ } else {
+ // Smaller width and smaller height. Might be PARTITION_SPLIT or could be
+ // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
+ // dimensions, we immediately know this is a split (which will recurse to
+ // get to subsize). Otherwise look down and to the right. With
+ // PARTITION_VERT_A, the right block will have height bhigh; with
+ // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
+ // it's PARTITION_SPLIT.
+ if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
+
+ if (mi_size_wide[mbmi_below->bsize] == bwide) return PARTITION_HORZ_A;
+ if (mi_size_high[mbmi_right->bsize] == bhigh) return PARTITION_VERT_A;
+
+ return PARTITION_SPLIT;
+ }
+ }
+ const int vert_split = sswide < bwide;
+ const int horz_split = sshigh < bhigh;
+ const int split_idx = (vert_split << 1) | horz_split;
+ assert(split_idx != 0);
+
+ static const PARTITION_TYPE base_partitions[4] = {
+ PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
+ };
+
+ return base_partitions[split_idx];
+}
+
+static INLINE void set_sb_size(SequenceHeader *const seq_params,
+ BLOCK_SIZE sb_size) {
+ seq_params->sb_size = sb_size;
+ seq_params->mib_size = mi_size_wide[seq_params->sb_size];
+ seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
+}
+
+// Returns true if the frame is fully lossless at the coded resolution.
+// Note: If super-resolution is used, such a frame will still NOT be lossless at
+// the upscaled resolution.
+static INLINE int is_coded_lossless(const AV1_COMMON *cm,
+ const MACROBLOCKD *xd) {
+ int coded_lossless = 1;
+ if (cm->seg.enabled) {
+ for (int i = 0; i < MAX_SEGMENTS; ++i) {
+ if (!xd->lossless[i]) {
+ coded_lossless = 0;
+ break;
+ }
+ }
+ } else {
+ coded_lossless = xd->lossless[0];
+ }
+ return coded_lossless;
+}
+
+static INLINE int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
+ return seq_level_idx == SEQ_LEVEL_MAX ||
+ (seq_level_idx < SEQ_LEVELS &&
+ // The following levels are currently undefined.
+ seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 &&
+ seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 &&
+ seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3
+#if !CONFIG_CWG_C013
+ && seq_level_idx != SEQ_LEVEL_7_0 && seq_level_idx != SEQ_LEVEL_7_1 &&
+ seq_level_idx != SEQ_LEVEL_7_2 && seq_level_idx != SEQ_LEVEL_7_3 &&
+ seq_level_idx != SEQ_LEVEL_8_0 && seq_level_idx != SEQ_LEVEL_8_1 &&
+ seq_level_idx != SEQ_LEVEL_8_2 && seq_level_idx != SEQ_LEVEL_8_3
+#endif
+ );
+}
+
+/*!\endcond */
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // AOM_AV1_COMMON_AV1_COMMON_INT_H_