diff options
Diffstat (limited to 'third_party/aom/test/tpl_model_test.cc')
-rw-r--r-- | third_party/aom/test/tpl_model_test.cc | 529 |
1 files changed, 529 insertions, 0 deletions
diff --git a/third_party/aom/test/tpl_model_test.cc b/third_party/aom/test/tpl_model_test.cc new file mode 100644 index 0000000000..91eb5e94d3 --- /dev/null +++ b/third_party/aom/test/tpl_model_test.cc @@ -0,0 +1,529 @@ +/* + * Copyright (c) 2021, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <cstdlib> +#include <memory> +#include <new> +#include <vector> + +#include "av1/encoder/cost.h" +#include "av1/encoder/tpl_model.h" +#include "av1/encoder/encoder.h" +#include "third_party/googletest/src/googletest/include/gtest/gtest.h" + +namespace { + +#if CONFIG_BITRATE_ACCURACY +constexpr double epsilon = 0.0000001; +#endif + +double laplace_prob(double q_step, double b, double zero_bin_ratio, + int qcoeff) { + int abs_qcoeff = abs(qcoeff); + double z0 = fmax(exp(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON); + if (abs_qcoeff == 0) { + double p0 = 1 - z0; + return p0; + } else { + assert(abs_qcoeff > 0); + double z = fmax(exp(-q_step / b), TPL_EPSILON); + double p = z0 / 2 * (1 - z) * pow(z, abs_qcoeff - 1); + return p; + } +} +TEST(TplModelTest, ExponentialEntropyBoundaryTest1) { + double b = 0; + double q_step = 1; + double entropy = av1_exponential_entropy(q_step, b); + EXPECT_NEAR(entropy, 0, 0.00001); +} + +TEST(TplModelTest, TransformCoeffEntropyTest1) { + // Check the consistency between av1_estimate_coeff_entropy() and + // laplace_prob() + double b = 1; + double q_step = 1; + double zero_bin_ratio = 2; + for (int qcoeff = -256; qcoeff < 256; ++qcoeff) { + double rate = av1_estimate_coeff_entropy(q_step, b, zero_bin_ratio, qcoeff); + double prob = laplace_prob(q_step, b, zero_bin_ratio, qcoeff); + double ref_rate = -log2(prob); + EXPECT_DOUBLE_EQ(rate, ref_rate); + } +} + +TEST(TplModelTest, TransformCoeffEntropyTest2) { + // Check the consistency between av1_estimate_coeff_entropy(), laplace_prob() + // and av1_laplace_entropy() + double b = 1; + double q_step = 1; + double zero_bin_ratio = 2; + double est_expected_rate = 0; + for (int qcoeff = -20; qcoeff < 20; ++qcoeff) { + double rate = av1_estimate_coeff_entropy(q_step, b, zero_bin_ratio, qcoeff); + double prob = laplace_prob(q_step, b, zero_bin_ratio, qcoeff); + est_expected_rate += prob * rate; + } + double expected_rate = av1_laplace_entropy(q_step, b, zero_bin_ratio); + EXPECT_NEAR(expected_rate, est_expected_rate, 0.001); +} + +TEST(TplModelTest, InitTplStats1) { + // We use heap allocation instead of stack allocation here to avoid + // -Wstack-usage warning. + std::unique_ptr<TplParams> tpl_data(new (std::nothrow) TplParams); + ASSERT_NE(tpl_data, nullptr); + av1_zero(*tpl_data); + tpl_data->ready = 1; + EXPECT_EQ(sizeof(tpl_data->tpl_stats_buffer), + MAX_LENGTH_TPL_FRAME_STATS * sizeof(tpl_data->tpl_stats_buffer[0])); + for (int i = 0; i < MAX_LENGTH_TPL_FRAME_STATS; ++i) { + // Set it to a random non-zero number + tpl_data->tpl_stats_buffer[i].is_valid = i + 1; + } + av1_init_tpl_stats(tpl_data.get()); + EXPECT_EQ(tpl_data->ready, 0); + for (int i = 0; i < MAX_LENGTH_TPL_FRAME_STATS; ++i) { + EXPECT_EQ(tpl_data->tpl_stats_buffer[i].is_valid, 0); + } +} + +TEST(TplModelTest, DeltaRateCostZeroFlow) { + // When srcrf_dist equal to recrf_dist, av1_delta_rate_cost should return 0 + int64_t srcrf_dist = 256; + int64_t recrf_dist = 256; + int64_t delta_rate = 512; + int pixel_num = 256; + int64_t rate_cost = + av1_delta_rate_cost(delta_rate, recrf_dist, srcrf_dist, pixel_num); + EXPECT_EQ(rate_cost, 0); +} + +// a reference function of av1_delta_rate_cost() with delta_rate using bit as +// basic unit +double ref_delta_rate_cost(int64_t delta_rate, double src_rec_ratio, + int pixel_count) { + assert(src_rec_ratio <= 1 && src_rec_ratio >= 0); + double bits_per_pixel = (double)delta_rate / pixel_count; + double p = pow(2, bits_per_pixel); + double flow_rate_per_pixel = + sqrt(p * p / (src_rec_ratio * p * p + (1 - src_rec_ratio))); + double rate_cost = pixel_count * log2(flow_rate_per_pixel); + return rate_cost; +} + +TEST(TplModelTest, DeltaRateCostReference) { + const int64_t scale = TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT; + std::vector<int64_t> srcrf_dist_arr = { 256, 257, 312 }; + std::vector<int64_t> recrf_dist_arr = { 512, 288, 620 }; + std::vector<int64_t> delta_rate_arr = { 10, 278, 100 }; + for (size_t t = 0; t < srcrf_dist_arr.size(); ++t) { + int64_t srcrf_dist = srcrf_dist_arr[t]; + int64_t recrf_dist = recrf_dist_arr[t]; + int64_t delta_rate = delta_rate_arr[t]; + int64_t scaled_delta_rate = delta_rate << scale; + int pixel_count = 256; + int64_t rate_cost = av1_delta_rate_cost(scaled_delta_rate, recrf_dist, + srcrf_dist, pixel_count); + rate_cost >>= scale; + double src_rec_ratio = (double)srcrf_dist / recrf_dist; + double ref_rate_cost = + ref_delta_rate_cost(delta_rate, src_rec_ratio, pixel_count); + EXPECT_NEAR((double)rate_cost, ref_rate_cost, 1); + } +} + +TEST(TplModelTest, GetOverlapAreaHasOverlap) { + // The block a's area is [10, 17) x [18, 24). + // The block b's area is [8, 15) x [17, 23). + // The overlapping area between block a and block b is [10, 15) x [18, 23). + // Therefore, the size of the area is (15 - 10) * (23 - 18) = 25. + int row_a = 10; + int col_a = 18; + int row_b = 8; + int col_b = 17; + int height = 7; + int width = 6; + int overlap_area = + av1_get_overlap_area(row_a, col_a, row_b, col_b, width, height); + EXPECT_EQ(overlap_area, 25); +} + +TEST(TplModelTest, GetOverlapAreaNoOverlap) { + // The block a's area is [10, 14) x [18, 22). + // The block b's area is [5, 9) x [5, 9). + // Threre is no overlapping area between block a and block b. + // Therefore, the return value should be zero. + int row_a = 10; + int col_a = 18; + int row_b = 5; + int col_b = 5; + int height = 4; + int width = 4; + int overlap_area = + av1_get_overlap_area(row_a, col_a, row_b, col_b, width, height); + EXPECT_EQ(overlap_area, 0); +} + +TEST(TplModelTest, GetQIndexFromQstepRatio) { + const aom_bit_depth_t bit_depth = AOM_BITS_8; + // When qstep_ratio is 1, the output q_index should be equal to leaf_qindex. + double qstep_ratio = 1.0; + for (int leaf_qindex = 1; leaf_qindex <= 255; ++leaf_qindex) { + const int q_index = + av1_get_q_index_from_qstep_ratio(leaf_qindex, qstep_ratio, bit_depth); + EXPECT_EQ(q_index, leaf_qindex); + } + + // When qstep_ratio is very low, the output q_index should be 1. + qstep_ratio = 0.0001; + for (int leaf_qindex = 1; leaf_qindex <= 255; ++leaf_qindex) { + const int q_index = + av1_get_q_index_from_qstep_ratio(leaf_qindex, qstep_ratio, bit_depth); + EXPECT_EQ(q_index, 0); + } +} + +TEST(TplModelTest, TxfmStatsInitTest) { + TplTxfmStats tpl_txfm_stats; + av1_init_tpl_txfm_stats(&tpl_txfm_stats); + EXPECT_EQ(tpl_txfm_stats.coeff_num, 256); + EXPECT_EQ(tpl_txfm_stats.txfm_block_count, 0); + for (int i = 0; i < tpl_txfm_stats.coeff_num; ++i) { + EXPECT_DOUBLE_EQ(tpl_txfm_stats.abs_coeff_sum[i], 0); + } +} + +#if CONFIG_BITRATE_ACCURACY +TEST(TplModelTest, TxfmStatsAccumulateTest) { + TplTxfmStats sub_stats; + av1_init_tpl_txfm_stats(&sub_stats); + sub_stats.txfm_block_count = 17; + for (int i = 0; i < sub_stats.coeff_num; ++i) { + sub_stats.abs_coeff_sum[i] = i; + } + + TplTxfmStats accumulated_stats; + av1_init_tpl_txfm_stats(&accumulated_stats); + accumulated_stats.txfm_block_count = 13; + for (int i = 0; i < accumulated_stats.coeff_num; ++i) { + accumulated_stats.abs_coeff_sum[i] = 5 * i; + } + + av1_accumulate_tpl_txfm_stats(&sub_stats, &accumulated_stats); + EXPECT_DOUBLE_EQ(accumulated_stats.txfm_block_count, 30); + for (int i = 0; i < accumulated_stats.coeff_num; ++i) { + EXPECT_DOUBLE_EQ(accumulated_stats.abs_coeff_sum[i], 6 * i); + } +} + +TEST(TplModelTest, TxfmStatsRecordTest) { + TplTxfmStats stats1; + TplTxfmStats stats2; + av1_init_tpl_txfm_stats(&stats1); + av1_init_tpl_txfm_stats(&stats2); + + tran_low_t coeff[256]; + for (int i = 0; i < 256; ++i) { + coeff[i] = i; + } + av1_record_tpl_txfm_block(&stats1, coeff); + EXPECT_EQ(stats1.txfm_block_count, 1); + + // we record the same transform block twice for testing purpose + av1_record_tpl_txfm_block(&stats2, coeff); + av1_record_tpl_txfm_block(&stats2, coeff); + EXPECT_EQ(stats2.txfm_block_count, 2); + + EXPECT_EQ(stats1.coeff_num, 256); + EXPECT_EQ(stats2.coeff_num, 256); + for (int i = 0; i < 256; ++i) { + EXPECT_DOUBLE_EQ(stats2.abs_coeff_sum[i], 2 * stats1.abs_coeff_sum[i]); + } +} +#endif // CONFIG_BITRATE_ACCURACY + +TEST(TplModelTest, ComputeMVDifferenceTest) { + TplDepFrame tpl_frame_small; + tpl_frame_small.is_valid = true; + tpl_frame_small.mi_rows = 4; + tpl_frame_small.mi_cols = 4; + tpl_frame_small.stride = 1; + uint8_t right_shift_small = 1; + int step_small = 1 << right_shift_small; + + // Test values for motion vectors. + int mv_vals_small[4] = { 1, 2, 3, 4 }; + int index = 0; + + // 4x4 blocks means we need to allocate a 4 size array. + // According to av1_tpl_ptr_pos: + // (row >> right_shift) * stride + (col >> right_shift) + // (4 >> 1) * 1 + (4 >> 1) = 4 + TplDepStats stats_buf_small[4]; + tpl_frame_small.tpl_stats_ptr = stats_buf_small; + + for (int row = 0; row < tpl_frame_small.mi_rows; row += step_small) { + for (int col = 0; col < tpl_frame_small.mi_cols; col += step_small) { + TplDepStats tpl_stats; + tpl_stats.ref_frame_index[0] = 0; + int_mv mv; + mv.as_mv.row = mv_vals_small[index]; + mv.as_mv.col = mv_vals_small[index]; + index++; + tpl_stats.mv[0] = mv; + tpl_frame_small.tpl_stats_ptr[av1_tpl_ptr_pos( + row, col, tpl_frame_small.stride, right_shift_small)] = tpl_stats; + } + } + + int_mv result_mv = + av1_compute_mv_difference(&tpl_frame_small, 1, 1, step_small, + tpl_frame_small.stride, right_shift_small); + + // Expect the result to be exactly equal to 1 because this is the difference + // between neighboring motion vectors in this instance. + EXPECT_EQ(result_mv.as_mv.row, 1); + EXPECT_EQ(result_mv.as_mv.col, 1); +} + +TEST(TplModelTest, ComputeMVBitsTest) { + TplDepFrame tpl_frame; + tpl_frame.is_valid = true; + tpl_frame.mi_rows = 16; + tpl_frame.mi_cols = 16; + tpl_frame.stride = 24; + uint8_t right_shift = 2; + int step = 1 << right_shift; + // Test values for motion vectors. + int mv_vals_ordered[16] = { 1, 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, 15, 16 }; + int mv_vals[16] = { 1, 16, 2, 15, 3, 14, 4, 13, 5, 12, 6, 11, 7, 10, 8, 9 }; + int index = 0; + + // 16x16 blocks means we need to allocate a 100 size array. + // According to av1_tpl_ptr_pos: + // (row >> right_shift) * stride + (col >> right_shift) + // (16 >> 2) * 24 + (16 >> 2) = 100 + TplDepStats stats_buf[100]; + tpl_frame.tpl_stats_ptr = stats_buf; + + for (int row = 0; row < tpl_frame.mi_rows; row += step) { + for (int col = 0; col < tpl_frame.mi_cols; col += step) { + TplDepStats tpl_stats; + tpl_stats.ref_frame_index[0] = 0; + int_mv mv; + mv.as_mv.row = mv_vals_ordered[index]; + mv.as_mv.col = mv_vals_ordered[index]; + index++; + tpl_stats.mv[0] = mv; + tpl_frame.tpl_stats_ptr[av1_tpl_ptr_pos(row, col, tpl_frame.stride, + right_shift)] = tpl_stats; + } + } + + double result = av1_tpl_compute_frame_mv_entropy(&tpl_frame, right_shift); + + // Expect the result to be low because the motion vectors are ordered. + // The estimation algorithm takes this into account and reduces the cost. + EXPECT_NEAR(result, 20, 5); + + index = 0; + for (int row = 0; row < tpl_frame.mi_rows; row += step) { + for (int col = 0; col < tpl_frame.mi_cols; col += step) { + TplDepStats tpl_stats; + tpl_stats.ref_frame_index[0] = 0; + int_mv mv; + mv.as_mv.row = mv_vals[index]; + mv.as_mv.col = mv_vals[index]; + index++; + tpl_stats.mv[0] = mv; + tpl_frame.tpl_stats_ptr[av1_tpl_ptr_pos(row, col, tpl_frame.stride, + right_shift)] = tpl_stats; + } + } + + result = av1_tpl_compute_frame_mv_entropy(&tpl_frame, right_shift); + + // Expect the result to be higher because the vectors are not ordered. + // Neighboring vectors will have different values, increasing the cost. + EXPECT_NEAR(result, 70, 5); +} +#if CONFIG_BITRATE_ACCURACY + +TEST(TplModelTest, VbrRcInfoSetGopBitBudget) { + VBR_RATECTRL_INFO vbr_rc_info; + const double total_bit_budget = 2000; + const int show_frame_count = 8; + const int gop_show_frame_count = 4; + av1_vbr_rc_init(&vbr_rc_info, total_bit_budget, show_frame_count); + av1_vbr_rc_set_gop_bit_budget(&vbr_rc_info, gop_show_frame_count); + EXPECT_NEAR(vbr_rc_info.gop_bit_budget, 1000, epsilon); +} + +void init_toy_gf_group(GF_GROUP *gf_group) { + av1_zero(*gf_group); + gf_group->size = 4; + const FRAME_UPDATE_TYPE update_type[4] = { KF_UPDATE, ARF_UPDATE, + INTNL_ARF_UPDATE, LF_UPDATE }; + for (int i = 0; i < gf_group->size; ++i) { + gf_group->update_type[i] = update_type[i]; + } +} + +void init_toy_vbr_rc_info(VBR_RATECTRL_INFO *vbr_rc_info, int gop_size) { + int total_bit_budget = 2000; + int show_frame_count = 8; + av1_vbr_rc_init(vbr_rc_info, total_bit_budget, show_frame_count); + + for (int i = 0; i < gop_size; ++i) { + vbr_rc_info->qstep_ratio_list[i] = 1; + } +} + +void init_toy_tpl_txfm_stats(std::vector<TplTxfmStats> *stats_list) { + for (size_t i = 0; i < stats_list->size(); i++) { + TplTxfmStats *txfm_stats = &stats_list->at(i); + av1_init_tpl_txfm_stats(txfm_stats); + txfm_stats->txfm_block_count = 8; + for (int j = 0; j < txfm_stats->coeff_num; j++) { + txfm_stats->abs_coeff_sum[j] = 1000 + j; + } + av1_tpl_txfm_stats_update_abs_coeff_mean(txfm_stats); + } +} + +/* + * Helper method to brute-force search for the closest q_index + * that achieves the specified bit budget. + */ +int find_gop_q_iterative(double bit_budget, aom_bit_depth_t bit_depth, + const double *update_type_scale_factors, + int frame_count, + const FRAME_UPDATE_TYPE *update_type_list, + const double *qstep_ratio_list, + const TplTxfmStats *stats_list, int *q_index_list, + double *estimated_bitrate_byframe) { + int best_q = 255; + double curr_estimate = av1_vbr_rc_info_estimate_gop_bitrate( + best_q, bit_depth, update_type_scale_factors, frame_count, + update_type_list, qstep_ratio_list, stats_list, q_index_list, + estimated_bitrate_byframe); + double min_bits_diff = fabs(curr_estimate - bit_budget); + // Start at q = 254 because we already have an estimate for q = 255. + for (int q = 254; q >= 0; q--) { + curr_estimate = av1_vbr_rc_info_estimate_gop_bitrate( + q, bit_depth, update_type_scale_factors, frame_count, update_type_list, + qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe); + double bits_diff = fabs(curr_estimate - bit_budget); + if (bits_diff <= min_bits_diff) { + min_bits_diff = bits_diff; + best_q = q; + } + } + return best_q; +} + +TEST(TplModelTest, EstimateFrameRateTest) { + GF_GROUP gf_group; + init_toy_gf_group(&gf_group); + + VBR_RATECTRL_INFO vbr_rc_info; + init_toy_vbr_rc_info(&vbr_rc_info, gf_group.size); + + std::vector<TplTxfmStats> stats_list(gf_group.size); + init_toy_tpl_txfm_stats(&stats_list); + + std::vector<double> est_bitrate_list(gf_group.size); + init_toy_tpl_txfm_stats(&stats_list); + const aom_bit_depth_t bit_depth = AOM_BITS_8; + + const int q = 125; + + // Case1: all scale factors are 0 + double scale_factors[FRAME_UPDATE_TYPES] = { 0 }; + double estimate = av1_vbr_rc_info_estimate_gop_bitrate( + q, bit_depth, scale_factors, gf_group.size, gf_group.update_type, + vbr_rc_info.qstep_ratio_list, stats_list.data(), vbr_rc_info.q_index_list, + est_bitrate_list.data()); + EXPECT_NEAR(estimate, 0, epsilon); + + // Case2: all scale factors are 1 + for (int i = 0; i < FRAME_UPDATE_TYPES; i++) { + scale_factors[i] = 1; + } + estimate = av1_vbr_rc_info_estimate_gop_bitrate( + q, bit_depth, scale_factors, gf_group.size, gf_group.update_type, + vbr_rc_info.qstep_ratio_list, stats_list.data(), vbr_rc_info.q_index_list, + est_bitrate_list.data()); + double ref_estimate = 0; + for (int i = 0; i < gf_group.size; i++) { + ref_estimate += est_bitrate_list[i]; + } + EXPECT_NEAR(estimate, ref_estimate, epsilon); + + // Case3: Key frame scale factor is 0 and others are 1 + for (int i = 0; i < FRAME_UPDATE_TYPES; i++) { + if (i == KF_UPDATE) { + scale_factors[i] = 0; + } else { + scale_factors[i] = 1; + } + } + estimate = av1_vbr_rc_info_estimate_gop_bitrate( + q, bit_depth, scale_factors, gf_group.size, gf_group.update_type, + vbr_rc_info.qstep_ratio_list, stats_list.data(), vbr_rc_info.q_index_list, + est_bitrate_list.data()); + ref_estimate = 0; + for (int i = 0; i < gf_group.size; i++) { + if (gf_group.update_type[i] != KF_UPDATE) { + ref_estimate += est_bitrate_list[i]; + } + } + EXPECT_NEAR(estimate, ref_estimate, epsilon); +} + +TEST(TplModelTest, VbrRcInfoEstimateBaseQTest) { + GF_GROUP gf_group; + init_toy_gf_group(&gf_group); + + VBR_RATECTRL_INFO vbr_rc_info; + init_toy_vbr_rc_info(&vbr_rc_info, gf_group.size); + + std::vector<TplTxfmStats> stats_list(gf_group.size); + init_toy_tpl_txfm_stats(&stats_list); + const aom_bit_depth_t bit_depth = AOM_BITS_8; + + // Test multiple bit budgets. + const std::vector<double> bit_budgets = { 0, 2470, 19200, 30750, + 41315, 65017, DBL_MAX }; + + for (double bit_budget : bit_budgets) { + // Binary search method to find the optimal q. + const int base_q = av1_vbr_rc_info_estimate_base_q( + bit_budget, bit_depth, vbr_rc_info.scale_factors, gf_group.size, + gf_group.update_type, vbr_rc_info.qstep_ratio_list, stats_list.data(), + vbr_rc_info.q_index_list, nullptr); + const int ref_base_q = find_gop_q_iterative( + bit_budget, bit_depth, vbr_rc_info.scale_factors, gf_group.size, + gf_group.update_type, vbr_rc_info.qstep_ratio_list, stats_list.data(), + vbr_rc_info.q_index_list, nullptr); + if (bit_budget == 0) { + EXPECT_EQ(base_q, 255); + } else if (bit_budget == DBL_MAX) { + EXPECT_EQ(base_q, 0); + } + EXPECT_EQ(base_q, ref_base_q); + } +} +#endif // CONFIG_BITRATE_ACCURACY + +} // namespace |