summaryrefslogtreecommitdiffstats
path: root/third_party/aom/test/tpl_model_test.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/test/tpl_model_test.cc')
-rw-r--r--third_party/aom/test/tpl_model_test.cc529
1 files changed, 529 insertions, 0 deletions
diff --git a/third_party/aom/test/tpl_model_test.cc b/third_party/aom/test/tpl_model_test.cc
new file mode 100644
index 0000000000..91eb5e94d3
--- /dev/null
+++ b/third_party/aom/test/tpl_model_test.cc
@@ -0,0 +1,529 @@
+/*
+ * Copyright (c) 2021, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <cstdlib>
+#include <memory>
+#include <new>
+#include <vector>
+
+#include "av1/encoder/cost.h"
+#include "av1/encoder/tpl_model.h"
+#include "av1/encoder/encoder.h"
+#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
+
+namespace {
+
+#if CONFIG_BITRATE_ACCURACY
+constexpr double epsilon = 0.0000001;
+#endif
+
+double laplace_prob(double q_step, double b, double zero_bin_ratio,
+ int qcoeff) {
+ int abs_qcoeff = abs(qcoeff);
+ double z0 = fmax(exp(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON);
+ if (abs_qcoeff == 0) {
+ double p0 = 1 - z0;
+ return p0;
+ } else {
+ assert(abs_qcoeff > 0);
+ double z = fmax(exp(-q_step / b), TPL_EPSILON);
+ double p = z0 / 2 * (1 - z) * pow(z, abs_qcoeff - 1);
+ return p;
+ }
+}
+TEST(TplModelTest, ExponentialEntropyBoundaryTest1) {
+ double b = 0;
+ double q_step = 1;
+ double entropy = av1_exponential_entropy(q_step, b);
+ EXPECT_NEAR(entropy, 0, 0.00001);
+}
+
+TEST(TplModelTest, TransformCoeffEntropyTest1) {
+ // Check the consistency between av1_estimate_coeff_entropy() and
+ // laplace_prob()
+ double b = 1;
+ double q_step = 1;
+ double zero_bin_ratio = 2;
+ for (int qcoeff = -256; qcoeff < 256; ++qcoeff) {
+ double rate = av1_estimate_coeff_entropy(q_step, b, zero_bin_ratio, qcoeff);
+ double prob = laplace_prob(q_step, b, zero_bin_ratio, qcoeff);
+ double ref_rate = -log2(prob);
+ EXPECT_DOUBLE_EQ(rate, ref_rate);
+ }
+}
+
+TEST(TplModelTest, TransformCoeffEntropyTest2) {
+ // Check the consistency between av1_estimate_coeff_entropy(), laplace_prob()
+ // and av1_laplace_entropy()
+ double b = 1;
+ double q_step = 1;
+ double zero_bin_ratio = 2;
+ double est_expected_rate = 0;
+ for (int qcoeff = -20; qcoeff < 20; ++qcoeff) {
+ double rate = av1_estimate_coeff_entropy(q_step, b, zero_bin_ratio, qcoeff);
+ double prob = laplace_prob(q_step, b, zero_bin_ratio, qcoeff);
+ est_expected_rate += prob * rate;
+ }
+ double expected_rate = av1_laplace_entropy(q_step, b, zero_bin_ratio);
+ EXPECT_NEAR(expected_rate, est_expected_rate, 0.001);
+}
+
+TEST(TplModelTest, InitTplStats1) {
+ // We use heap allocation instead of stack allocation here to avoid
+ // -Wstack-usage warning.
+ std::unique_ptr<TplParams> tpl_data(new (std::nothrow) TplParams);
+ ASSERT_NE(tpl_data, nullptr);
+ av1_zero(*tpl_data);
+ tpl_data->ready = 1;
+ EXPECT_EQ(sizeof(tpl_data->tpl_stats_buffer),
+ MAX_LENGTH_TPL_FRAME_STATS * sizeof(tpl_data->tpl_stats_buffer[0]));
+ for (int i = 0; i < MAX_LENGTH_TPL_FRAME_STATS; ++i) {
+ // Set it to a random non-zero number
+ tpl_data->tpl_stats_buffer[i].is_valid = i + 1;
+ }
+ av1_init_tpl_stats(tpl_data.get());
+ EXPECT_EQ(tpl_data->ready, 0);
+ for (int i = 0; i < MAX_LENGTH_TPL_FRAME_STATS; ++i) {
+ EXPECT_EQ(tpl_data->tpl_stats_buffer[i].is_valid, 0);
+ }
+}
+
+TEST(TplModelTest, DeltaRateCostZeroFlow) {
+ // When srcrf_dist equal to recrf_dist, av1_delta_rate_cost should return 0
+ int64_t srcrf_dist = 256;
+ int64_t recrf_dist = 256;
+ int64_t delta_rate = 512;
+ int pixel_num = 256;
+ int64_t rate_cost =
+ av1_delta_rate_cost(delta_rate, recrf_dist, srcrf_dist, pixel_num);
+ EXPECT_EQ(rate_cost, 0);
+}
+
+// a reference function of av1_delta_rate_cost() with delta_rate using bit as
+// basic unit
+double ref_delta_rate_cost(int64_t delta_rate, double src_rec_ratio,
+ int pixel_count) {
+ assert(src_rec_ratio <= 1 && src_rec_ratio >= 0);
+ double bits_per_pixel = (double)delta_rate / pixel_count;
+ double p = pow(2, bits_per_pixel);
+ double flow_rate_per_pixel =
+ sqrt(p * p / (src_rec_ratio * p * p + (1 - src_rec_ratio)));
+ double rate_cost = pixel_count * log2(flow_rate_per_pixel);
+ return rate_cost;
+}
+
+TEST(TplModelTest, DeltaRateCostReference) {
+ const int64_t scale = TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT;
+ std::vector<int64_t> srcrf_dist_arr = { 256, 257, 312 };
+ std::vector<int64_t> recrf_dist_arr = { 512, 288, 620 };
+ std::vector<int64_t> delta_rate_arr = { 10, 278, 100 };
+ for (size_t t = 0; t < srcrf_dist_arr.size(); ++t) {
+ int64_t srcrf_dist = srcrf_dist_arr[t];
+ int64_t recrf_dist = recrf_dist_arr[t];
+ int64_t delta_rate = delta_rate_arr[t];
+ int64_t scaled_delta_rate = delta_rate << scale;
+ int pixel_count = 256;
+ int64_t rate_cost = av1_delta_rate_cost(scaled_delta_rate, recrf_dist,
+ srcrf_dist, pixel_count);
+ rate_cost >>= scale;
+ double src_rec_ratio = (double)srcrf_dist / recrf_dist;
+ double ref_rate_cost =
+ ref_delta_rate_cost(delta_rate, src_rec_ratio, pixel_count);
+ EXPECT_NEAR((double)rate_cost, ref_rate_cost, 1);
+ }
+}
+
+TEST(TplModelTest, GetOverlapAreaHasOverlap) {
+ // The block a's area is [10, 17) x [18, 24).
+ // The block b's area is [8, 15) x [17, 23).
+ // The overlapping area between block a and block b is [10, 15) x [18, 23).
+ // Therefore, the size of the area is (15 - 10) * (23 - 18) = 25.
+ int row_a = 10;
+ int col_a = 18;
+ int row_b = 8;
+ int col_b = 17;
+ int height = 7;
+ int width = 6;
+ int overlap_area =
+ av1_get_overlap_area(row_a, col_a, row_b, col_b, width, height);
+ EXPECT_EQ(overlap_area, 25);
+}
+
+TEST(TplModelTest, GetOverlapAreaNoOverlap) {
+ // The block a's area is [10, 14) x [18, 22).
+ // The block b's area is [5, 9) x [5, 9).
+ // Threre is no overlapping area between block a and block b.
+ // Therefore, the return value should be zero.
+ int row_a = 10;
+ int col_a = 18;
+ int row_b = 5;
+ int col_b = 5;
+ int height = 4;
+ int width = 4;
+ int overlap_area =
+ av1_get_overlap_area(row_a, col_a, row_b, col_b, width, height);
+ EXPECT_EQ(overlap_area, 0);
+}
+
+TEST(TplModelTest, GetQIndexFromQstepRatio) {
+ const aom_bit_depth_t bit_depth = AOM_BITS_8;
+ // When qstep_ratio is 1, the output q_index should be equal to leaf_qindex.
+ double qstep_ratio = 1.0;
+ for (int leaf_qindex = 1; leaf_qindex <= 255; ++leaf_qindex) {
+ const int q_index =
+ av1_get_q_index_from_qstep_ratio(leaf_qindex, qstep_ratio, bit_depth);
+ EXPECT_EQ(q_index, leaf_qindex);
+ }
+
+ // When qstep_ratio is very low, the output q_index should be 1.
+ qstep_ratio = 0.0001;
+ for (int leaf_qindex = 1; leaf_qindex <= 255; ++leaf_qindex) {
+ const int q_index =
+ av1_get_q_index_from_qstep_ratio(leaf_qindex, qstep_ratio, bit_depth);
+ EXPECT_EQ(q_index, 0);
+ }
+}
+
+TEST(TplModelTest, TxfmStatsInitTest) {
+ TplTxfmStats tpl_txfm_stats;
+ av1_init_tpl_txfm_stats(&tpl_txfm_stats);
+ EXPECT_EQ(tpl_txfm_stats.coeff_num, 256);
+ EXPECT_EQ(tpl_txfm_stats.txfm_block_count, 0);
+ for (int i = 0; i < tpl_txfm_stats.coeff_num; ++i) {
+ EXPECT_DOUBLE_EQ(tpl_txfm_stats.abs_coeff_sum[i], 0);
+ }
+}
+
+#if CONFIG_BITRATE_ACCURACY
+TEST(TplModelTest, TxfmStatsAccumulateTest) {
+ TplTxfmStats sub_stats;
+ av1_init_tpl_txfm_stats(&sub_stats);
+ sub_stats.txfm_block_count = 17;
+ for (int i = 0; i < sub_stats.coeff_num; ++i) {
+ sub_stats.abs_coeff_sum[i] = i;
+ }
+
+ TplTxfmStats accumulated_stats;
+ av1_init_tpl_txfm_stats(&accumulated_stats);
+ accumulated_stats.txfm_block_count = 13;
+ for (int i = 0; i < accumulated_stats.coeff_num; ++i) {
+ accumulated_stats.abs_coeff_sum[i] = 5 * i;
+ }
+
+ av1_accumulate_tpl_txfm_stats(&sub_stats, &accumulated_stats);
+ EXPECT_DOUBLE_EQ(accumulated_stats.txfm_block_count, 30);
+ for (int i = 0; i < accumulated_stats.coeff_num; ++i) {
+ EXPECT_DOUBLE_EQ(accumulated_stats.abs_coeff_sum[i], 6 * i);
+ }
+}
+
+TEST(TplModelTest, TxfmStatsRecordTest) {
+ TplTxfmStats stats1;
+ TplTxfmStats stats2;
+ av1_init_tpl_txfm_stats(&stats1);
+ av1_init_tpl_txfm_stats(&stats2);
+
+ tran_low_t coeff[256];
+ for (int i = 0; i < 256; ++i) {
+ coeff[i] = i;
+ }
+ av1_record_tpl_txfm_block(&stats1, coeff);
+ EXPECT_EQ(stats1.txfm_block_count, 1);
+
+ // we record the same transform block twice for testing purpose
+ av1_record_tpl_txfm_block(&stats2, coeff);
+ av1_record_tpl_txfm_block(&stats2, coeff);
+ EXPECT_EQ(stats2.txfm_block_count, 2);
+
+ EXPECT_EQ(stats1.coeff_num, 256);
+ EXPECT_EQ(stats2.coeff_num, 256);
+ for (int i = 0; i < 256; ++i) {
+ EXPECT_DOUBLE_EQ(stats2.abs_coeff_sum[i], 2 * stats1.abs_coeff_sum[i]);
+ }
+}
+#endif // CONFIG_BITRATE_ACCURACY
+
+TEST(TplModelTest, ComputeMVDifferenceTest) {
+ TplDepFrame tpl_frame_small;
+ tpl_frame_small.is_valid = true;
+ tpl_frame_small.mi_rows = 4;
+ tpl_frame_small.mi_cols = 4;
+ tpl_frame_small.stride = 1;
+ uint8_t right_shift_small = 1;
+ int step_small = 1 << right_shift_small;
+
+ // Test values for motion vectors.
+ int mv_vals_small[4] = { 1, 2, 3, 4 };
+ int index = 0;
+
+ // 4x4 blocks means we need to allocate a 4 size array.
+ // According to av1_tpl_ptr_pos:
+ // (row >> right_shift) * stride + (col >> right_shift)
+ // (4 >> 1) * 1 + (4 >> 1) = 4
+ TplDepStats stats_buf_small[4];
+ tpl_frame_small.tpl_stats_ptr = stats_buf_small;
+
+ for (int row = 0; row < tpl_frame_small.mi_rows; row += step_small) {
+ for (int col = 0; col < tpl_frame_small.mi_cols; col += step_small) {
+ TplDepStats tpl_stats;
+ tpl_stats.ref_frame_index[0] = 0;
+ int_mv mv;
+ mv.as_mv.row = mv_vals_small[index];
+ mv.as_mv.col = mv_vals_small[index];
+ index++;
+ tpl_stats.mv[0] = mv;
+ tpl_frame_small.tpl_stats_ptr[av1_tpl_ptr_pos(
+ row, col, tpl_frame_small.stride, right_shift_small)] = tpl_stats;
+ }
+ }
+
+ int_mv result_mv =
+ av1_compute_mv_difference(&tpl_frame_small, 1, 1, step_small,
+ tpl_frame_small.stride, right_shift_small);
+
+ // Expect the result to be exactly equal to 1 because this is the difference
+ // between neighboring motion vectors in this instance.
+ EXPECT_EQ(result_mv.as_mv.row, 1);
+ EXPECT_EQ(result_mv.as_mv.col, 1);
+}
+
+TEST(TplModelTest, ComputeMVBitsTest) {
+ TplDepFrame tpl_frame;
+ tpl_frame.is_valid = true;
+ tpl_frame.mi_rows = 16;
+ tpl_frame.mi_cols = 16;
+ tpl_frame.stride = 24;
+ uint8_t right_shift = 2;
+ int step = 1 << right_shift;
+ // Test values for motion vectors.
+ int mv_vals_ordered[16] = { 1, 2, 3, 4, 5, 6, 7, 8,
+ 9, 10, 11, 12, 13, 14, 15, 16 };
+ int mv_vals[16] = { 1, 16, 2, 15, 3, 14, 4, 13, 5, 12, 6, 11, 7, 10, 8, 9 };
+ int index = 0;
+
+ // 16x16 blocks means we need to allocate a 100 size array.
+ // According to av1_tpl_ptr_pos:
+ // (row >> right_shift) * stride + (col >> right_shift)
+ // (16 >> 2) * 24 + (16 >> 2) = 100
+ TplDepStats stats_buf[100];
+ tpl_frame.tpl_stats_ptr = stats_buf;
+
+ for (int row = 0; row < tpl_frame.mi_rows; row += step) {
+ for (int col = 0; col < tpl_frame.mi_cols; col += step) {
+ TplDepStats tpl_stats;
+ tpl_stats.ref_frame_index[0] = 0;
+ int_mv mv;
+ mv.as_mv.row = mv_vals_ordered[index];
+ mv.as_mv.col = mv_vals_ordered[index];
+ index++;
+ tpl_stats.mv[0] = mv;
+ tpl_frame.tpl_stats_ptr[av1_tpl_ptr_pos(row, col, tpl_frame.stride,
+ right_shift)] = tpl_stats;
+ }
+ }
+
+ double result = av1_tpl_compute_frame_mv_entropy(&tpl_frame, right_shift);
+
+ // Expect the result to be low because the motion vectors are ordered.
+ // The estimation algorithm takes this into account and reduces the cost.
+ EXPECT_NEAR(result, 20, 5);
+
+ index = 0;
+ for (int row = 0; row < tpl_frame.mi_rows; row += step) {
+ for (int col = 0; col < tpl_frame.mi_cols; col += step) {
+ TplDepStats tpl_stats;
+ tpl_stats.ref_frame_index[0] = 0;
+ int_mv mv;
+ mv.as_mv.row = mv_vals[index];
+ mv.as_mv.col = mv_vals[index];
+ index++;
+ tpl_stats.mv[0] = mv;
+ tpl_frame.tpl_stats_ptr[av1_tpl_ptr_pos(row, col, tpl_frame.stride,
+ right_shift)] = tpl_stats;
+ }
+ }
+
+ result = av1_tpl_compute_frame_mv_entropy(&tpl_frame, right_shift);
+
+ // Expect the result to be higher because the vectors are not ordered.
+ // Neighboring vectors will have different values, increasing the cost.
+ EXPECT_NEAR(result, 70, 5);
+}
+#if CONFIG_BITRATE_ACCURACY
+
+TEST(TplModelTest, VbrRcInfoSetGopBitBudget) {
+ VBR_RATECTRL_INFO vbr_rc_info;
+ const double total_bit_budget = 2000;
+ const int show_frame_count = 8;
+ const int gop_show_frame_count = 4;
+ av1_vbr_rc_init(&vbr_rc_info, total_bit_budget, show_frame_count);
+ av1_vbr_rc_set_gop_bit_budget(&vbr_rc_info, gop_show_frame_count);
+ EXPECT_NEAR(vbr_rc_info.gop_bit_budget, 1000, epsilon);
+}
+
+void init_toy_gf_group(GF_GROUP *gf_group) {
+ av1_zero(*gf_group);
+ gf_group->size = 4;
+ const FRAME_UPDATE_TYPE update_type[4] = { KF_UPDATE, ARF_UPDATE,
+ INTNL_ARF_UPDATE, LF_UPDATE };
+ for (int i = 0; i < gf_group->size; ++i) {
+ gf_group->update_type[i] = update_type[i];
+ }
+}
+
+void init_toy_vbr_rc_info(VBR_RATECTRL_INFO *vbr_rc_info, int gop_size) {
+ int total_bit_budget = 2000;
+ int show_frame_count = 8;
+ av1_vbr_rc_init(vbr_rc_info, total_bit_budget, show_frame_count);
+
+ for (int i = 0; i < gop_size; ++i) {
+ vbr_rc_info->qstep_ratio_list[i] = 1;
+ }
+}
+
+void init_toy_tpl_txfm_stats(std::vector<TplTxfmStats> *stats_list) {
+ for (size_t i = 0; i < stats_list->size(); i++) {
+ TplTxfmStats *txfm_stats = &stats_list->at(i);
+ av1_init_tpl_txfm_stats(txfm_stats);
+ txfm_stats->txfm_block_count = 8;
+ for (int j = 0; j < txfm_stats->coeff_num; j++) {
+ txfm_stats->abs_coeff_sum[j] = 1000 + j;
+ }
+ av1_tpl_txfm_stats_update_abs_coeff_mean(txfm_stats);
+ }
+}
+
+/*
+ * Helper method to brute-force search for the closest q_index
+ * that achieves the specified bit budget.
+ */
+int find_gop_q_iterative(double bit_budget, aom_bit_depth_t bit_depth,
+ const double *update_type_scale_factors,
+ int frame_count,
+ const FRAME_UPDATE_TYPE *update_type_list,
+ const double *qstep_ratio_list,
+ const TplTxfmStats *stats_list, int *q_index_list,
+ double *estimated_bitrate_byframe) {
+ int best_q = 255;
+ double curr_estimate = av1_vbr_rc_info_estimate_gop_bitrate(
+ best_q, bit_depth, update_type_scale_factors, frame_count,
+ update_type_list, qstep_ratio_list, stats_list, q_index_list,
+ estimated_bitrate_byframe);
+ double min_bits_diff = fabs(curr_estimate - bit_budget);
+ // Start at q = 254 because we already have an estimate for q = 255.
+ for (int q = 254; q >= 0; q--) {
+ curr_estimate = av1_vbr_rc_info_estimate_gop_bitrate(
+ q, bit_depth, update_type_scale_factors, frame_count, update_type_list,
+ qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe);
+ double bits_diff = fabs(curr_estimate - bit_budget);
+ if (bits_diff <= min_bits_diff) {
+ min_bits_diff = bits_diff;
+ best_q = q;
+ }
+ }
+ return best_q;
+}
+
+TEST(TplModelTest, EstimateFrameRateTest) {
+ GF_GROUP gf_group;
+ init_toy_gf_group(&gf_group);
+
+ VBR_RATECTRL_INFO vbr_rc_info;
+ init_toy_vbr_rc_info(&vbr_rc_info, gf_group.size);
+
+ std::vector<TplTxfmStats> stats_list(gf_group.size);
+ init_toy_tpl_txfm_stats(&stats_list);
+
+ std::vector<double> est_bitrate_list(gf_group.size);
+ init_toy_tpl_txfm_stats(&stats_list);
+ const aom_bit_depth_t bit_depth = AOM_BITS_8;
+
+ const int q = 125;
+
+ // Case1: all scale factors are 0
+ double scale_factors[FRAME_UPDATE_TYPES] = { 0 };
+ double estimate = av1_vbr_rc_info_estimate_gop_bitrate(
+ q, bit_depth, scale_factors, gf_group.size, gf_group.update_type,
+ vbr_rc_info.qstep_ratio_list, stats_list.data(), vbr_rc_info.q_index_list,
+ est_bitrate_list.data());
+ EXPECT_NEAR(estimate, 0, epsilon);
+
+ // Case2: all scale factors are 1
+ for (int i = 0; i < FRAME_UPDATE_TYPES; i++) {
+ scale_factors[i] = 1;
+ }
+ estimate = av1_vbr_rc_info_estimate_gop_bitrate(
+ q, bit_depth, scale_factors, gf_group.size, gf_group.update_type,
+ vbr_rc_info.qstep_ratio_list, stats_list.data(), vbr_rc_info.q_index_list,
+ est_bitrate_list.data());
+ double ref_estimate = 0;
+ for (int i = 0; i < gf_group.size; i++) {
+ ref_estimate += est_bitrate_list[i];
+ }
+ EXPECT_NEAR(estimate, ref_estimate, epsilon);
+
+ // Case3: Key frame scale factor is 0 and others are 1
+ for (int i = 0; i < FRAME_UPDATE_TYPES; i++) {
+ if (i == KF_UPDATE) {
+ scale_factors[i] = 0;
+ } else {
+ scale_factors[i] = 1;
+ }
+ }
+ estimate = av1_vbr_rc_info_estimate_gop_bitrate(
+ q, bit_depth, scale_factors, gf_group.size, gf_group.update_type,
+ vbr_rc_info.qstep_ratio_list, stats_list.data(), vbr_rc_info.q_index_list,
+ est_bitrate_list.data());
+ ref_estimate = 0;
+ for (int i = 0; i < gf_group.size; i++) {
+ if (gf_group.update_type[i] != KF_UPDATE) {
+ ref_estimate += est_bitrate_list[i];
+ }
+ }
+ EXPECT_NEAR(estimate, ref_estimate, epsilon);
+}
+
+TEST(TplModelTest, VbrRcInfoEstimateBaseQTest) {
+ GF_GROUP gf_group;
+ init_toy_gf_group(&gf_group);
+
+ VBR_RATECTRL_INFO vbr_rc_info;
+ init_toy_vbr_rc_info(&vbr_rc_info, gf_group.size);
+
+ std::vector<TplTxfmStats> stats_list(gf_group.size);
+ init_toy_tpl_txfm_stats(&stats_list);
+ const aom_bit_depth_t bit_depth = AOM_BITS_8;
+
+ // Test multiple bit budgets.
+ const std::vector<double> bit_budgets = { 0, 2470, 19200, 30750,
+ 41315, 65017, DBL_MAX };
+
+ for (double bit_budget : bit_budgets) {
+ // Binary search method to find the optimal q.
+ const int base_q = av1_vbr_rc_info_estimate_base_q(
+ bit_budget, bit_depth, vbr_rc_info.scale_factors, gf_group.size,
+ gf_group.update_type, vbr_rc_info.qstep_ratio_list, stats_list.data(),
+ vbr_rc_info.q_index_list, nullptr);
+ const int ref_base_q = find_gop_q_iterative(
+ bit_budget, bit_depth, vbr_rc_info.scale_factors, gf_group.size,
+ gf_group.update_type, vbr_rc_info.qstep_ratio_list, stats_list.data(),
+ vbr_rc_info.q_index_list, nullptr);
+ if (bit_budget == 0) {
+ EXPECT_EQ(base_q, 255);
+ } else if (bit_budget == DBL_MAX) {
+ EXPECT_EQ(base_q, 0);
+ }
+ EXPECT_EQ(base_q, ref_base_q);
+ }
+}
+#endif // CONFIG_BITRATE_ACCURACY
+
+} // namespace