summaryrefslogtreecommitdiffstats
path: root/third_party/aom/test/tpl_model_test.cc
blob: 91eb5e94d38ca79e3e6a28b9c5344246364ec33f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
/*
 * Copyright (c) 2021, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <cstdlib>
#include <memory>
#include <new>
#include <vector>

#include "av1/encoder/cost.h"
#include "av1/encoder/tpl_model.h"
#include "av1/encoder/encoder.h"
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"

namespace {

#if CONFIG_BITRATE_ACCURACY
constexpr double epsilon = 0.0000001;
#endif

double laplace_prob(double q_step, double b, double zero_bin_ratio,
                    int qcoeff) {
  int abs_qcoeff = abs(qcoeff);
  double z0 = fmax(exp(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON);
  if (abs_qcoeff == 0) {
    double p0 = 1 - z0;
    return p0;
  } else {
    assert(abs_qcoeff > 0);
    double z = fmax(exp(-q_step / b), TPL_EPSILON);
    double p = z0 / 2 * (1 - z) * pow(z, abs_qcoeff - 1);
    return p;
  }
}
TEST(TplModelTest, ExponentialEntropyBoundaryTest1) {
  double b = 0;
  double q_step = 1;
  double entropy = av1_exponential_entropy(q_step, b);
  EXPECT_NEAR(entropy, 0, 0.00001);
}

TEST(TplModelTest, TransformCoeffEntropyTest1) {
  // Check the consistency between av1_estimate_coeff_entropy() and
  // laplace_prob()
  double b = 1;
  double q_step = 1;
  double zero_bin_ratio = 2;
  for (int qcoeff = -256; qcoeff < 256; ++qcoeff) {
    double rate = av1_estimate_coeff_entropy(q_step, b, zero_bin_ratio, qcoeff);
    double prob = laplace_prob(q_step, b, zero_bin_ratio, qcoeff);
    double ref_rate = -log2(prob);
    EXPECT_DOUBLE_EQ(rate, ref_rate);
  }
}

TEST(TplModelTest, TransformCoeffEntropyTest2) {
  // Check the consistency between av1_estimate_coeff_entropy(), laplace_prob()
  // and av1_laplace_entropy()
  double b = 1;
  double q_step = 1;
  double zero_bin_ratio = 2;
  double est_expected_rate = 0;
  for (int qcoeff = -20; qcoeff < 20; ++qcoeff) {
    double rate = av1_estimate_coeff_entropy(q_step, b, zero_bin_ratio, qcoeff);
    double prob = laplace_prob(q_step, b, zero_bin_ratio, qcoeff);
    est_expected_rate += prob * rate;
  }
  double expected_rate = av1_laplace_entropy(q_step, b, zero_bin_ratio);
  EXPECT_NEAR(expected_rate, est_expected_rate, 0.001);
}

TEST(TplModelTest, InitTplStats1) {
  // We use heap allocation instead of stack allocation here to avoid
  // -Wstack-usage warning.
  std::unique_ptr<TplParams> tpl_data(new (std::nothrow) TplParams);
  ASSERT_NE(tpl_data, nullptr);
  av1_zero(*tpl_data);
  tpl_data->ready = 1;
  EXPECT_EQ(sizeof(tpl_data->tpl_stats_buffer),
            MAX_LENGTH_TPL_FRAME_STATS * sizeof(tpl_data->tpl_stats_buffer[0]));
  for (int i = 0; i < MAX_LENGTH_TPL_FRAME_STATS; ++i) {
    // Set it to a random non-zero number
    tpl_data->tpl_stats_buffer[i].is_valid = i + 1;
  }
  av1_init_tpl_stats(tpl_data.get());
  EXPECT_EQ(tpl_data->ready, 0);
  for (int i = 0; i < MAX_LENGTH_TPL_FRAME_STATS; ++i) {
    EXPECT_EQ(tpl_data->tpl_stats_buffer[i].is_valid, 0);
  }
}

TEST(TplModelTest, DeltaRateCostZeroFlow) {
  // When srcrf_dist equal to recrf_dist, av1_delta_rate_cost should return 0
  int64_t srcrf_dist = 256;
  int64_t recrf_dist = 256;
  int64_t delta_rate = 512;
  int pixel_num = 256;
  int64_t rate_cost =
      av1_delta_rate_cost(delta_rate, recrf_dist, srcrf_dist, pixel_num);
  EXPECT_EQ(rate_cost, 0);
}

// a reference function of av1_delta_rate_cost() with delta_rate using bit as
// basic unit
double ref_delta_rate_cost(int64_t delta_rate, double src_rec_ratio,
                           int pixel_count) {
  assert(src_rec_ratio <= 1 && src_rec_ratio >= 0);
  double bits_per_pixel = (double)delta_rate / pixel_count;
  double p = pow(2, bits_per_pixel);
  double flow_rate_per_pixel =
      sqrt(p * p / (src_rec_ratio * p * p + (1 - src_rec_ratio)));
  double rate_cost = pixel_count * log2(flow_rate_per_pixel);
  return rate_cost;
}

TEST(TplModelTest, DeltaRateCostReference) {
  const int64_t scale = TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT;
  std::vector<int64_t> srcrf_dist_arr = { 256, 257, 312 };
  std::vector<int64_t> recrf_dist_arr = { 512, 288, 620 };
  std::vector<int64_t> delta_rate_arr = { 10, 278, 100 };
  for (size_t t = 0; t < srcrf_dist_arr.size(); ++t) {
    int64_t srcrf_dist = srcrf_dist_arr[t];
    int64_t recrf_dist = recrf_dist_arr[t];
    int64_t delta_rate = delta_rate_arr[t];
    int64_t scaled_delta_rate = delta_rate << scale;
    int pixel_count = 256;
    int64_t rate_cost = av1_delta_rate_cost(scaled_delta_rate, recrf_dist,
                                            srcrf_dist, pixel_count);
    rate_cost >>= scale;
    double src_rec_ratio = (double)srcrf_dist / recrf_dist;
    double ref_rate_cost =
        ref_delta_rate_cost(delta_rate, src_rec_ratio, pixel_count);
    EXPECT_NEAR((double)rate_cost, ref_rate_cost, 1);
  }
}

TEST(TplModelTest, GetOverlapAreaHasOverlap) {
  // The block a's area is [10, 17) x [18, 24).
  // The block b's area is [8, 15) x [17, 23).
  // The overlapping area between block a and block b is [10, 15) x [18, 23).
  // Therefore, the size of the area is (15 - 10) * (23 - 18) = 25.
  int row_a = 10;
  int col_a = 18;
  int row_b = 8;
  int col_b = 17;
  int height = 7;
  int width = 6;
  int overlap_area =
      av1_get_overlap_area(row_a, col_a, row_b, col_b, width, height);
  EXPECT_EQ(overlap_area, 25);
}

TEST(TplModelTest, GetOverlapAreaNoOverlap) {
  // The block a's area is [10, 14) x [18, 22).
  // The block b's area is [5, 9) x [5, 9).
  // Threre is no overlapping area between block a and block b.
  // Therefore, the return value should be zero.
  int row_a = 10;
  int col_a = 18;
  int row_b = 5;
  int col_b = 5;
  int height = 4;
  int width = 4;
  int overlap_area =
      av1_get_overlap_area(row_a, col_a, row_b, col_b, width, height);
  EXPECT_EQ(overlap_area, 0);
}

TEST(TplModelTest, GetQIndexFromQstepRatio) {
  const aom_bit_depth_t bit_depth = AOM_BITS_8;
  // When qstep_ratio is 1, the output q_index should be equal to leaf_qindex.
  double qstep_ratio = 1.0;
  for (int leaf_qindex = 1; leaf_qindex <= 255; ++leaf_qindex) {
    const int q_index =
        av1_get_q_index_from_qstep_ratio(leaf_qindex, qstep_ratio, bit_depth);
    EXPECT_EQ(q_index, leaf_qindex);
  }

  // When qstep_ratio is very low, the output q_index should be 1.
  qstep_ratio = 0.0001;
  for (int leaf_qindex = 1; leaf_qindex <= 255; ++leaf_qindex) {
    const int q_index =
        av1_get_q_index_from_qstep_ratio(leaf_qindex, qstep_ratio, bit_depth);
    EXPECT_EQ(q_index, 0);
  }
}

TEST(TplModelTest, TxfmStatsInitTest) {
  TplTxfmStats tpl_txfm_stats;
  av1_init_tpl_txfm_stats(&tpl_txfm_stats);
  EXPECT_EQ(tpl_txfm_stats.coeff_num, 256);
  EXPECT_EQ(tpl_txfm_stats.txfm_block_count, 0);
  for (int i = 0; i < tpl_txfm_stats.coeff_num; ++i) {
    EXPECT_DOUBLE_EQ(tpl_txfm_stats.abs_coeff_sum[i], 0);
  }
}

#if CONFIG_BITRATE_ACCURACY
TEST(TplModelTest, TxfmStatsAccumulateTest) {
  TplTxfmStats sub_stats;
  av1_init_tpl_txfm_stats(&sub_stats);
  sub_stats.txfm_block_count = 17;
  for (int i = 0; i < sub_stats.coeff_num; ++i) {
    sub_stats.abs_coeff_sum[i] = i;
  }

  TplTxfmStats accumulated_stats;
  av1_init_tpl_txfm_stats(&accumulated_stats);
  accumulated_stats.txfm_block_count = 13;
  for (int i = 0; i < accumulated_stats.coeff_num; ++i) {
    accumulated_stats.abs_coeff_sum[i] = 5 * i;
  }

  av1_accumulate_tpl_txfm_stats(&sub_stats, &accumulated_stats);
  EXPECT_DOUBLE_EQ(accumulated_stats.txfm_block_count, 30);
  for (int i = 0; i < accumulated_stats.coeff_num; ++i) {
    EXPECT_DOUBLE_EQ(accumulated_stats.abs_coeff_sum[i], 6 * i);
  }
}

TEST(TplModelTest, TxfmStatsRecordTest) {
  TplTxfmStats stats1;
  TplTxfmStats stats2;
  av1_init_tpl_txfm_stats(&stats1);
  av1_init_tpl_txfm_stats(&stats2);

  tran_low_t coeff[256];
  for (int i = 0; i < 256; ++i) {
    coeff[i] = i;
  }
  av1_record_tpl_txfm_block(&stats1, coeff);
  EXPECT_EQ(stats1.txfm_block_count, 1);

  // we record the same transform block twice for testing purpose
  av1_record_tpl_txfm_block(&stats2, coeff);
  av1_record_tpl_txfm_block(&stats2, coeff);
  EXPECT_EQ(stats2.txfm_block_count, 2);

  EXPECT_EQ(stats1.coeff_num, 256);
  EXPECT_EQ(stats2.coeff_num, 256);
  for (int i = 0; i < 256; ++i) {
    EXPECT_DOUBLE_EQ(stats2.abs_coeff_sum[i], 2 * stats1.abs_coeff_sum[i]);
  }
}
#endif  // CONFIG_BITRATE_ACCURACY

TEST(TplModelTest, ComputeMVDifferenceTest) {
  TplDepFrame tpl_frame_small;
  tpl_frame_small.is_valid = true;
  tpl_frame_small.mi_rows = 4;
  tpl_frame_small.mi_cols = 4;
  tpl_frame_small.stride = 1;
  uint8_t right_shift_small = 1;
  int step_small = 1 << right_shift_small;

  // Test values for motion vectors.
  int mv_vals_small[4] = { 1, 2, 3, 4 };
  int index = 0;

  // 4x4 blocks means we need to allocate a 4 size array.
  // According to av1_tpl_ptr_pos:
  // (row >> right_shift) * stride + (col >> right_shift)
  // (4 >> 1) * 1 + (4 >> 1) = 4
  TplDepStats stats_buf_small[4];
  tpl_frame_small.tpl_stats_ptr = stats_buf_small;

  for (int row = 0; row < tpl_frame_small.mi_rows; row += step_small) {
    for (int col = 0; col < tpl_frame_small.mi_cols; col += step_small) {
      TplDepStats tpl_stats;
      tpl_stats.ref_frame_index[0] = 0;
      int_mv mv;
      mv.as_mv.row = mv_vals_small[index];
      mv.as_mv.col = mv_vals_small[index];
      index++;
      tpl_stats.mv[0] = mv;
      tpl_frame_small.tpl_stats_ptr[av1_tpl_ptr_pos(
          row, col, tpl_frame_small.stride, right_shift_small)] = tpl_stats;
    }
  }

  int_mv result_mv =
      av1_compute_mv_difference(&tpl_frame_small, 1, 1, step_small,
                                tpl_frame_small.stride, right_shift_small);

  // Expect the result to be exactly equal to 1 because this is the difference
  // between neighboring motion vectors in this instance.
  EXPECT_EQ(result_mv.as_mv.row, 1);
  EXPECT_EQ(result_mv.as_mv.col, 1);
}

TEST(TplModelTest, ComputeMVBitsTest) {
  TplDepFrame tpl_frame;
  tpl_frame.is_valid = true;
  tpl_frame.mi_rows = 16;
  tpl_frame.mi_cols = 16;
  tpl_frame.stride = 24;
  uint8_t right_shift = 2;
  int step = 1 << right_shift;
  // Test values for motion vectors.
  int mv_vals_ordered[16] = { 1, 2,  3,  4,  5,  6,  7,  8,
                              9, 10, 11, 12, 13, 14, 15, 16 };
  int mv_vals[16] = { 1, 16, 2, 15, 3, 14, 4, 13, 5, 12, 6, 11, 7, 10, 8, 9 };
  int index = 0;

  // 16x16 blocks means we need to allocate a 100 size array.
  // According to av1_tpl_ptr_pos:
  // (row >> right_shift) * stride + (col >> right_shift)
  // (16 >> 2) * 24 + (16 >> 2) = 100
  TplDepStats stats_buf[100];
  tpl_frame.tpl_stats_ptr = stats_buf;

  for (int row = 0; row < tpl_frame.mi_rows; row += step) {
    for (int col = 0; col < tpl_frame.mi_cols; col += step) {
      TplDepStats tpl_stats;
      tpl_stats.ref_frame_index[0] = 0;
      int_mv mv;
      mv.as_mv.row = mv_vals_ordered[index];
      mv.as_mv.col = mv_vals_ordered[index];
      index++;
      tpl_stats.mv[0] = mv;
      tpl_frame.tpl_stats_ptr[av1_tpl_ptr_pos(row, col, tpl_frame.stride,
                                              right_shift)] = tpl_stats;
    }
  }

  double result = av1_tpl_compute_frame_mv_entropy(&tpl_frame, right_shift);

  // Expect the result to be low because the motion vectors are ordered.
  // The estimation algorithm takes this into account and reduces the cost.
  EXPECT_NEAR(result, 20, 5);

  index = 0;
  for (int row = 0; row < tpl_frame.mi_rows; row += step) {
    for (int col = 0; col < tpl_frame.mi_cols; col += step) {
      TplDepStats tpl_stats;
      tpl_stats.ref_frame_index[0] = 0;
      int_mv mv;
      mv.as_mv.row = mv_vals[index];
      mv.as_mv.col = mv_vals[index];
      index++;
      tpl_stats.mv[0] = mv;
      tpl_frame.tpl_stats_ptr[av1_tpl_ptr_pos(row, col, tpl_frame.stride,
                                              right_shift)] = tpl_stats;
    }
  }

  result = av1_tpl_compute_frame_mv_entropy(&tpl_frame, right_shift);

  // Expect the result to be higher because the vectors are not ordered.
  // Neighboring vectors will have different values, increasing the cost.
  EXPECT_NEAR(result, 70, 5);
}
#if CONFIG_BITRATE_ACCURACY

TEST(TplModelTest, VbrRcInfoSetGopBitBudget) {
  VBR_RATECTRL_INFO vbr_rc_info;
  const double total_bit_budget = 2000;
  const int show_frame_count = 8;
  const int gop_show_frame_count = 4;
  av1_vbr_rc_init(&vbr_rc_info, total_bit_budget, show_frame_count);
  av1_vbr_rc_set_gop_bit_budget(&vbr_rc_info, gop_show_frame_count);
  EXPECT_NEAR(vbr_rc_info.gop_bit_budget, 1000, epsilon);
}

void init_toy_gf_group(GF_GROUP *gf_group) {
  av1_zero(*gf_group);
  gf_group->size = 4;
  const FRAME_UPDATE_TYPE update_type[4] = { KF_UPDATE, ARF_UPDATE,
                                             INTNL_ARF_UPDATE, LF_UPDATE };
  for (int i = 0; i < gf_group->size; ++i) {
    gf_group->update_type[i] = update_type[i];
  }
}

void init_toy_vbr_rc_info(VBR_RATECTRL_INFO *vbr_rc_info, int gop_size) {
  int total_bit_budget = 2000;
  int show_frame_count = 8;
  av1_vbr_rc_init(vbr_rc_info, total_bit_budget, show_frame_count);

  for (int i = 0; i < gop_size; ++i) {
    vbr_rc_info->qstep_ratio_list[i] = 1;
  }
}

void init_toy_tpl_txfm_stats(std::vector<TplTxfmStats> *stats_list) {
  for (size_t i = 0; i < stats_list->size(); i++) {
    TplTxfmStats *txfm_stats = &stats_list->at(i);
    av1_init_tpl_txfm_stats(txfm_stats);
    txfm_stats->txfm_block_count = 8;
    for (int j = 0; j < txfm_stats->coeff_num; j++) {
      txfm_stats->abs_coeff_sum[j] = 1000 + j;
    }
    av1_tpl_txfm_stats_update_abs_coeff_mean(txfm_stats);
  }
}

/*
 * Helper method to brute-force search for the closest q_index
 * that achieves the specified bit budget.
 */
int find_gop_q_iterative(double bit_budget, aom_bit_depth_t bit_depth,
                         const double *update_type_scale_factors,
                         int frame_count,
                         const FRAME_UPDATE_TYPE *update_type_list,
                         const double *qstep_ratio_list,
                         const TplTxfmStats *stats_list, int *q_index_list,
                         double *estimated_bitrate_byframe) {
  int best_q = 255;
  double curr_estimate = av1_vbr_rc_info_estimate_gop_bitrate(
      best_q, bit_depth, update_type_scale_factors, frame_count,
      update_type_list, qstep_ratio_list, stats_list, q_index_list,
      estimated_bitrate_byframe);
  double min_bits_diff = fabs(curr_estimate - bit_budget);
  // Start at q = 254 because we already have an estimate for q = 255.
  for (int q = 254; q >= 0; q--) {
    curr_estimate = av1_vbr_rc_info_estimate_gop_bitrate(
        q, bit_depth, update_type_scale_factors, frame_count, update_type_list,
        qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe);
    double bits_diff = fabs(curr_estimate - bit_budget);
    if (bits_diff <= min_bits_diff) {
      min_bits_diff = bits_diff;
      best_q = q;
    }
  }
  return best_q;
}

TEST(TplModelTest, EstimateFrameRateTest) {
  GF_GROUP gf_group;
  init_toy_gf_group(&gf_group);

  VBR_RATECTRL_INFO vbr_rc_info;
  init_toy_vbr_rc_info(&vbr_rc_info, gf_group.size);

  std::vector<TplTxfmStats> stats_list(gf_group.size);
  init_toy_tpl_txfm_stats(&stats_list);

  std::vector<double> est_bitrate_list(gf_group.size);
  init_toy_tpl_txfm_stats(&stats_list);
  const aom_bit_depth_t bit_depth = AOM_BITS_8;

  const int q = 125;

  // Case1: all scale factors are 0
  double scale_factors[FRAME_UPDATE_TYPES] = { 0 };
  double estimate = av1_vbr_rc_info_estimate_gop_bitrate(
      q, bit_depth, scale_factors, gf_group.size, gf_group.update_type,
      vbr_rc_info.qstep_ratio_list, stats_list.data(), vbr_rc_info.q_index_list,
      est_bitrate_list.data());
  EXPECT_NEAR(estimate, 0, epsilon);

  // Case2: all scale factors are 1
  for (int i = 0; i < FRAME_UPDATE_TYPES; i++) {
    scale_factors[i] = 1;
  }
  estimate = av1_vbr_rc_info_estimate_gop_bitrate(
      q, bit_depth, scale_factors, gf_group.size, gf_group.update_type,
      vbr_rc_info.qstep_ratio_list, stats_list.data(), vbr_rc_info.q_index_list,
      est_bitrate_list.data());
  double ref_estimate = 0;
  for (int i = 0; i < gf_group.size; i++) {
    ref_estimate += est_bitrate_list[i];
  }
  EXPECT_NEAR(estimate, ref_estimate, epsilon);

  // Case3: Key frame scale factor is 0 and others are 1
  for (int i = 0; i < FRAME_UPDATE_TYPES; i++) {
    if (i == KF_UPDATE) {
      scale_factors[i] = 0;
    } else {
      scale_factors[i] = 1;
    }
  }
  estimate = av1_vbr_rc_info_estimate_gop_bitrate(
      q, bit_depth, scale_factors, gf_group.size, gf_group.update_type,
      vbr_rc_info.qstep_ratio_list, stats_list.data(), vbr_rc_info.q_index_list,
      est_bitrate_list.data());
  ref_estimate = 0;
  for (int i = 0; i < gf_group.size; i++) {
    if (gf_group.update_type[i] != KF_UPDATE) {
      ref_estimate += est_bitrate_list[i];
    }
  }
  EXPECT_NEAR(estimate, ref_estimate, epsilon);
}

TEST(TplModelTest, VbrRcInfoEstimateBaseQTest) {
  GF_GROUP gf_group;
  init_toy_gf_group(&gf_group);

  VBR_RATECTRL_INFO vbr_rc_info;
  init_toy_vbr_rc_info(&vbr_rc_info, gf_group.size);

  std::vector<TplTxfmStats> stats_list(gf_group.size);
  init_toy_tpl_txfm_stats(&stats_list);
  const aom_bit_depth_t bit_depth = AOM_BITS_8;

  // Test multiple bit budgets.
  const std::vector<double> bit_budgets = { 0,     2470,  19200,  30750,
                                            41315, 65017, DBL_MAX };

  for (double bit_budget : bit_budgets) {
    // Binary search method to find the optimal q.
    const int base_q = av1_vbr_rc_info_estimate_base_q(
        bit_budget, bit_depth, vbr_rc_info.scale_factors, gf_group.size,
        gf_group.update_type, vbr_rc_info.qstep_ratio_list, stats_list.data(),
        vbr_rc_info.q_index_list, nullptr);
    const int ref_base_q = find_gop_q_iterative(
        bit_budget, bit_depth, vbr_rc_info.scale_factors, gf_group.size,
        gf_group.update_type, vbr_rc_info.qstep_ratio_list, stats_list.data(),
        vbr_rc_info.q_index_list, nullptr);
    if (bit_budget == 0) {
      EXPECT_EQ(base_q, 255);
    } else if (bit_budget == DBL_MAX) {
      EXPECT_EQ(base_q, 0);
    }
    EXPECT_EQ(base_q, ref_base_q);
  }
}
#endif  // CONFIG_BITRATE_ACCURACY

}  // namespace