summaryrefslogtreecommitdiffstats
path: root/security/nss/lib/freebl/verified/Hacl_Curve25519_64.c
blob: 6dbdf736f9f7161a48b280caabcc399a62e22903 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
/* MIT License
 *
 * Copyright (c) 2016-2022 INRIA, CMU and Microsoft Corporation
 * Copyright (c) 2022-2023 HACL* Contributors
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "Hacl_Curve25519_64.h"

#include "internal/Vale.h"
#include "internal/Hacl_Krmllib.h"
#include "config.h"
#include "curve25519-inline.h"

static inline void
add_scalar0(uint64_t *out, uint64_t *f1, uint64_t f2)
{
#if HACL_CAN_COMPILE_INLINE_ASM
    add_scalar(out, f1, f2);
#else
    uint64_t uu____0 = add_scalar_e(out, f1, f2);
#endif
}

static inline void
fadd0(uint64_t *out, uint64_t *f1, uint64_t *f2)
{
#if HACL_CAN_COMPILE_INLINE_ASM
    fadd(out, f1, f2);
#else
    uint64_t uu____0 = fadd_e(out, f1, f2);
#endif
}

static inline void
fsub0(uint64_t *out, uint64_t *f1, uint64_t *f2)
{
#if HACL_CAN_COMPILE_INLINE_ASM
    fsub(out, f1, f2);
#else
    uint64_t uu____0 = fsub_e(out, f1, f2);
#endif
}

static inline void
fmul0(uint64_t *out, uint64_t *f1, uint64_t *f2, uint64_t *tmp)
{
#if HACL_CAN_COMPILE_INLINE_ASM
    fmul(out, f1, f2, tmp);
#else
    uint64_t uu____0 = fmul_e(tmp, f1, out, f2);
#endif
}

static inline void
fmul20(uint64_t *out, uint64_t *f1, uint64_t *f2, uint64_t *tmp)
{
#if HACL_CAN_COMPILE_INLINE_ASM
    fmul2(out, f1, f2, tmp);
#else
    uint64_t uu____0 = fmul2_e(tmp, f1, out, f2);
#endif
}

static inline void
fmul_scalar0(uint64_t *out, uint64_t *f1, uint64_t f2)
{
#if HACL_CAN_COMPILE_INLINE_ASM
    fmul_scalar(out, f1, f2);
#else
    uint64_t uu____0 = fmul_scalar_e(out, f1, f2);
#endif
}

static inline void
fsqr0(uint64_t *out, uint64_t *f1, uint64_t *tmp)
{
#if HACL_CAN_COMPILE_INLINE_ASM
    fsqr(out, f1, tmp);
#else
    uint64_t uu____0 = fsqr_e(tmp, f1, out);
#endif
}

static inline void
fsqr20(uint64_t *out, uint64_t *f, uint64_t *tmp)
{
#if HACL_CAN_COMPILE_INLINE_ASM
    fsqr2(out, f, tmp);
#else
    uint64_t uu____0 = fsqr2_e(tmp, f, out);
#endif
}

static inline void
cswap20(uint64_t bit, uint64_t *p1, uint64_t *p2)
{
#if HACL_CAN_COMPILE_INLINE_ASM
    cswap2(bit, p1, p2);
#else
    uint64_t uu____0 = cswap2_e(bit, p1, p2);
#endif
}

static const uint8_t g25519[32U] = { (uint8_t)9U };

static void
point_add_and_double(uint64_t *q, uint64_t *p01_tmp1, uint64_t *tmp2)
{
    uint64_t *nq = p01_tmp1;
    uint64_t *nq_p1 = p01_tmp1 + (uint32_t)8U;
    uint64_t *tmp1 = p01_tmp1 + (uint32_t)16U;
    uint64_t *x1 = q;
    uint64_t *x2 = nq;
    uint64_t *z2 = nq + (uint32_t)4U;
    uint64_t *z3 = nq_p1 + (uint32_t)4U;
    uint64_t *a = tmp1;
    uint64_t *b = tmp1 + (uint32_t)4U;
    uint64_t *ab = tmp1;
    uint64_t *dc = tmp1 + (uint32_t)8U;
    fadd0(a, x2, z2);
    fsub0(b, x2, z2);
    uint64_t *x3 = nq_p1;
    uint64_t *z31 = nq_p1 + (uint32_t)4U;
    uint64_t *d0 = dc;
    uint64_t *c0 = dc + (uint32_t)4U;
    fadd0(c0, x3, z31);
    fsub0(d0, x3, z31);
    fmul20(dc, dc, ab, tmp2);
    fadd0(x3, d0, c0);
    fsub0(z31, d0, c0);
    uint64_t *a1 = tmp1;
    uint64_t *b1 = tmp1 + (uint32_t)4U;
    uint64_t *d = tmp1 + (uint32_t)8U;
    uint64_t *c = tmp1 + (uint32_t)12U;
    uint64_t *ab1 = tmp1;
    uint64_t *dc1 = tmp1 + (uint32_t)8U;
    fsqr20(dc1, ab1, tmp2);
    fsqr20(nq_p1, nq_p1, tmp2);
    a1[0U] = c[0U];
    a1[1U] = c[1U];
    a1[2U] = c[2U];
    a1[3U] = c[3U];
    fsub0(c, d, c);
    fmul_scalar0(b1, c, (uint64_t)121665U);
    fadd0(b1, b1, d);
    fmul20(nq, dc1, ab1, tmp2);
    fmul0(z3, z3, x1, tmp2);
}

static void
point_double(uint64_t *nq, uint64_t *tmp1, uint64_t *tmp2)
{
    uint64_t *x2 = nq;
    uint64_t *z2 = nq + (uint32_t)4U;
    uint64_t *a = tmp1;
    uint64_t *b = tmp1 + (uint32_t)4U;
    uint64_t *d = tmp1 + (uint32_t)8U;
    uint64_t *c = tmp1 + (uint32_t)12U;
    uint64_t *ab = tmp1;
    uint64_t *dc = tmp1 + (uint32_t)8U;
    fadd0(a, x2, z2);
    fsub0(b, x2, z2);
    fsqr20(dc, ab, tmp2);
    a[0U] = c[0U];
    a[1U] = c[1U];
    a[2U] = c[2U];
    a[3U] = c[3U];
    fsub0(c, d, c);
    fmul_scalar0(b, c, (uint64_t)121665U);
    fadd0(b, b, d);
    fmul20(nq, dc, ab, tmp2);
}

static void
montgomery_ladder(uint64_t *out, uint8_t *key, uint64_t *init)
{
    uint64_t tmp2[16U] = { 0U };
    uint64_t p01_tmp1_swap[33U] = { 0U };
    uint64_t *p0 = p01_tmp1_swap;
    uint64_t *p01 = p01_tmp1_swap;
    uint64_t *p03 = p01;
    uint64_t *p11 = p01 + (uint32_t)8U;
    memcpy(p11, init, (uint32_t)8U * sizeof(uint64_t));
    uint64_t *x0 = p03;
    uint64_t *z0 = p03 + (uint32_t)4U;
    x0[0U] = (uint64_t)1U;
    x0[1U] = (uint64_t)0U;
    x0[2U] = (uint64_t)0U;
    x0[3U] = (uint64_t)0U;
    z0[0U] = (uint64_t)0U;
    z0[1U] = (uint64_t)0U;
    z0[2U] = (uint64_t)0U;
    z0[3U] = (uint64_t)0U;
    uint64_t *p01_tmp1 = p01_tmp1_swap;
    uint64_t *p01_tmp11 = p01_tmp1_swap;
    uint64_t *nq1 = p01_tmp1_swap;
    uint64_t *nq_p11 = p01_tmp1_swap + (uint32_t)8U;
    uint64_t *swap = p01_tmp1_swap + (uint32_t)32U;
    cswap20((uint64_t)1U, nq1, nq_p11);
    point_add_and_double(init, p01_tmp11, tmp2);
    swap[0U] = (uint64_t)1U;
    for (uint32_t i = (uint32_t)0U; i < (uint32_t)251U; i++) {
        uint64_t *p01_tmp12 = p01_tmp1_swap;
        uint64_t *swap1 = p01_tmp1_swap + (uint32_t)32U;
        uint64_t *nq2 = p01_tmp12;
        uint64_t *nq_p12 = p01_tmp12 + (uint32_t)8U;
        uint64_t
            bit =
                (uint64_t)(key[((uint32_t)253U - i) / (uint32_t)8U] >> ((uint32_t)253U - i) % (uint32_t)8U & (uint8_t)1U);
        uint64_t sw = swap1[0U] ^ bit;
        cswap20(sw, nq2, nq_p12);
        point_add_and_double(init, p01_tmp12, tmp2);
        swap1[0U] = bit;
    }
    uint64_t sw = swap[0U];
    cswap20(sw, nq1, nq_p11);
    uint64_t *nq10 = p01_tmp1;
    uint64_t *tmp1 = p01_tmp1 + (uint32_t)16U;
    point_double(nq10, tmp1, tmp2);
    point_double(nq10, tmp1, tmp2);
    point_double(nq10, tmp1, tmp2);
    memcpy(out, p0, (uint32_t)8U * sizeof(uint64_t));
}

static void
fsquare_times(uint64_t *o, uint64_t *inp, uint64_t *tmp, uint32_t n)
{
    fsqr0(o, inp, tmp);
    for (uint32_t i = (uint32_t)0U; i < n - (uint32_t)1U; i++) {
        fsqr0(o, o, tmp);
    }
}

static void
finv(uint64_t *o, uint64_t *i, uint64_t *tmp)
{
    uint64_t t1[16U] = { 0U };
    uint64_t *a1 = t1;
    uint64_t *b1 = t1 + (uint32_t)4U;
    uint64_t *t010 = t1 + (uint32_t)12U;
    uint64_t *tmp10 = tmp;
    fsquare_times(a1, i, tmp10, (uint32_t)1U);
    fsquare_times(t010, a1, tmp10, (uint32_t)2U);
    fmul0(b1, t010, i, tmp);
    fmul0(a1, b1, a1, tmp);
    fsquare_times(t010, a1, tmp10, (uint32_t)1U);
    fmul0(b1, t010, b1, tmp);
    fsquare_times(t010, b1, tmp10, (uint32_t)5U);
    fmul0(b1, t010, b1, tmp);
    uint64_t *b10 = t1 + (uint32_t)4U;
    uint64_t *c10 = t1 + (uint32_t)8U;
    uint64_t *t011 = t1 + (uint32_t)12U;
    uint64_t *tmp11 = tmp;
    fsquare_times(t011, b10, tmp11, (uint32_t)10U);
    fmul0(c10, t011, b10, tmp);
    fsquare_times(t011, c10, tmp11, (uint32_t)20U);
    fmul0(t011, t011, c10, tmp);
    fsquare_times(t011, t011, tmp11, (uint32_t)10U);
    fmul0(b10, t011, b10, tmp);
    fsquare_times(t011, b10, tmp11, (uint32_t)50U);
    fmul0(c10, t011, b10, tmp);
    uint64_t *b11 = t1 + (uint32_t)4U;
    uint64_t *c1 = t1 + (uint32_t)8U;
    uint64_t *t01 = t1 + (uint32_t)12U;
    uint64_t *tmp1 = tmp;
    fsquare_times(t01, c1, tmp1, (uint32_t)100U);
    fmul0(t01, t01, c1, tmp);
    fsquare_times(t01, t01, tmp1, (uint32_t)50U);
    fmul0(t01, t01, b11, tmp);
    fsquare_times(t01, t01, tmp1, (uint32_t)5U);
    uint64_t *a = t1;
    uint64_t *t0 = t1 + (uint32_t)12U;
    fmul0(o, t0, a, tmp);
}

static void
store_felem(uint64_t *b, uint64_t *f)
{
    uint64_t f30 = f[3U];
    uint64_t top_bit0 = f30 >> (uint32_t)63U;
    f[3U] = f30 & (uint64_t)0x7fffffffffffffffU;
    add_scalar0(f, f, (uint64_t)19U * top_bit0);
    uint64_t f31 = f[3U];
    uint64_t top_bit = f31 >> (uint32_t)63U;
    f[3U] = f31 & (uint64_t)0x7fffffffffffffffU;
    add_scalar0(f, f, (uint64_t)19U * top_bit);
    uint64_t f0 = f[0U];
    uint64_t f1 = f[1U];
    uint64_t f2 = f[2U];
    uint64_t f3 = f[3U];
    uint64_t m0 = FStar_UInt64_gte_mask(f0, (uint64_t)0xffffffffffffffedU);
    uint64_t m1 = FStar_UInt64_eq_mask(f1, (uint64_t)0xffffffffffffffffU);
    uint64_t m2 = FStar_UInt64_eq_mask(f2, (uint64_t)0xffffffffffffffffU);
    uint64_t m3 = FStar_UInt64_eq_mask(f3, (uint64_t)0x7fffffffffffffffU);
    uint64_t mask = ((m0 & m1) & m2) & m3;
    uint64_t f0_ = f0 - (mask & (uint64_t)0xffffffffffffffedU);
    uint64_t f1_ = f1 - (mask & (uint64_t)0xffffffffffffffffU);
    uint64_t f2_ = f2 - (mask & (uint64_t)0xffffffffffffffffU);
    uint64_t f3_ = f3 - (mask & (uint64_t)0x7fffffffffffffffU);
    uint64_t o0 = f0_;
    uint64_t o1 = f1_;
    uint64_t o2 = f2_;
    uint64_t o3 = f3_;
    b[0U] = o0;
    b[1U] = o1;
    b[2U] = o2;
    b[3U] = o3;
}

static void
encode_point(uint8_t *o, uint64_t *i)
{
    uint64_t *x = i;
    uint64_t *z = i + (uint32_t)4U;
    uint64_t tmp[4U] = { 0U };
    uint64_t u64s[4U] = { 0U };
    uint64_t tmp_w[16U] = { 0U };
    finv(tmp, z, tmp_w);
    fmul0(tmp, tmp, x, tmp_w);
    store_felem(u64s, tmp);
    KRML_MAYBE_FOR4(i0,
                    (uint32_t)0U,
                    (uint32_t)4U,
                    (uint32_t)1U,
                    store64_le(o + i0 * (uint32_t)8U, u64s[i0]););
}

/**
Compute the scalar multiple of a point.

@param out Pointer to 32 bytes of memory, allocated by the caller, where the resulting point is written to.
@param priv Pointer to 32 bytes of memory where the secret/private key is read from.
@param pub Pointer to 32 bytes of memory where the public point is read from.
*/
void
Hacl_Curve25519_64_scalarmult(uint8_t *out, uint8_t *priv, uint8_t *pub)
{
    uint64_t init[8U] = { 0U };
    uint64_t tmp[4U] = { 0U };
    KRML_MAYBE_FOR4(i,
                    (uint32_t)0U,
                    (uint32_t)4U,
                    (uint32_t)1U,
                    uint64_t *os = tmp;
                    uint8_t *bj = pub + i * (uint32_t)8U;
                    uint64_t u = load64_le(bj);
                    uint64_t r = u;
                    uint64_t x = r;
                    os[i] = x;);
    uint64_t tmp3 = tmp[3U];
    tmp[3U] = tmp3 & (uint64_t)0x7fffffffffffffffU;
    uint64_t *x = init;
    uint64_t *z = init + (uint32_t)4U;
    z[0U] = (uint64_t)1U;
    z[1U] = (uint64_t)0U;
    z[2U] = (uint64_t)0U;
    z[3U] = (uint64_t)0U;
    x[0U] = tmp[0U];
    x[1U] = tmp[1U];
    x[2U] = tmp[2U];
    x[3U] = tmp[3U];
    montgomery_ladder(init, priv, init);
    encode_point(out, init);
}

/**
Calculate a public point from a secret/private key.

This computes a scalar multiplication of the secret/private key with the curve's basepoint.

@param pub Pointer to 32 bytes of memory, allocated by the caller, where the resulting point is written to.
@param priv Pointer to 32 bytes of memory where the secret/private key is read from.
*/
void
Hacl_Curve25519_64_secret_to_public(uint8_t *pub, uint8_t *priv)
{
    uint8_t basepoint[32U] = { 0U };
    for (uint32_t i = (uint32_t)0U; i < (uint32_t)32U; i++) {
        uint8_t *os = basepoint;
        uint8_t x = g25519[i];
        os[i] = x;
    }
    Hacl_Curve25519_64_scalarmult(pub, priv, basepoint);
}

/**
Execute the diffie-hellmann key exchange.

@param out Pointer to 32 bytes of memory, allocated by the caller, where the resulting point is written to.
@param priv Pointer to 32 bytes of memory where **our** secret/private key is read from.
@param pub Pointer to 32 bytes of memory where **their** public point is read from.
*/
bool
Hacl_Curve25519_64_ecdh(uint8_t *out, uint8_t *priv, uint8_t *pub)
{
    uint8_t zeros[32U] = { 0U };
    Hacl_Curve25519_64_scalarmult(out, priv, pub);
    uint8_t res = (uint8_t)255U;
    for (uint32_t i = (uint32_t)0U; i < (uint32_t)32U; i++) {
        uint8_t uu____0 = FStar_UInt8_eq_mask(out[i], zeros[i]);
        res = uu____0 & res;
    }
    uint8_t z = res;
    bool r = z == (uint8_t)255U;
    return !r;
}