summaryrefslogtreecommitdiffstats
path: root/third_party/aom/aom_dsp/flow_estimation/x86/disflow_sse4.c
blob: e0a4bd040c930deab3d805b3f8e898e4d962d36d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
/*
 * Copyright (c) 2024, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>
#include <math.h>
#include <smmintrin.h>

#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/flow_estimation/disflow.h"
#include "aom_dsp/x86/synonyms.h"

#include "config/aom_dsp_rtcd.h"

#if DISFLOW_PATCH_SIZE != 8
#error "Need to change disflow_sse4.c if DISFLOW_PATCH_SIZE != 8"
#endif

// Compute horizontal and vertical kernels and return them packed into a
// register. The coefficient ordering is:
//   h0, h1, v0, v1, h2, h3, v2, v3
// This is chosen because it takes less work than fully separating the kernels,
// but it is separated enough that we can pick out each coefficient pair in the
// main compute_flow_at_point function
static INLINE __m128i compute_cubic_kernels(double u, double v) {
  const __m128d x = _mm_set_pd(v, u);

  const __m128d x2 = _mm_mul_pd(x, x);
  const __m128d x3 = _mm_mul_pd(x2, x);

  // Macro to multiply a value v by a constant coefficient c
#define MULC(c, v) _mm_mul_pd(_mm_set1_pd(c), v)

  // Compute floating-point kernel
  // Note: To ensure results are bit-identical to the C code, we need to perform
  // exactly the same sequence of operations here as in the C code.
  __m128d k0 = _mm_sub_pd(_mm_add_pd(MULC(-0.5, x), x2), MULC(0.5, x3));
  __m128d k1 =
      _mm_add_pd(_mm_sub_pd(_mm_set1_pd(1.0), MULC(2.5, x2)), MULC(1.5, x3));
  __m128d k2 =
      _mm_sub_pd(_mm_add_pd(MULC(0.5, x), MULC(2.0, x2)), MULC(1.5, x3));
  __m128d k3 = _mm_add_pd(MULC(-0.5, x2), MULC(0.5, x3));
#undef MULC

  // Integerize
  __m128d prec = _mm_set1_pd((double)(1 << DISFLOW_INTERP_BITS));

  k0 = _mm_round_pd(_mm_mul_pd(k0, prec),
                    _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
  k1 = _mm_round_pd(_mm_mul_pd(k1, prec),
                    _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
  k2 = _mm_round_pd(_mm_mul_pd(k2, prec),
                    _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
  k3 = _mm_round_pd(_mm_mul_pd(k3, prec),
                    _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);

  const __m128i c0 = _mm_cvtpd_epi32(k0);
  const __m128i c1 = _mm_cvtpd_epi32(k1);
  const __m128i c2 = _mm_cvtpd_epi32(k2);
  const __m128i c3 = _mm_cvtpd_epi32(k3);

  // Rearrange results and convert down to 16 bits, giving the target output
  // ordering
  const __m128i c01 = _mm_unpacklo_epi32(c0, c1);
  const __m128i c23 = _mm_unpacklo_epi32(c2, c3);
  return _mm_packs_epi32(c01, c23);
}

// Compare two regions of width x height pixels, one rooted at position
// (x, y) in src and the other at (x + u, y + v) in ref.
// This function returns the sum of squared pixel differences between
// the two regions.
//
// TODO(rachelbarker): Test speed/quality impact of using bilinear interpolation
// instad of bicubic interpolation
static INLINE void compute_flow_vector(const uint8_t *src, const uint8_t *ref,
                                       int width, int height, int stride, int x,
                                       int y, double u, double v,
                                       const int16_t *dx, const int16_t *dy,
                                       int *b) {
  // This function is written to do 8x8 convolutions only
  assert(DISFLOW_PATCH_SIZE == 8);

  // Accumulate 4 32-bit partial sums for each element of b
  // These will be flattened at the end.
  __m128i b0_acc = _mm_setzero_si128();
  __m128i b1_acc = _mm_setzero_si128();

  // Split offset into integer and fractional parts, and compute cubic
  // interpolation kernels
  const int u_int = (int)floor(u);
  const int v_int = (int)floor(v);
  const double u_frac = u - floor(u);
  const double v_frac = v - floor(v);

  const __m128i kernels = compute_cubic_kernels(u_frac, v_frac);

  // Storage for intermediate values between the two convolution directions
  DECLARE_ALIGNED(16, int16_t,
                  tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 3)]);
  int16_t *tmp = tmp_ + DISFLOW_PATCH_SIZE;  // Offset by one row

  // Clamp coordinates so that all pixels we fetch will remain within the
  // allocated border region, but allow them to go far enough out that
  // the border pixels' values do not change.
  // Since we are calculating an 8x8 block, the bottom-right pixel
  // in the block has coordinates (x0 + 7, y0 + 7). Then, the cubic
  // interpolation has 4 taps, meaning that the output of pixel
  // (x_w, y_w) depends on the pixels in the range
  // ([x_w - 1, x_w + 2], [y_w - 1, y_w + 2]).
  //
  // Thus the most extreme coordinates which will be fetched are
  // (x0 - 1, y0 - 1) and (x0 + 9, y0 + 9).
  const int x0 = clamp(x + u_int, -9, width);
  const int y0 = clamp(y + v_int, -9, height);

  // Horizontal convolution

  // Prepare the kernel vectors
  // We split the kernel into two vectors with kernel indices:
  // 0, 1, 0, 1, 0, 1, 0, 1, and
  // 2, 3, 2, 3, 2, 3, 2, 3
  __m128i h_kernel_01 = _mm_set1_epi32(_mm_extract_epi32(kernels, 0));
  __m128i h_kernel_23 = _mm_set1_epi32(_mm_extract_epi32(kernels, 2));

  __m128i round_const_h = _mm_set1_epi32(1 << (DISFLOW_INTERP_BITS - 6 - 1));

  for (int i = -1; i < DISFLOW_PATCH_SIZE + 2; ++i) {
    const int y_w = y0 + i;
    const uint8_t *ref_row = &ref[y_w * stride + (x0 - 1)];
    int16_t *tmp_row = &tmp[i * DISFLOW_PATCH_SIZE];

    // Load this row of pixels.
    // For an 8x8 patch, we need to load the 8 image pixels + 3 extras,
    // for a total of 11 pixels. Here we load 16 pixels, but only use
    // the first 11.
    __m128i row = _mm_loadu_si128((__m128i *)ref_row);

    // Expand pixels to int16s
    __m128i px_0to7_i16 = _mm_cvtepu8_epi16(row);
    __m128i px_4to10_i16 = _mm_cvtepu8_epi16(_mm_srli_si128(row, 4));

    // Compute first four outputs
    // input pixels 0, 1, 1, 2, 2, 3, 3, 4
    // * kernel     0, 1, 0, 1, 0, 1, 0, 1
    __m128i px0 =
        _mm_unpacklo_epi16(px_0to7_i16, _mm_srli_si128(px_0to7_i16, 2));
    // input pixels 2, 3, 3, 4, 4, 5, 5, 6
    // * kernel     2, 3, 2, 3, 2, 3, 2, 3
    __m128i px1 = _mm_unpacklo_epi16(_mm_srli_si128(px_0to7_i16, 4),
                                     _mm_srli_si128(px_0to7_i16, 6));
    // Convolve with kernel and sum 2x2 boxes to form first 4 outputs
    __m128i sum0 = _mm_add_epi32(_mm_madd_epi16(px0, h_kernel_01),
                                 _mm_madd_epi16(px1, h_kernel_23));

    __m128i out0 = _mm_srai_epi32(_mm_add_epi32(sum0, round_const_h),
                                  DISFLOW_INTERP_BITS - 6);

    // Compute second four outputs
    __m128i px2 =
        _mm_unpacklo_epi16(px_4to10_i16, _mm_srli_si128(px_4to10_i16, 2));
    __m128i px3 = _mm_unpacklo_epi16(_mm_srli_si128(px_4to10_i16, 4),
                                     _mm_srli_si128(px_4to10_i16, 6));
    __m128i sum1 = _mm_add_epi32(_mm_madd_epi16(px2, h_kernel_01),
                                 _mm_madd_epi16(px3, h_kernel_23));

    // Round by just enough bits that the result is
    // guaranteed to fit into an i16. Then the next stage can use 16 x 16 -> 32
    // bit multiplies, which should be a fair bit faster than 32 x 32 -> 32
    // as it does now
    // This means shifting down so we have 6 extra bits, for a maximum value
    // of +18360, which can occur if u_frac == 0.5 and the input pixels are
    // {0, 255, 255, 0}.
    __m128i out1 = _mm_srai_epi32(_mm_add_epi32(sum1, round_const_h),
                                  DISFLOW_INTERP_BITS - 6);

    _mm_storeu_si128((__m128i *)tmp_row, _mm_packs_epi32(out0, out1));
  }

  // Vertical convolution
  const int round_bits = DISFLOW_INTERP_BITS + 6 - DISFLOW_DERIV_SCALE_LOG2;
  __m128i round_const_v = _mm_set1_epi32(1 << (round_bits - 1));

  __m128i v_kernel_01 = _mm_set1_epi32(_mm_extract_epi32(kernels, 1));
  __m128i v_kernel_23 = _mm_set1_epi32(_mm_extract_epi32(kernels, 3));

  for (int i = 0; i < DISFLOW_PATCH_SIZE; ++i) {
    int16_t *tmp_row = &tmp[i * DISFLOW_PATCH_SIZE];

    // Load 4 rows of 8 x 16-bit values
    __m128i px0 = _mm_loadu_si128((__m128i *)(tmp_row - DISFLOW_PATCH_SIZE));
    __m128i px1 = _mm_loadu_si128((__m128i *)tmp_row);
    __m128i px2 = _mm_loadu_si128((__m128i *)(tmp_row + DISFLOW_PATCH_SIZE));
    __m128i px3 =
        _mm_loadu_si128((__m128i *)(tmp_row + 2 * DISFLOW_PATCH_SIZE));

    // We want to calculate px0 * v_kernel[0] + px1 * v_kernel[1] + ... ,
    // but each multiply expands its output to 32 bits. So we need to be
    // a little clever about how we do this
    __m128i sum0 = _mm_add_epi32(
        _mm_madd_epi16(_mm_unpacklo_epi16(px0, px1), v_kernel_01),
        _mm_madd_epi16(_mm_unpacklo_epi16(px2, px3), v_kernel_23));
    __m128i sum1 = _mm_add_epi32(
        _mm_madd_epi16(_mm_unpackhi_epi16(px0, px1), v_kernel_01),
        _mm_madd_epi16(_mm_unpackhi_epi16(px2, px3), v_kernel_23));

    __m128i sum0_rounded =
        _mm_srai_epi32(_mm_add_epi32(sum0, round_const_v), round_bits);
    __m128i sum1_rounded =
        _mm_srai_epi32(_mm_add_epi32(sum1, round_const_v), round_bits);

    __m128i warped = _mm_packs_epi32(sum0_rounded, sum1_rounded);
    __m128i src_pixels_u8 =
        _mm_loadl_epi64((__m128i *)&src[(y + i) * stride + x]);
    __m128i src_pixels = _mm_slli_epi16(_mm_cvtepu8_epi16(src_pixels_u8), 3);

    // Calculate delta from the target patch
    __m128i dt = _mm_sub_epi16(warped, src_pixels);

    // Load 8 elements each of dx and dt, to pair with the 8 elements of dt
    // that we have just computed. Then compute 8 partial sums of dx * dt
    // and dy * dt, implicitly sum to give 4 partial sums of each, and
    // accumulate.
    __m128i dx_row = _mm_loadu_si128((__m128i *)&dx[i * DISFLOW_PATCH_SIZE]);
    __m128i dy_row = _mm_loadu_si128((__m128i *)&dy[i * DISFLOW_PATCH_SIZE]);
    b0_acc = _mm_add_epi32(b0_acc, _mm_madd_epi16(dx_row, dt));
    b1_acc = _mm_add_epi32(b1_acc, _mm_madd_epi16(dy_row, dt));
  }

  // Flatten the two sets of partial sums to find the final value of b
  // We need to set b[0] = sum(b0_acc), b[1] = sum(b1_acc).
  // We need to do 6 additions in total; a `hadd` instruction can take care
  // of four of them, leaving two scalar additions.
  __m128i partial_sum = _mm_hadd_epi32(b0_acc, b1_acc);
  b[0] = _mm_extract_epi32(partial_sum, 0) + _mm_extract_epi32(partial_sum, 1);
  b[1] = _mm_extract_epi32(partial_sum, 2) + _mm_extract_epi32(partial_sum, 3);
}

// Compute the x and y gradients of the source patch in a single pass,
// and store into dx and dy respectively.
static INLINE void sobel_filter(const uint8_t *src, int src_stride, int16_t *dx,
                                int16_t *dy) {
  // Loop setup: Load the first two rows (of 10 input rows) and apply
  // the horizontal parts of the two filters
  __m128i row_m1 = _mm_loadu_si128((__m128i *)(src - src_stride - 1));
  __m128i row_m1_a = _mm_cvtepu8_epi16(row_m1);
  __m128i row_m1_b = _mm_cvtepu8_epi16(_mm_srli_si128(row_m1, 1));
  __m128i row_m1_c = _mm_cvtepu8_epi16(_mm_srli_si128(row_m1, 2));

  __m128i row_m1_hsmooth = _mm_add_epi16(_mm_add_epi16(row_m1_a, row_m1_c),
                                         _mm_slli_epi16(row_m1_b, 1));
  __m128i row_m1_hdiff = _mm_sub_epi16(row_m1_a, row_m1_c);

  __m128i row = _mm_loadu_si128((__m128i *)(src - 1));
  __m128i row_a = _mm_cvtepu8_epi16(row);
  __m128i row_b = _mm_cvtepu8_epi16(_mm_srli_si128(row, 1));
  __m128i row_c = _mm_cvtepu8_epi16(_mm_srli_si128(row, 2));

  __m128i row_hsmooth =
      _mm_add_epi16(_mm_add_epi16(row_a, row_c), _mm_slli_epi16(row_b, 1));
  __m128i row_hdiff = _mm_sub_epi16(row_a, row_c);

  // Main loop: For each of the 8 output rows:
  // * Load row i+1 and apply both horizontal filters
  // * Apply vertical filters and store results
  // * Shift rows for next iteration
  for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) {
    // Load row i+1 and apply both horizontal filters
    const __m128i row_p1 =
        _mm_loadu_si128((__m128i *)(src + (i + 1) * src_stride - 1));
    const __m128i row_p1_a = _mm_cvtepu8_epi16(row_p1);
    const __m128i row_p1_b = _mm_cvtepu8_epi16(_mm_srli_si128(row_p1, 1));
    const __m128i row_p1_c = _mm_cvtepu8_epi16(_mm_srli_si128(row_p1, 2));

    const __m128i row_p1_hsmooth = _mm_add_epi16(
        _mm_add_epi16(row_p1_a, row_p1_c), _mm_slli_epi16(row_p1_b, 1));
    const __m128i row_p1_hdiff = _mm_sub_epi16(row_p1_a, row_p1_c);

    // Apply vertical filters and store results
    // dx = vertical smooth(horizontal diff(input))
    // dy = vertical diff(horizontal smooth(input))
    const __m128i dx_row =
        _mm_add_epi16(_mm_add_epi16(row_m1_hdiff, row_p1_hdiff),
                      _mm_slli_epi16(row_hdiff, 1));
    const __m128i dy_row = _mm_sub_epi16(row_m1_hsmooth, row_p1_hsmooth);

    _mm_storeu_si128((__m128i *)(dx + i * DISFLOW_PATCH_SIZE), dx_row);
    _mm_storeu_si128((__m128i *)(dy + i * DISFLOW_PATCH_SIZE), dy_row);

    // Shift rows for next iteration
    // This allows a lot of work to be reused, reducing the number of
    // horizontal filtering operations from 2*3*8 = 48 to 2*10 = 20
    row_m1_hsmooth = row_hsmooth;
    row_m1_hdiff = row_hdiff;
    row_hsmooth = row_p1_hsmooth;
    row_hdiff = row_p1_hdiff;
  }
}

static INLINE void compute_flow_matrix(const int16_t *dx, int dx_stride,
                                       const int16_t *dy, int dy_stride,
                                       double *M) {
  __m128i acc[4] = { 0 };

  for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) {
    __m128i dx_row = _mm_loadu_si128((__m128i *)&dx[i * dx_stride]);
    __m128i dy_row = _mm_loadu_si128((__m128i *)&dy[i * dy_stride]);

    acc[0] = _mm_add_epi32(acc[0], _mm_madd_epi16(dx_row, dx_row));
    acc[1] = _mm_add_epi32(acc[1], _mm_madd_epi16(dx_row, dy_row));
    // Don't compute acc[2], as it should be equal to acc[1]
    acc[3] = _mm_add_epi32(acc[3], _mm_madd_epi16(dy_row, dy_row));
  }

  // Condense sums
  __m128i partial_sum_0 = _mm_hadd_epi32(acc[0], acc[1]);
  __m128i partial_sum_1 = _mm_hadd_epi32(acc[1], acc[3]);
  __m128i result = _mm_hadd_epi32(partial_sum_0, partial_sum_1);

  // Apply regularization
  // We follow the standard regularization method of adding `k * I` before
  // inverting. This ensures that the matrix will be invertible.
  //
  // Setting the regularization strength k to 1 seems to work well here, as
  // typical values coming from the other equations are very large (1e5 to
  // 1e6, with an upper limit of around 6e7, at the time of writing).
  // It also preserves the property that all matrix values are whole numbers,
  // which is convenient for integerized SIMD implementation.
  result = _mm_add_epi32(result, _mm_set_epi32(1, 0, 0, 1));

  // Convert results to doubles and store
  _mm_storeu_pd(M, _mm_cvtepi32_pd(result));
  _mm_storeu_pd(M + 2, _mm_cvtepi32_pd(_mm_srli_si128(result, 8)));
}

// Try to invert the matrix M
// Note: Due to the nature of how a least-squares matrix is constructed, all of
// the eigenvalues will be >= 0, and therefore det M >= 0 as well.
// The regularization term `+ k * I` further ensures that det M >= k^2.
// As mentioned in compute_flow_matrix(), here we use k = 1, so det M >= 1.
// So we don't have to worry about non-invertible matrices here.
static INLINE void invert_2x2(const double *M, double *M_inv) {
  double det = (M[0] * M[3]) - (M[1] * M[2]);
  assert(det >= 1);
  const double det_inv = 1 / det;

  M_inv[0] = M[3] * det_inv;
  M_inv[1] = -M[1] * det_inv;
  M_inv[2] = -M[2] * det_inv;
  M_inv[3] = M[0] * det_inv;
}

void aom_compute_flow_at_point_sse4_1(const uint8_t *src, const uint8_t *ref,
                                      int x, int y, int width, int height,
                                      int stride, double *u, double *v) {
  DECLARE_ALIGNED(16, double, M[4]);
  DECLARE_ALIGNED(16, double, M_inv[4]);
  DECLARE_ALIGNED(16, int16_t, dx[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE]);
  DECLARE_ALIGNED(16, int16_t, dy[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE]);
  int b[2];

  // Compute gradients within this patch
  const uint8_t *src_patch = &src[y * stride + x];
  sobel_filter(src_patch, stride, dx, dy);

  compute_flow_matrix(dx, DISFLOW_PATCH_SIZE, dy, DISFLOW_PATCH_SIZE, M);
  invert_2x2(M, M_inv);

  for (int itr = 0; itr < DISFLOW_MAX_ITR; itr++) {
    compute_flow_vector(src, ref, width, height, stride, x, y, *u, *v, dx, dy,
                        b);

    // Solve flow equations to find a better estimate for the flow vector
    // at this point
    const double step_u = M_inv[0] * b[0] + M_inv[1] * b[1];
    const double step_v = M_inv[2] * b[0] + M_inv[3] * b[1];
    *u += fclamp(step_u * DISFLOW_STEP_SIZE, -2, 2);
    *v += fclamp(step_v * DISFLOW_STEP_SIZE, -2, 2);

    if (fabs(step_u) + fabs(step_v) < DISFLOW_STEP_SIZE_THRESOLD) {
      // Stop iteration when we're close to convergence
      break;
    }
  }
}