summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/arm/neon/rdopt_neon.c
blob: 7d3bd4c6065a2ae4dbfe333e9b41cedad94fb0cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
/*
 * Copyright (c) 2020, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>

#include <arm_neon.h>

#include "av1/encoder/rdopt.h"
#include "config/aom_config.h"
#include "config/av1_rtcd.h"

// Process horizontal and vertical correlations in a 4x4 block of pixels.
// We actually use the 4x4 pixels to calculate correlations corresponding to
// the top-left 3x3 pixels, so this function must be called with 1x1 overlap,
// moving the window along/down by 3 pixels at a time.
INLINE static void horver_correlation_4x4(const int16_t *diff, int stride,
                                          int32x4_t *xy_sum_32,
                                          int32x4_t *xz_sum_32,
                                          int32x4_t *x_sum_32,
                                          int32x4_t *x2_sum_32) {
  // Pixels in this 4x4   [ a b c d ]
  // are referred to as:  [ e f g h ]
  //                      [ i j k l ]
  //                      [ m n o p ]

  const int16x4_t pixelsa_2_lo = vld1_s16(diff + (0 * stride));
  const int16x4_t pixelsa_2_sli =
      vreinterpret_s16_s64(vshl_n_s64(vreinterpret_s64_s16(pixelsa_2_lo), 16));
  const int16x4_t pixelsb_2_lo = vld1_s16(diff + (1 * stride));
  const int16x4_t pixelsb_2_sli =
      vreinterpret_s16_s64(vshl_n_s64(vreinterpret_s64_s16(pixelsb_2_lo), 16));
  const int16x4_t pixelsa_1_lo = vld1_s16(diff + (2 * stride));
  const int16x4_t pixelsa_1_sli =
      vreinterpret_s16_s64(vshl_n_s64(vreinterpret_s64_s16(pixelsa_1_lo), 16));
  const int16x4_t pixelsb_1_lo = vld1_s16(diff + (3 * stride));
  const int16x4_t pixelsb_1_sli =
      vreinterpret_s16_s64(vshl_n_s64(vreinterpret_s64_s16(pixelsb_1_lo), 16));

  const int16x8_t slli_a = vcombine_s16(pixelsa_1_sli, pixelsa_2_sli);

  *xy_sum_32 = vmlal_s16(*xy_sum_32, pixelsa_1_lo, pixelsa_1_sli);
  *xy_sum_32 = vmlal_s16(*xy_sum_32, pixelsa_2_lo, pixelsa_2_sli);
  *xy_sum_32 = vmlal_s16(*xy_sum_32, pixelsb_2_lo, pixelsb_2_sli);

  *xz_sum_32 = vmlal_s16(*xz_sum_32, pixelsa_1_sli, pixelsb_1_sli);
  *xz_sum_32 = vmlal_s16(*xz_sum_32, pixelsa_2_sli, pixelsb_2_sli);
  *xz_sum_32 = vmlal_s16(*xz_sum_32, pixelsa_1_sli, pixelsb_2_sli);

  // Now calculate the straight sums, x_sum += a+b+c+e+f+g+i+j+k
  // (sum up every element in slli_a and swap_b)
  *x_sum_32 = vpadalq_s16(*x_sum_32, slli_a);
  *x_sum_32 = vaddw_s16(*x_sum_32, pixelsb_2_sli);

  // Also sum their squares
  *x2_sum_32 = vmlal_s16(*x2_sum_32, pixelsa_1_sli, pixelsa_1_sli);
  *x2_sum_32 = vmlal_s16(*x2_sum_32, pixelsa_2_sli, pixelsa_2_sli);
  *x2_sum_32 = vmlal_s16(*x2_sum_32, pixelsb_2_sli, pixelsb_2_sli);
}

void av1_get_horver_correlation_full_neon(const int16_t *diff, int stride,
                                          int width, int height, float *hcorr,
                                          float *vcorr) {
  // The following notation is used:
  // x - current pixel
  // y - right neighbour pixel
  // z - below neighbour pixel
  // w - down-right neighbour pixel
  int64_t xy_sum = 0, xz_sum = 0;
  int64_t x_sum = 0, x2_sum = 0;
  int32x4_t zero = vdupq_n_s32(0);
  int64x2_t v_x_sum = vreinterpretq_s64_s32(zero);
  int64x2_t v_xy_sum = vreinterpretq_s64_s32(zero);
  int64x2_t v_xz_sum = vreinterpretq_s64_s32(zero);
  int64x2_t v_x2_sum = vreinterpretq_s64_s32(zero);
  // Process horizontal and vertical correlations through the body in 4x4
  // blocks.  This excludes the final row and column and possibly one extra
  // column depending how 3 divides into width and height

  for (int i = 0; i <= height - 4; i += 3) {
    int32x4_t xy_sum_32 = zero;
    int32x4_t xz_sum_32 = zero;
    int32x4_t x_sum_32 = zero;
    int32x4_t x2_sum_32 = zero;
    for (int j = 0; j <= width - 4; j += 3) {
      horver_correlation_4x4(&diff[i * stride + j], stride, &xy_sum_32,
                             &xz_sum_32, &x_sum_32, &x2_sum_32);
    }
    v_xy_sum = vpadalq_s32(v_xy_sum, xy_sum_32);
    v_xz_sum = vpadalq_s32(v_xz_sum, xz_sum_32);
    v_x_sum = vpadalq_s32(v_x_sum, x_sum_32);
    v_x2_sum = vpadalq_s32(v_x2_sum, x2_sum_32);
  }
#if AOM_ARCH_AARCH64
  xy_sum = vaddvq_s64(v_xy_sum);
  xz_sum = vaddvq_s64(v_xz_sum);
  x2_sum = vaddvq_s64(v_x2_sum);
  x_sum = vaddvq_s64(v_x_sum);
#else
  xy_sum = vget_lane_s64(
      vadd_s64(vget_low_s64(v_xy_sum), vget_high_s64(v_xy_sum)), 0);
  xz_sum = vget_lane_s64(
      vadd_s64(vget_low_s64(v_xz_sum), vget_high_s64(v_xz_sum)), 0);
  x2_sum = vget_lane_s64(
      vadd_s64(vget_low_s64(v_x2_sum), vget_high_s64(v_x2_sum)), 0);
  x_sum =
      vget_lane_s64(vadd_s64(vget_low_s64(v_x_sum), vget_high_s64(v_x_sum)), 0);
#endif
  // x_sum now covers every pixel except the final 1-2 rows and 1-2 cols
  int64_t x_finalrow = 0, x_finalcol = 0, x2_finalrow = 0, x2_finalcol = 0;

  // Do we have 2 rows remaining or just the one?  Note that width and height
  // are powers of 2, so each modulo 3 must be 1 or 2.
  if (height % 3 == 1) {  // Just horiz corrs on the final row
    const int16_t x0 = diff[(height - 1) * stride];
    x_sum += x0;
    x_finalrow += x0;
    x2_sum += x0 * x0;
    x2_finalrow += x0 * x0;
    if (width >= 8) {
      int32x4_t v_y_sum = zero;
      int32x4_t v_y2_sum = zero;
      int32x4_t v_xy_sum_a = zero;
      int k = width - 1;
      int j = 0;
      while ((k - 8) > 0) {
        const int16x8_t v_x = vld1q_s16(&diff[(height - 1) * stride + j]);
        const int16x8_t v_y = vld1q_s16(&diff[(height - 1) * stride + j + 1]);
        const int16x4_t v_x_lo = vget_low_s16(v_x);
        const int16x4_t v_x_hi = vget_high_s16(v_x);
        const int16x4_t v_y_lo = vget_low_s16(v_y);
        const int16x4_t v_y_hi = vget_high_s16(v_y);
        v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_x_lo, v_y_lo);
        v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_x_hi, v_y_hi);
        v_y2_sum = vmlal_s16(v_y2_sum, v_y_lo, v_y_lo);
        v_y2_sum = vmlal_s16(v_y2_sum, v_y_hi, v_y_hi);
        v_y_sum = vpadalq_s16(v_y_sum, v_y);
        k -= 8;
        j += 8;
      }

      const int16x8_t v_l = vld1q_s16(&diff[(height - 1) * stride] + j);
      const int16x8_t v_x =
          vextq_s16(vextq_s16(vreinterpretq_s16_s32(zero), v_l, 7),
                    vreinterpretq_s16_s32(zero), 1);
      const int16x8_t v_y = vextq_s16(v_l, vreinterpretq_s16_s32(zero), 1);
      const int16x4_t v_x_lo = vget_low_s16(v_x);
      const int16x4_t v_x_hi = vget_high_s16(v_x);
      const int16x4_t v_y_lo = vget_low_s16(v_y);
      const int16x4_t v_y_hi = vget_high_s16(v_y);
      v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_x_lo, v_y_lo);
      v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_x_hi, v_y_hi);
      v_y2_sum = vmlal_s16(v_y2_sum, v_y_lo, v_y_lo);
      v_y2_sum = vmlal_s16(v_y2_sum, v_y_hi, v_y_hi);
      const int32x4_t v_y_sum_a = vpadalq_s16(v_y_sum, v_y);
      const int64x2_t v_xy_sum2 = vpaddlq_s32(v_xy_sum_a);
#if AOM_ARCH_AARCH64
      const int64x2_t v_y2_sum_a = vpaddlq_s32(v_y2_sum);
      xy_sum += vaddvq_s64(v_xy_sum2);
      const int32_t y = vaddvq_s32(v_y_sum_a);
      const int64_t y2 = vaddvq_s64(v_y2_sum_a);
#else
      xy_sum += vget_lane_s64(
          vadd_s64(vget_low_s64(v_xy_sum2), vget_high_s64(v_xy_sum2)), 0);
      const int64x2_t v_y_a = vpaddlq_s32(v_y_sum_a);
      const int64_t y =
          vget_lane_s64(vadd_s64(vget_low_s64(v_y_a), vget_high_s64(v_y_a)), 0);
      const int64x2_t v_y2_sum_b = vpaddlq_s32(v_y2_sum);
      int64_t y2 = vget_lane_s64(
          vadd_s64(vget_low_s64(v_y2_sum_b), vget_high_s64(v_y2_sum_b)), 0);
#endif
      x_sum += y;
      x2_sum += y2;
      x_finalrow += y;
      x2_finalrow += y2;
    } else {
      for (int j = 0; j < width - 1; ++j) {
        const int16_t x = diff[(height - 1) * stride + j];
        const int16_t y = diff[(height - 1) * stride + j + 1];
        xy_sum += x * y;
        x_sum += y;
        x2_sum += y * y;
        x_finalrow += y;
        x2_finalrow += y * y;
      }
    }
  } else {  // Two rows remaining to do
    const int16_t x0 = diff[(height - 2) * stride];
    const int16_t z0 = diff[(height - 1) * stride];
    x_sum += x0 + z0;
    x2_sum += x0 * x0 + z0 * z0;
    x_finalrow += z0;
    x2_finalrow += z0 * z0;
    if (width >= 8) {
      int32x4_t v_y2_sum = zero;
      int32x4_t v_w2_sum = zero;
      int32x4_t v_xy_sum_a = zero;
      int32x4_t v_xz_sum_a = zero;
      int32x4_t v_x_sum_a = zero;
      int32x4_t v_w_sum = zero;
      int k = width - 1;
      int j = 0;
      while ((k - 8) > 0) {
        const int16x8_t v_x = vld1q_s16(&diff[(height - 2) * stride + j]);
        const int16x8_t v_y = vld1q_s16(&diff[(height - 2) * stride + j + 1]);
        const int16x8_t v_z = vld1q_s16(&diff[(height - 1) * stride + j]);
        const int16x8_t v_w = vld1q_s16(&diff[(height - 1) * stride + j + 1]);

        const int16x4_t v_x_lo = vget_low_s16(v_x);
        const int16x4_t v_y_lo = vget_low_s16(v_y);
        const int16x4_t v_z_lo = vget_low_s16(v_z);
        const int16x4_t v_w_lo = vget_low_s16(v_w);
        const int16x4_t v_x_hi = vget_high_s16(v_x);
        const int16x4_t v_y_hi = vget_high_s16(v_y);
        const int16x4_t v_z_hi = vget_high_s16(v_z);
        const int16x4_t v_w_hi = vget_high_s16(v_w);

        v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_x_lo, v_y_lo);
        v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_x_hi, v_y_hi);
        v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_z_lo, v_w_lo);
        v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_z_hi, v_w_hi);

        v_xz_sum_a = vmlal_s16(v_xz_sum_a, v_x_lo, v_z_lo);
        v_xz_sum_a = vmlal_s16(v_xz_sum_a, v_x_hi, v_z_hi);

        v_w2_sum = vmlal_s16(v_w2_sum, v_w_lo, v_w_lo);
        v_w2_sum = vmlal_s16(v_w2_sum, v_w_hi, v_w_hi);
        v_y2_sum = vmlal_s16(v_y2_sum, v_y_lo, v_y_lo);
        v_y2_sum = vmlal_s16(v_y2_sum, v_y_hi, v_y_hi);

        v_w_sum = vpadalq_s16(v_w_sum, v_w);
        v_x_sum_a = vpadalq_s16(v_x_sum_a, v_y);
        v_x_sum_a = vpadalq_s16(v_x_sum_a, v_w);

        k -= 8;
        j += 8;
      }
      const int16x8_t v_l = vld1q_s16(&diff[(height - 2) * stride] + j);
      const int16x8_t v_x =
          vextq_s16(vextq_s16(vreinterpretq_s16_s32(zero), v_l, 7),
                    vreinterpretq_s16_s32(zero), 1);
      const int16x8_t v_y = vextq_s16(v_l, vreinterpretq_s16_s32(zero), 1);
      const int16x8_t v_l_2 = vld1q_s16(&diff[(height - 1) * stride] + j);
      const int16x8_t v_z =
          vextq_s16(vextq_s16(vreinterpretq_s16_s32(zero), v_l_2, 7),
                    vreinterpretq_s16_s32(zero), 1);
      const int16x8_t v_w = vextq_s16(v_l_2, vreinterpretq_s16_s32(zero), 1);

      const int16x4_t v_x_lo = vget_low_s16(v_x);
      const int16x4_t v_y_lo = vget_low_s16(v_y);
      const int16x4_t v_z_lo = vget_low_s16(v_z);
      const int16x4_t v_w_lo = vget_low_s16(v_w);
      const int16x4_t v_x_hi = vget_high_s16(v_x);
      const int16x4_t v_y_hi = vget_high_s16(v_y);
      const int16x4_t v_z_hi = vget_high_s16(v_z);
      const int16x4_t v_w_hi = vget_high_s16(v_w);

      v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_x_lo, v_y_lo);
      v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_x_hi, v_y_hi);
      v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_z_lo, v_w_lo);
      v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_z_hi, v_w_hi);

      v_xz_sum_a = vmlal_s16(v_xz_sum_a, v_x_lo, v_z_lo);
      v_xz_sum_a = vmlal_s16(v_xz_sum_a, v_x_hi, v_z_hi);

      v_w2_sum = vmlal_s16(v_w2_sum, v_w_lo, v_w_lo);
      v_w2_sum = vmlal_s16(v_w2_sum, v_w_hi, v_w_hi);
      v_y2_sum = vmlal_s16(v_y2_sum, v_y_lo, v_y_lo);
      v_y2_sum = vmlal_s16(v_y2_sum, v_y_hi, v_y_hi);

      v_w_sum = vpadalq_s16(v_w_sum, v_w);
      v_x_sum_a = vpadalq_s16(v_x_sum_a, v_y);
      v_x_sum_a = vpadalq_s16(v_x_sum_a, v_w);

#if AOM_ARCH_AARCH64
      xy_sum += vaddvq_s64(vpaddlq_s32(v_xy_sum_a));
      xz_sum += vaddvq_s64(vpaddlq_s32(v_xz_sum_a));
      x_sum += vaddvq_s32(v_x_sum_a);
      x_finalrow += vaddvq_s32(v_w_sum);
      int64_t y2 = vaddvq_s64(vpaddlq_s32(v_y2_sum));
      int64_t w2 = vaddvq_s64(vpaddlq_s32(v_w2_sum));
#else
      const int64x2_t v_xy_sum2 = vpaddlq_s32(v_xy_sum_a);
      xy_sum += vget_lane_s64(
          vadd_s64(vget_low_s64(v_xy_sum2), vget_high_s64(v_xy_sum2)), 0);
      const int64x2_t v_xz_sum2 = vpaddlq_s32(v_xz_sum_a);
      xz_sum += vget_lane_s64(
          vadd_s64(vget_low_s64(v_xz_sum2), vget_high_s64(v_xz_sum2)), 0);
      const int64x2_t v_x_sum2 = vpaddlq_s32(v_x_sum_a);
      x_sum += vget_lane_s64(
          vadd_s64(vget_low_s64(v_x_sum2), vget_high_s64(v_x_sum2)), 0);
      const int64x2_t v_w_sum_a = vpaddlq_s32(v_w_sum);
      x_finalrow += vget_lane_s64(
          vadd_s64(vget_low_s64(v_w_sum_a), vget_high_s64(v_w_sum_a)), 0);
      const int64x2_t v_y2_sum_a = vpaddlq_s32(v_y2_sum);
      int64_t y2 = vget_lane_s64(
          vadd_s64(vget_low_s64(v_y2_sum_a), vget_high_s64(v_y2_sum_a)), 0);
      const int64x2_t v_w2_sum_a = vpaddlq_s32(v_w2_sum);
      int64_t w2 = vget_lane_s64(
          vadd_s64(vget_low_s64(v_w2_sum_a), vget_high_s64(v_w2_sum_a)), 0);
#endif
      x2_sum += y2 + w2;
      x2_finalrow += w2;
    } else {
      for (int j = 0; j < width - 1; ++j) {
        const int16_t x = diff[(height - 2) * stride + j];
        const int16_t y = diff[(height - 2) * stride + j + 1];
        const int16_t z = diff[(height - 1) * stride + j];
        const int16_t w = diff[(height - 1) * stride + j + 1];

        // Horizontal and vertical correlations for the penultimate row:
        xy_sum += x * y;
        xz_sum += x * z;

        // Now just horizontal correlations for the final row:
        xy_sum += z * w;

        x_sum += y + w;
        x2_sum += y * y + w * w;
        x_finalrow += w;
        x2_finalrow += w * w;
      }
    }
  }

  // Do we have 2 columns remaining or just the one?
  if (width % 3 == 1) {  // Just vert corrs on the final col
    const int16_t x0 = diff[width - 1];
    x_sum += x0;
    x_finalcol += x0;
    x2_sum += x0 * x0;
    x2_finalcol += x0 * x0;
    for (int i = 0; i < height - 1; ++i) {
      const int16_t x = diff[i * stride + width - 1];
      const int16_t z = diff[(i + 1) * stride + width - 1];
      xz_sum += x * z;
      x_finalcol += z;
      x2_finalcol += z * z;
      // So the bottom-right elements don't get counted twice:
      if (i < height - (height % 3 == 1 ? 2 : 3)) {
        x_sum += z;
        x2_sum += z * z;
      }
    }
  } else {  // Two cols remaining
    const int16_t x0 = diff[width - 2];
    const int16_t y0 = diff[width - 1];
    x_sum += x0 + y0;
    x2_sum += x0 * x0 + y0 * y0;
    x_finalcol += y0;
    x2_finalcol += y0 * y0;
    for (int i = 0; i < height - 1; ++i) {
      const int16_t x = diff[i * stride + width - 2];
      const int16_t y = diff[i * stride + width - 1];
      const int16_t z = diff[(i + 1) * stride + width - 2];
      const int16_t w = diff[(i + 1) * stride + width - 1];

      // Horizontal and vertical correlations for the penultimate col:
      // Skip these on the last iteration of this loop if we also had two
      // rows remaining, otherwise the final horizontal and vertical correlation
      // get erroneously processed twice
      if (i < height - 2 || height % 3 == 1) {
        xy_sum += x * y;
        xz_sum += x * z;
      }

      x_finalcol += w;
      x2_finalcol += w * w;
      // So the bottom-right elements don't get counted twice:
      if (i < height - (height % 3 == 1 ? 2 : 3)) {
        x_sum += z + w;
        x2_sum += z * z + w * w;
      }

      // Now just vertical correlations for the final column:
      xz_sum += y * w;
    }
  }

  // Calculate the simple sums and squared-sums
  int64_t x_firstrow = 0, x_firstcol = 0;
  int64_t x2_firstrow = 0, x2_firstcol = 0;

  if (width >= 8) {
    int32x4_t v_x_firstrow = zero;
    int32x4_t v_x2_firstrow = zero;
    for (int j = 0; j < width; j += 8) {
      const int16x8_t v_diff = vld1q_s16(diff + j);
      const int16x4_t v_diff_lo = vget_low_s16(v_diff);
      const int16x4_t v_diff_hi = vget_high_s16(v_diff);
      v_x_firstrow = vpadalq_s16(v_x_firstrow, v_diff);
      v_x2_firstrow = vmlal_s16(v_x2_firstrow, v_diff_lo, v_diff_lo);
      v_x2_firstrow = vmlal_s16(v_x2_firstrow, v_diff_hi, v_diff_hi);
    }
#if AOM_ARCH_AARCH64
    x_firstrow += vaddvq_s32(v_x_firstrow);
    x2_firstrow += vaddvq_s32(v_x2_firstrow);
#else
    const int64x2_t v_x_firstrow_64 = vpaddlq_s32(v_x_firstrow);
    x_firstrow += vget_lane_s64(
        vadd_s64(vget_low_s64(v_x_firstrow_64), vget_high_s64(v_x_firstrow_64)),
        0);
    const int64x2_t v_x2_firstrow_64 = vpaddlq_s32(v_x2_firstrow);
    x2_firstrow += vget_lane_s64(vadd_s64(vget_low_s64(v_x2_firstrow_64),
                                          vget_high_s64(v_x2_firstrow_64)),
                                 0);
#endif
  } else {
    for (int j = 0; j < width; ++j) {
      x_firstrow += diff[j];
      x2_firstrow += diff[j] * diff[j];
    }
  }
  for (int i = 0; i < height; ++i) {
    x_firstcol += diff[i * stride];
    x2_firstcol += diff[i * stride] * diff[i * stride];
  }

  int64_t xhor_sum = x_sum - x_finalcol;
  int64_t xver_sum = x_sum - x_finalrow;
  int64_t y_sum = x_sum - x_firstcol;
  int64_t z_sum = x_sum - x_firstrow;
  int64_t x2hor_sum = x2_sum - x2_finalcol;
  int64_t x2ver_sum = x2_sum - x2_finalrow;
  int64_t y2_sum = x2_sum - x2_firstcol;
  int64_t z2_sum = x2_sum - x2_firstrow;

  const float num_hor = (float)(height * (width - 1));
  const float num_ver = (float)((height - 1) * width);

  const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor;
  const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver;

  const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor;
  const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver;

  const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor;
  const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver;

  if (xhor_var_n > 0 && y_var_n > 0) {
    *hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n);
    *hcorr = *hcorr < 0 ? 0 : *hcorr;
  } else {
    *hcorr = 1.0;
  }
  if (xver_var_n > 0 && z_var_n > 0) {
    *vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n);
    *vcorr = *vcorr < 0 ? 0 : *vcorr;
  } else {
    *vcorr = 1.0;
  }
}