summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/model_rd.h
blob: f7e8b96b5baeaa4c2eb3b1a06c53af4ac4629139 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/*
 * Copyright (c) 2020, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#ifndef AOM_AV1_ENCODER_MODEL_RD_H_
#define AOM_AV1_ENCODER_MODEL_RD_H_

#include "aom/aom_integer.h"
#include "av1/encoder/block.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/pustats.h"
#include "av1/encoder/rdopt_utils.h"
#include "config/aom_dsp_rtcd.h"

#ifdef __cplusplus
extern "C" {
#endif

// 0: Legacy model
// 1: Curve fit model
// 2: Surface fit model
// 3: DNN regression model
// 4: Full rd model
#define MODELRD_TYPE_INTERP_FILTER 1
#define MODELRD_TYPE_TX_SEARCH_PRUNE 1
#define MODELRD_TYPE_MASKED_COMPOUND 1
#define MODELRD_TYPE_INTERINTRA 1
#define MODELRD_TYPE_INTRA 1
#define MODELRD_TYPE_MOTION_MODE_RD 1

typedef void (*model_rd_for_sb_type)(
    const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd,
    int plane_from, int plane_to, int *out_rate_sum, int64_t *out_dist_sum,
    uint8_t *skip_txfm_sb, int64_t *skip_sse_sb, int *plane_rate,
    int64_t *plane_sse, int64_t *plane_dist);
typedef void (*model_rd_from_sse_type)(const AV1_COMP *const cpi,
                                       const MACROBLOCK *const x,
                                       BLOCK_SIZE plane_bsize, int plane,
                                       int64_t sse, int num_samples, int *rate,
                                       int64_t *dist);

static int64_t calculate_sse(MACROBLOCKD *const xd,
                             const struct macroblock_plane *p,
                             struct macroblockd_plane *pd, const int bw,
                             const int bh) {
  int64_t sse = 0;
  const int shift = xd->bd - 8;
#if CONFIG_AV1_HIGHBITDEPTH
  if (is_cur_buf_hbd(xd)) {
    sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
                         bw, bh);
  } else {
    sse =
        aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, bh);
  }
#else
  sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, bh);
#endif
  sse = ROUND_POWER_OF_TWO(sse, shift * 2);
  return sse;
}

static AOM_INLINE int64_t compute_sse_plane(MACROBLOCK *x, MACROBLOCKD *xd,
                                            int plane, const BLOCK_SIZE bsize) {
  struct macroblockd_plane *const pd = &xd->plane[plane];
  const BLOCK_SIZE plane_bsize =
      get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
  int bw, bh;
  const struct macroblock_plane *const p = &x->plane[plane];
  get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, &bw,
                     &bh);

  int64_t sse = calculate_sse(xd, p, pd, bw, bh);

  return sse;
}

static AOM_INLINE void model_rd_from_sse(const AV1_COMP *const cpi,
                                         const MACROBLOCK *const x,
                                         BLOCK_SIZE plane_bsize, int plane,
                                         int64_t sse, int num_samples,
                                         int *rate, int64_t *dist) {
  (void)num_samples;
  const MACROBLOCKD *const xd = &x->e_mbd;
  const struct macroblock_plane *const p = &x->plane[plane];
  const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3;

  // Fast approximate the modelling function.
  if (cpi->sf.rd_sf.simple_model_rd_from_var) {
    const int64_t square_error = sse;
    int quantizer = p->dequant_QTX[1] >> dequant_shift;
    if (quantizer < 120)
      *rate = (int)AOMMIN(
          (square_error * (280 - quantizer)) >> (16 - AV1_PROB_COST_SHIFT),
          INT_MAX);
    else
      *rate = 0;
    assert(*rate >= 0);
    *dist = (square_error * quantizer) >> 8;
  } else {
    av1_model_rd_from_var_lapndz(sse, num_pels_log2_lookup[plane_bsize],
                                 p->dequant_QTX[1] >> dequant_shift, rate,
                                 dist);
  }
  *dist <<= 4;
}

// Fits a curve for rate and distortion using as feature:
// log2(sse_norm/qstep^2)
static AOM_INLINE void model_rd_with_curvfit(const AV1_COMP *const cpi,
                                             const MACROBLOCK *const x,
                                             BLOCK_SIZE plane_bsize, int plane,
                                             int64_t sse, int num_samples,
                                             int *rate, int64_t *dist) {
  (void)cpi;
  (void)plane_bsize;
  const MACROBLOCKD *const xd = &x->e_mbd;
  const struct macroblock_plane *const p = &x->plane[plane];
  const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3;
  const int qstep = AOMMAX(p->dequant_QTX[1] >> dequant_shift, 1);

  if (sse == 0) {
    if (rate) *rate = 0;
    if (dist) *dist = 0;
    return;
  }
  const double sse_norm = (double)sse / num_samples;
  const double qstepsqr = (double)qstep * qstep;
  const double xqr = log2(sse_norm / qstepsqr);
  double rate_f, dist_by_sse_norm_f;
  av1_model_rd_curvfit(plane_bsize, sse_norm, xqr, &rate_f,
                       &dist_by_sse_norm_f);

  const double dist_f = dist_by_sse_norm_f * sse_norm;
  int rate_i = (int)(AOMMAX(0.0, rate_f * num_samples) + 0.5);
  int64_t dist_i = (int64_t)(AOMMAX(0.0, dist_f * num_samples) + 0.5);

  // Check if skip is better
  if (rate_i == 0) {
    dist_i = sse << 4;
  } else if (RDCOST(x->rdmult, rate_i, dist_i) >=
             RDCOST(x->rdmult, 0, sse << 4)) {
    rate_i = 0;
    dist_i = sse << 4;
  }

  if (rate) *rate = rate_i;
  if (dist) *dist = dist_i;
}

static AOM_INLINE void model_rd_for_sb(
    const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd,
    int plane_from, int plane_to, int *out_rate_sum, int64_t *out_dist_sum,
    uint8_t *skip_txfm_sb, int64_t *skip_sse_sb, int *plane_rate,
    int64_t *plane_sse, int64_t *plane_dist) {
  // Note our transform coeffs are 8 times an orthogonal transform.
  // Hence quantizer step is also 8 times. To get effective quantizer
  // we need to divide by 8 before sending to modeling function.
  int plane;
  const int ref = xd->mi[0]->ref_frame[0];

  int64_t rate_sum = 0;
  int64_t dist_sum = 0;
  int64_t total_sse = 0;

  assert(bsize < BLOCK_SIZES_ALL);

  for (plane = plane_from; plane <= plane_to; ++plane) {
    if (plane && !xd->is_chroma_ref) break;
    struct macroblock_plane *const p = &x->plane[plane];
    struct macroblockd_plane *const pd = &xd->plane[plane];
    const BLOCK_SIZE plane_bsize =
        get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
    assert(plane_bsize < BLOCK_SIZES_ALL);
    const int bw = block_size_wide[plane_bsize];
    const int bh = block_size_high[plane_bsize];
    int64_t sse;
    int rate;
    int64_t dist;

    sse = calculate_sse(xd, p, pd, bw, bh);

    model_rd_from_sse(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, &dist);

    if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX);

    total_sse += sse;
    rate_sum += rate;
    dist_sum += dist;
    if (plane_rate) plane_rate[plane] = rate;
    if (plane_sse) plane_sse[plane] = sse;
    if (plane_dist) plane_dist[plane] = dist;
    assert(rate_sum >= 0);
  }

  if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0;
  if (skip_sse_sb) *skip_sse_sb = total_sse << 4;
  rate_sum = AOMMIN(rate_sum, INT_MAX);
  *out_rate_sum = (int)rate_sum;
  *out_dist_sum = dist_sum;
}

static AOM_INLINE void model_rd_for_sb_with_curvfit(
    const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd,
    int plane_from, int plane_to, int *out_rate_sum, int64_t *out_dist_sum,
    uint8_t *skip_txfm_sb, int64_t *skip_sse_sb, int *plane_rate,
    int64_t *plane_sse, int64_t *plane_dist) {
  // Note our transform coeffs are 8 times an orthogonal transform.
  // Hence quantizer step is also 8 times. To get effective quantizer
  // we need to divide by 8 before sending to modeling function.
  const int ref = xd->mi[0]->ref_frame[0];

  int64_t rate_sum = 0;
  int64_t dist_sum = 0;
  int64_t total_sse = 0;

  for (int plane = plane_from; plane <= plane_to; ++plane) {
    if (plane && !xd->is_chroma_ref) break;
    struct macroblockd_plane *const pd = &xd->plane[plane];
    const BLOCK_SIZE plane_bsize =
        get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
    int64_t dist, sse;
    int rate;
    int bw, bh;
    const struct macroblock_plane *const p = &x->plane[plane];
    get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL,
                       &bw, &bh);

    sse = calculate_sse(xd, p, pd, bw, bh);
    model_rd_with_curvfit(cpi, x, plane_bsize, plane, sse, bw * bh, &rate,
                          &dist);

    if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX);

    total_sse += sse;
    rate_sum += rate;
    dist_sum += dist;

    if (plane_rate) plane_rate[plane] = rate;
    if (plane_sse) plane_sse[plane] = sse;
    if (plane_dist) plane_dist[plane] = dist;
  }

  if (skip_txfm_sb) *skip_txfm_sb = rate_sum == 0;
  if (skip_sse_sb) *skip_sse_sb = total_sse << 4;
  *out_rate_sum = (int)rate_sum;
  *out_dist_sum = dist_sum;
}

enum { MODELRD_LEGACY, MODELRD_CURVFIT, MODELRD_TYPES } UENUM1BYTE(ModelRdType);

static const model_rd_for_sb_type model_rd_sb_fn[MODELRD_TYPES] = {
  model_rd_for_sb, model_rd_for_sb_with_curvfit
};

static const model_rd_from_sse_type model_rd_sse_fn[MODELRD_TYPES] = {
  model_rd_from_sse, model_rd_with_curvfit
};

#ifdef __cplusplus
}  // extern "C"
#endif
#endif  // AOM_AV1_ENCODER_MODEL_RD_H_