summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/pickrst.c
blob: b0d0d0bb78bf57eceed4c8e135a0e754c465ee03 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>
#include <float.h>
#include <limits.h>
#include <math.h>

#include "config/aom_scale_rtcd.h"
#include "config/av1_rtcd.h"

#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_writer.h"
#include "aom_dsp/mathutils.h"
#include "aom_dsp/psnr.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/quant_common.h"
#include "av1/common/restoration.h"

#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/picklpf.h"
#include "av1/encoder/pickrst.h"

// Number of Wiener iterations
#define NUM_WIENER_ITERS 5

// Penalty factor for use of dual sgr
#define DUAL_SGR_PENALTY_MULT 0.01

// Working precision for Wiener filter coefficients
#define WIENER_TAP_SCALE_FACTOR ((int64_t)1 << 16)

#define SGRPROJ_EP_GRP1_START_IDX 0
#define SGRPROJ_EP_GRP1_END_IDX 9
#define SGRPROJ_EP_GRP1_SEARCH_COUNT 4
#define SGRPROJ_EP_GRP2_3_SEARCH_COUNT 2
static const int sgproj_ep_grp1_seed[SGRPROJ_EP_GRP1_SEARCH_COUNT] = { 0, 3, 6,
                                                                       9 };
static const int sgproj_ep_grp2_3[SGRPROJ_EP_GRP2_3_SEARCH_COUNT][14] = {
  { 10, 10, 11, 11, 12, 12, 13, 13, 13, 13, -1, -1, -1, -1 },
  { 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15 }
};

#if DEBUG_LR_COSTING
RestorationUnitInfo lr_ref_params[RESTORE_TYPES][MAX_MB_PLANE]
                                 [MAX_LR_UNITS_W * MAX_LR_UNITS_H];
#endif  // DEBUG_LR_COSTING

typedef int64_t (*sse_extractor_type)(const YV12_BUFFER_CONFIG *a,
                                      const YV12_BUFFER_CONFIG *b);
typedef int64_t (*sse_part_extractor_type)(const YV12_BUFFER_CONFIG *a,
                                           const YV12_BUFFER_CONFIG *b,
                                           int hstart, int width, int vstart,
                                           int height);
typedef uint64_t (*var_part_extractor_type)(const YV12_BUFFER_CONFIG *a,
                                            int hstart, int width, int vstart,
                                            int height);

#if CONFIG_AV1_HIGHBITDEPTH
#define NUM_EXTRACTORS (3 * (1 + 1))
#else
#define NUM_EXTRACTORS 3
#endif
static const sse_part_extractor_type sse_part_extractors[NUM_EXTRACTORS] = {
  aom_get_y_sse_part,        aom_get_u_sse_part,
  aom_get_v_sse_part,
#if CONFIG_AV1_HIGHBITDEPTH
  aom_highbd_get_y_sse_part, aom_highbd_get_u_sse_part,
  aom_highbd_get_v_sse_part,
#endif
};
static const var_part_extractor_type var_part_extractors[NUM_EXTRACTORS] = {
  aom_get_y_var,        aom_get_u_var,        aom_get_v_var,
#if CONFIG_AV1_HIGHBITDEPTH
  aom_highbd_get_y_var, aom_highbd_get_u_var, aom_highbd_get_v_var,
#endif
};

static int64_t sse_restoration_unit(const RestorationTileLimits *limits,
                                    const YV12_BUFFER_CONFIG *src,
                                    const YV12_BUFFER_CONFIG *dst, int plane,
                                    int highbd) {
  return sse_part_extractors[3 * highbd + plane](
      src, dst, limits->h_start, limits->h_end - limits->h_start,
      limits->v_start, limits->v_end - limits->v_start);
}

static uint64_t var_restoration_unit(const RestorationTileLimits *limits,
                                     const YV12_BUFFER_CONFIG *src, int plane,
                                     int highbd) {
  return var_part_extractors[3 * highbd + plane](
      src, limits->h_start, limits->h_end - limits->h_start, limits->v_start,
      limits->v_end - limits->v_start);
}

typedef struct {
  const YV12_BUFFER_CONFIG *src;
  YV12_BUFFER_CONFIG *dst;

  const AV1_COMMON *cm;
  const MACROBLOCK *x;
  int plane;
  int plane_w;
  int plane_h;
  RestUnitSearchInfo *rusi;

  // Speed features
  const LOOP_FILTER_SPEED_FEATURES *lpf_sf;

  uint8_t *dgd_buffer;
  int dgd_stride;
  const uint8_t *src_buffer;
  int src_stride;

  // SSE values for each restoration mode for the current RU
  // These are saved by each search function for use in search_switchable()
  int64_t sse[RESTORE_SWITCHABLE_TYPES];

  // This flag will be set based on the speed feature
  // 'prune_sgr_based_on_wiener'. 0 implies no pruning and 1 implies pruning.
  uint8_t skip_sgr_eval;

  // Total rate and distortion so far for each restoration type
  // These are initialised by reset_rsc in search_rest_type
  int64_t total_sse[RESTORE_TYPES];
  int64_t total_bits[RESTORE_TYPES];

  // Reference parameters for delta-coding
  //
  // For each restoration type, we need to store the latest parameter set which
  // has been used, so that we can properly cost up the next parameter set.
  // Note that we have two sets of these - one for the single-restoration-mode
  // search (ie, frame_restoration_type = RESTORE_WIENER or RESTORE_SGRPROJ)
  // and one for the switchable mode. This is because these two cases can lead
  // to different sets of parameters being signaled, but we don't know which
  // we will pick for sure until the end of the search process.
  WienerInfo ref_wiener;
  SgrprojInfo ref_sgrproj;
  WienerInfo switchable_ref_wiener;
  SgrprojInfo switchable_ref_sgrproj;

  // Buffers used to hold dgd-avg and src-avg data respectively during SIMD
  // call of Wiener filter.
  int16_t *dgd_avg;
  int16_t *src_avg;
} RestSearchCtxt;

static AOM_INLINE void rsc_on_tile(void *priv) {
  RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
  set_default_wiener(&rsc->ref_wiener);
  set_default_sgrproj(&rsc->ref_sgrproj);
  set_default_wiener(&rsc->switchable_ref_wiener);
  set_default_sgrproj(&rsc->switchable_ref_sgrproj);
}

static AOM_INLINE void reset_rsc(RestSearchCtxt *rsc) {
  memset(rsc->total_sse, 0, sizeof(rsc->total_sse));
  memset(rsc->total_bits, 0, sizeof(rsc->total_bits));
}

static AOM_INLINE void init_rsc(const YV12_BUFFER_CONFIG *src,
                                const AV1_COMMON *cm, const MACROBLOCK *x,
                                const LOOP_FILTER_SPEED_FEATURES *lpf_sf,
                                int plane, RestUnitSearchInfo *rusi,
                                YV12_BUFFER_CONFIG *dst, RestSearchCtxt *rsc) {
  rsc->src = src;
  rsc->dst = dst;
  rsc->cm = cm;
  rsc->x = x;
  rsc->plane = plane;
  rsc->rusi = rusi;
  rsc->lpf_sf = lpf_sf;

  const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf;
  const int is_uv = plane != AOM_PLANE_Y;
  int plane_w, plane_h;
  av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
  assert(plane_w == src->crop_widths[is_uv]);
  assert(plane_h == src->crop_heights[is_uv]);
  assert(src->crop_widths[is_uv] == dgd->crop_widths[is_uv]);
  assert(src->crop_heights[is_uv] == dgd->crop_heights[is_uv]);

  rsc->plane_w = plane_w;
  rsc->plane_h = plane_h;
  rsc->src_buffer = src->buffers[plane];
  rsc->src_stride = src->strides[is_uv];
  rsc->dgd_buffer = dgd->buffers[plane];
  rsc->dgd_stride = dgd->strides[is_uv];
}

static int64_t try_restoration_unit(const RestSearchCtxt *rsc,
                                    const RestorationTileLimits *limits,
                                    const RestorationUnitInfo *rui) {
  const AV1_COMMON *const cm = rsc->cm;
  const int plane = rsc->plane;
  const int is_uv = plane > 0;
  const RestorationInfo *rsi = &cm->rst_info[plane];
  RestorationLineBuffers rlbs;
  const int bit_depth = cm->seq_params->bit_depth;
  const int highbd = cm->seq_params->use_highbitdepth;

  const YV12_BUFFER_CONFIG *fts = &cm->cur_frame->buf;
  // TODO(yunqing): For now, only use optimized LR filter in decoder. Can be
  // also used in encoder.
  const int optimized_lr = 0;

  av1_loop_restoration_filter_unit(
      limits, rui, &rsi->boundaries, &rlbs, rsc->plane_w, rsc->plane_h,
      is_uv && cm->seq_params->subsampling_x,
      is_uv && cm->seq_params->subsampling_y, highbd, bit_depth,
      fts->buffers[plane], fts->strides[is_uv], rsc->dst->buffers[plane],
      rsc->dst->strides[is_uv], cm->rst_tmpbuf, optimized_lr, cm->error);

  return sse_restoration_unit(limits, rsc->src, rsc->dst, plane, highbd);
}

int64_t av1_lowbd_pixel_proj_error_c(const uint8_t *src8, int width, int height,
                                     int src_stride, const uint8_t *dat8,
                                     int dat_stride, int32_t *flt0,
                                     int flt0_stride, int32_t *flt1,
                                     int flt1_stride, int xq[2],
                                     const sgr_params_type *params) {
  int i, j;
  const uint8_t *src = src8;
  const uint8_t *dat = dat8;
  int64_t err = 0;
  if (params->r[0] > 0 && params->r[1] > 0) {
    for (i = 0; i < height; ++i) {
      for (j = 0; j < width; ++j) {
        assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15));
        assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15));
        const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS);
        int32_t v = u << SGRPROJ_PRJ_BITS;
        v += xq[0] * (flt0[j] - u) + xq[1] * (flt1[j] - u);
        const int32_t e =
            ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j];
        err += ((int64_t)e * e);
      }
      dat += dat_stride;
      src += src_stride;
      flt0 += flt0_stride;
      flt1 += flt1_stride;
    }
  } else if (params->r[0] > 0) {
    for (i = 0; i < height; ++i) {
      for (j = 0; j < width; ++j) {
        assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15));
        const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS);
        int32_t v = u << SGRPROJ_PRJ_BITS;
        v += xq[0] * (flt0[j] - u);
        const int32_t e =
            ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j];
        err += ((int64_t)e * e);
      }
      dat += dat_stride;
      src += src_stride;
      flt0 += flt0_stride;
    }
  } else if (params->r[1] > 0) {
    for (i = 0; i < height; ++i) {
      for (j = 0; j < width; ++j) {
        assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15));
        const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS);
        int32_t v = u << SGRPROJ_PRJ_BITS;
        v += xq[1] * (flt1[j] - u);
        const int32_t e =
            ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j];
        err += ((int64_t)e * e);
      }
      dat += dat_stride;
      src += src_stride;
      flt1 += flt1_stride;
    }
  } else {
    for (i = 0; i < height; ++i) {
      for (j = 0; j < width; ++j) {
        const int32_t e = (int32_t)(dat[j]) - src[j];
        err += ((int64_t)e * e);
      }
      dat += dat_stride;
      src += src_stride;
    }
  }

  return err;
}

#if CONFIG_AV1_HIGHBITDEPTH
int64_t av1_highbd_pixel_proj_error_c(const uint8_t *src8, int width,
                                      int height, int src_stride,
                                      const uint8_t *dat8, int dat_stride,
                                      int32_t *flt0, int flt0_stride,
                                      int32_t *flt1, int flt1_stride, int xq[2],
                                      const sgr_params_type *params) {
  const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
  const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
  int i, j;
  int64_t err = 0;
  const int32_t half = 1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1);
  if (params->r[0] > 0 && params->r[1] > 0) {
    int xq0 = xq[0];
    int xq1 = xq[1];
    for (i = 0; i < height; ++i) {
      for (j = 0; j < width; ++j) {
        const int32_t d = dat[j];
        const int32_t s = src[j];
        const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS);
        int32_t v0 = flt0[j] - u;
        int32_t v1 = flt1[j] - u;
        int32_t v = half;
        v += xq0 * v0;
        v += xq1 * v1;
        const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s;
        err += ((int64_t)e * e);
      }
      dat += dat_stride;
      flt0 += flt0_stride;
      flt1 += flt1_stride;
      src += src_stride;
    }
  } else if (params->r[0] > 0 || params->r[1] > 0) {
    int exq;
    int32_t *flt;
    int flt_stride;
    if (params->r[0] > 0) {
      exq = xq[0];
      flt = flt0;
      flt_stride = flt0_stride;
    } else {
      exq = xq[1];
      flt = flt1;
      flt_stride = flt1_stride;
    }
    for (i = 0; i < height; ++i) {
      for (j = 0; j < width; ++j) {
        const int32_t d = dat[j];
        const int32_t s = src[j];
        const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS);
        int32_t v = half;
        v += exq * (flt[j] - u);
        const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s;
        err += ((int64_t)e * e);
      }
      dat += dat_stride;
      flt += flt_stride;
      src += src_stride;
    }
  } else {
    for (i = 0; i < height; ++i) {
      for (j = 0; j < width; ++j) {
        const int32_t d = dat[j];
        const int32_t s = src[j];
        const int32_t e = d - s;
        err += ((int64_t)e * e);
      }
      dat += dat_stride;
      src += src_stride;
    }
  }
  return err;
}
#endif  // CONFIG_AV1_HIGHBITDEPTH

static int64_t get_pixel_proj_error(const uint8_t *src8, int width, int height,
                                    int src_stride, const uint8_t *dat8,
                                    int dat_stride, int use_highbitdepth,
                                    int32_t *flt0, int flt0_stride,
                                    int32_t *flt1, int flt1_stride, int *xqd,
                                    const sgr_params_type *params) {
  int xq[2];
  av1_decode_xq(xqd, xq, params);

#if CONFIG_AV1_HIGHBITDEPTH
  if (use_highbitdepth) {
    return av1_highbd_pixel_proj_error(src8, width, height, src_stride, dat8,
                                       dat_stride, flt0, flt0_stride, flt1,
                                       flt1_stride, xq, params);

  } else {
    return av1_lowbd_pixel_proj_error(src8, width, height, src_stride, dat8,
                                      dat_stride, flt0, flt0_stride, flt1,
                                      flt1_stride, xq, params);
  }
#else
  (void)use_highbitdepth;
  return av1_lowbd_pixel_proj_error(src8, width, height, src_stride, dat8,
                                    dat_stride, flt0, flt0_stride, flt1,
                                    flt1_stride, xq, params);
#endif
}

#define USE_SGRPROJ_REFINEMENT_SEARCH 1
static int64_t finer_search_pixel_proj_error(
    const uint8_t *src8, int width, int height, int src_stride,
    const uint8_t *dat8, int dat_stride, int use_highbitdepth, int32_t *flt0,
    int flt0_stride, int32_t *flt1, int flt1_stride, int start_step, int *xqd,
    const sgr_params_type *params) {
  int64_t err = get_pixel_proj_error(
      src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0,
      flt0_stride, flt1, flt1_stride, xqd, params);
  (void)start_step;
#if USE_SGRPROJ_REFINEMENT_SEARCH
  int64_t err2;
  int tap_min[] = { SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MIN1 };
  int tap_max[] = { SGRPROJ_PRJ_MAX0, SGRPROJ_PRJ_MAX1 };
  for (int s = start_step; s >= 1; s >>= 1) {
    for (int p = 0; p < 2; ++p) {
      if ((params->r[0] == 0 && p == 0) || (params->r[1] == 0 && p == 1)) {
        continue;
      }
      int skip = 0;
      do {
        if (xqd[p] - s >= tap_min[p]) {
          xqd[p] -= s;
          err2 =
              get_pixel_proj_error(src8, width, height, src_stride, dat8,
                                   dat_stride, use_highbitdepth, flt0,
                                   flt0_stride, flt1, flt1_stride, xqd, params);
          if (err2 > err) {
            xqd[p] += s;
          } else {
            err = err2;
            skip = 1;
            // At the highest step size continue moving in the same direction
            if (s == start_step) continue;
          }
        }
        break;
      } while (1);
      if (skip) break;
      do {
        if (xqd[p] + s <= tap_max[p]) {
          xqd[p] += s;
          err2 =
              get_pixel_proj_error(src8, width, height, src_stride, dat8,
                                   dat_stride, use_highbitdepth, flt0,
                                   flt0_stride, flt1, flt1_stride, xqd, params);
          if (err2 > err) {
            xqd[p] -= s;
          } else {
            err = err2;
            // At the highest step size continue moving in the same direction
            if (s == start_step) continue;
          }
        }
        break;
      } while (1);
    }
  }
#endif  // USE_SGRPROJ_REFINEMENT_SEARCH
  return err;
}

static int64_t signed_rounded_divide(int64_t dividend, int64_t divisor) {
  if (dividend < 0)
    return (dividend - divisor / 2) / divisor;
  else
    return (dividend + divisor / 2) / divisor;
}

static AOM_INLINE void calc_proj_params_r0_r1_c(
    const uint8_t *src8, int width, int height, int src_stride,
    const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
    int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
  const int size = width * height;
  const uint8_t *src = src8;
  const uint8_t *dat = dat8;
  for (int i = 0; i < height; ++i) {
    for (int j = 0; j < width; ++j) {
      const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
      const int32_t s =
          (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
      const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u;
      const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u;
      H[0][0] += (int64_t)f1 * f1;
      H[1][1] += (int64_t)f2 * f2;
      H[0][1] += (int64_t)f1 * f2;
      C[0] += (int64_t)f1 * s;
      C[1] += (int64_t)f2 * s;
    }
  }
  H[0][0] /= size;
  H[0][1] /= size;
  H[1][1] /= size;
  H[1][0] = H[0][1];
  C[0] /= size;
  C[1] /= size;
}

static AOM_INLINE void calc_proj_params_r0_r1_high_bd_c(
    const uint8_t *src8, int width, int height, int src_stride,
    const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
    int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
  const int size = width * height;
  const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
  const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
  for (int i = 0; i < height; ++i) {
    for (int j = 0; j < width; ++j) {
      const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
      const int32_t s =
          (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
      const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u;
      const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u;
      H[0][0] += (int64_t)f1 * f1;
      H[1][1] += (int64_t)f2 * f2;
      H[0][1] += (int64_t)f1 * f2;
      C[0] += (int64_t)f1 * s;
      C[1] += (int64_t)f2 * s;
    }
  }
  H[0][0] /= size;
  H[0][1] /= size;
  H[1][1] /= size;
  H[1][0] = H[0][1];
  C[0] /= size;
  C[1] /= size;
}

static AOM_INLINE void calc_proj_params_r0_c(const uint8_t *src8, int width,
                                             int height, int src_stride,
                                             const uint8_t *dat8,
                                             int dat_stride, int32_t *flt0,
                                             int flt0_stride, int64_t H[2][2],
                                             int64_t C[2]) {
  const int size = width * height;
  const uint8_t *src = src8;
  const uint8_t *dat = dat8;
  for (int i = 0; i < height; ++i) {
    for (int j = 0; j < width; ++j) {
      const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
      const int32_t s =
          (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
      const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u;
      H[0][0] += (int64_t)f1 * f1;
      C[0] += (int64_t)f1 * s;
    }
  }
  H[0][0] /= size;
  C[0] /= size;
}

static AOM_INLINE void calc_proj_params_r0_high_bd_c(
    const uint8_t *src8, int width, int height, int src_stride,
    const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
    int64_t H[2][2], int64_t C[2]) {
  const int size = width * height;
  const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
  const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
  for (int i = 0; i < height; ++i) {
    for (int j = 0; j < width; ++j) {
      const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
      const int32_t s =
          (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
      const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u;
      H[0][0] += (int64_t)f1 * f1;
      C[0] += (int64_t)f1 * s;
    }
  }
  H[0][0] /= size;
  C[0] /= size;
}

static AOM_INLINE void calc_proj_params_r1_c(const uint8_t *src8, int width,
                                             int height, int src_stride,
                                             const uint8_t *dat8,
                                             int dat_stride, int32_t *flt1,
                                             int flt1_stride, int64_t H[2][2],
                                             int64_t C[2]) {
  const int size = width * height;
  const uint8_t *src = src8;
  const uint8_t *dat = dat8;
  for (int i = 0; i < height; ++i) {
    for (int j = 0; j < width; ++j) {
      const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
      const int32_t s =
          (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
      const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u;
      H[1][1] += (int64_t)f2 * f2;
      C[1] += (int64_t)f2 * s;
    }
  }
  H[1][1] /= size;
  C[1] /= size;
}

static AOM_INLINE void calc_proj_params_r1_high_bd_c(
    const uint8_t *src8, int width, int height, int src_stride,
    const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride,
    int64_t H[2][2], int64_t C[2]) {
  const int size = width * height;
  const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
  const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
  for (int i = 0; i < height; ++i) {
    for (int j = 0; j < width; ++j) {
      const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
      const int32_t s =
          (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
      const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u;
      H[1][1] += (int64_t)f2 * f2;
      C[1] += (int64_t)f2 * s;
    }
  }
  H[1][1] /= size;
  C[1] /= size;
}

// The function calls 3 subfunctions for the following cases :
// 1) When params->r[0] > 0 and params->r[1] > 0. In this case all elements
// of C and H need to be computed.
// 2) When only params->r[0] > 0. In this case only H[0][0] and C[0] are
// non-zero and need to be computed.
// 3) When only params->r[1] > 0. In this case only H[1][1] and C[1] are
// non-zero and need to be computed.
void av1_calc_proj_params_c(const uint8_t *src8, int width, int height,
                            int src_stride, const uint8_t *dat8, int dat_stride,
                            int32_t *flt0, int flt0_stride, int32_t *flt1,
                            int flt1_stride, int64_t H[2][2], int64_t C[2],
                            const sgr_params_type *params) {
  if ((params->r[0] > 0) && (params->r[1] > 0)) {
    calc_proj_params_r0_r1_c(src8, width, height, src_stride, dat8, dat_stride,
                             flt0, flt0_stride, flt1, flt1_stride, H, C);
  } else if (params->r[0] > 0) {
    calc_proj_params_r0_c(src8, width, height, src_stride, dat8, dat_stride,
                          flt0, flt0_stride, H, C);
  } else if (params->r[1] > 0) {
    calc_proj_params_r1_c(src8, width, height, src_stride, dat8, dat_stride,
                          flt1, flt1_stride, H, C);
  }
}

void av1_calc_proj_params_high_bd_c(const uint8_t *src8, int width, int height,
                                    int src_stride, const uint8_t *dat8,
                                    int dat_stride, int32_t *flt0,
                                    int flt0_stride, int32_t *flt1,
                                    int flt1_stride, int64_t H[2][2],
                                    int64_t C[2],
                                    const sgr_params_type *params) {
  if ((params->r[0] > 0) && (params->r[1] > 0)) {
    calc_proj_params_r0_r1_high_bd_c(src8, width, height, src_stride, dat8,
                                     dat_stride, flt0, flt0_stride, flt1,
                                     flt1_stride, H, C);
  } else if (params->r[0] > 0) {
    calc_proj_params_r0_high_bd_c(src8, width, height, src_stride, dat8,
                                  dat_stride, flt0, flt0_stride, H, C);
  } else if (params->r[1] > 0) {
    calc_proj_params_r1_high_bd_c(src8, width, height, src_stride, dat8,
                                  dat_stride, flt1, flt1_stride, H, C);
  }
}

static AOM_INLINE void get_proj_subspace(const uint8_t *src8, int width,
                                         int height, int src_stride,
                                         const uint8_t *dat8, int dat_stride,
                                         int use_highbitdepth, int32_t *flt0,
                                         int flt0_stride, int32_t *flt1,
                                         int flt1_stride, int *xq,
                                         const sgr_params_type *params) {
  int64_t H[2][2] = { { 0, 0 }, { 0, 0 } };
  int64_t C[2] = { 0, 0 };

  // Default values to be returned if the problem becomes ill-posed
  xq[0] = 0;
  xq[1] = 0;

  if (!use_highbitdepth) {
    if ((width & 0x7) == 0) {
      av1_calc_proj_params(src8, width, height, src_stride, dat8, dat_stride,
                           flt0, flt0_stride, flt1, flt1_stride, H, C, params);
    } else {
      av1_calc_proj_params_c(src8, width, height, src_stride, dat8, dat_stride,
                             flt0, flt0_stride, flt1, flt1_stride, H, C,
                             params);
    }
  }
#if CONFIG_AV1_HIGHBITDEPTH
  else {  // NOLINT
    if ((width & 0x7) == 0) {
      av1_calc_proj_params_high_bd(src8, width, height, src_stride, dat8,
                                   dat_stride, flt0, flt0_stride, flt1,
                                   flt1_stride, H, C, params);
    } else {
      av1_calc_proj_params_high_bd_c(src8, width, height, src_stride, dat8,
                                     dat_stride, flt0, flt0_stride, flt1,
                                     flt1_stride, H, C, params);
    }
  }
#endif

  if (params->r[0] == 0) {
    // H matrix is now only the scalar H[1][1]
    // C vector is now only the scalar C[1]
    const int64_t Det = H[1][1];
    if (Det == 0) return;  // ill-posed, return default values
    xq[0] = 0;
    xq[1] = (int)signed_rounded_divide(C[1] * (1 << SGRPROJ_PRJ_BITS), Det);
  } else if (params->r[1] == 0) {
    // H matrix is now only the scalar H[0][0]
    // C vector is now only the scalar C[0]
    const int64_t Det = H[0][0];
    if (Det == 0) return;  // ill-posed, return default values
    xq[0] = (int)signed_rounded_divide(C[0] * (1 << SGRPROJ_PRJ_BITS), Det);
    xq[1] = 0;
  } else {
    const int64_t Det = H[0][0] * H[1][1] - H[0][1] * H[1][0];
    if (Det == 0) return;  // ill-posed, return default values

    // If scaling up dividend would overflow, instead scale down the divisor
    const int64_t div1 = H[1][1] * C[0] - H[0][1] * C[1];
    if ((div1 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div1) ||
        (div1 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div1))
      xq[0] = (int)signed_rounded_divide(div1, Det / (1 << SGRPROJ_PRJ_BITS));
    else
      xq[0] = (int)signed_rounded_divide(div1 * (1 << SGRPROJ_PRJ_BITS), Det);

    const int64_t div2 = H[0][0] * C[1] - H[1][0] * C[0];
    if ((div2 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div2) ||
        (div2 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div2))
      xq[1] = (int)signed_rounded_divide(div2, Det / (1 << SGRPROJ_PRJ_BITS));
    else
      xq[1] = (int)signed_rounded_divide(div2 * (1 << SGRPROJ_PRJ_BITS), Det);
  }
}

static AOM_INLINE void encode_xq(int *xq, int *xqd,
                                 const sgr_params_type *params) {
  if (params->r[0] == 0) {
    xqd[0] = 0;
    xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xq[1], SGRPROJ_PRJ_MIN1,
                   SGRPROJ_PRJ_MAX1);
  } else if (params->r[1] == 0) {
    xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0);
    xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0], SGRPROJ_PRJ_MIN1,
                   SGRPROJ_PRJ_MAX1);
  } else {
    xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0);
    xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0] - xq[1], SGRPROJ_PRJ_MIN1,
                   SGRPROJ_PRJ_MAX1);
  }
}

// Apply the self-guided filter across an entire restoration unit.
static AOM_INLINE void apply_sgr(int sgr_params_idx, const uint8_t *dat8,
                                 int width, int height, int dat_stride,
                                 int use_highbd, int bit_depth, int pu_width,
                                 int pu_height, int32_t *flt0, int32_t *flt1,
                                 int flt_stride,
                                 struct aom_internal_error_info *error_info) {
  for (int i = 0; i < height; i += pu_height) {
    const int h = AOMMIN(pu_height, height - i);
    int32_t *flt0_row = flt0 + i * flt_stride;
    int32_t *flt1_row = flt1 + i * flt_stride;
    const uint8_t *dat8_row = dat8 + i * dat_stride;

    // Iterate over the stripe in blocks of width pu_width
    for (int j = 0; j < width; j += pu_width) {
      const int w = AOMMIN(pu_width, width - j);
      if (av1_selfguided_restoration(
              dat8_row + j, w, h, dat_stride, flt0_row + j, flt1_row + j,
              flt_stride, sgr_params_idx, bit_depth, use_highbd) != 0) {
        aom_internal_error(
            error_info, AOM_CODEC_MEM_ERROR,
            "Error allocating buffer in av1_selfguided_restoration");
      }
    }
  }
}

static AOM_INLINE void compute_sgrproj_err(
    const uint8_t *dat8, const int width, const int height,
    const int dat_stride, const uint8_t *src8, const int src_stride,
    const int use_highbitdepth, const int bit_depth, const int pu_width,
    const int pu_height, const int ep, int32_t *flt0, int32_t *flt1,
    const int flt_stride, int *exqd, int64_t *err,
    struct aom_internal_error_info *error_info) {
  int exq[2];
  apply_sgr(ep, dat8, width, height, dat_stride, use_highbitdepth, bit_depth,
            pu_width, pu_height, flt0, flt1, flt_stride, error_info);
  const sgr_params_type *const params = &av1_sgr_params[ep];
  get_proj_subspace(src8, width, height, src_stride, dat8, dat_stride,
                    use_highbitdepth, flt0, flt_stride, flt1, flt_stride, exq,
                    params);
  encode_xq(exq, exqd, params);
  *err = finer_search_pixel_proj_error(
      src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0,
      flt_stride, flt1, flt_stride, 2, exqd, params);
}

static AOM_INLINE void get_best_error(int64_t *besterr, const int64_t err,
                                      const int *exqd, int *bestxqd,
                                      int *bestep, const int ep) {
  if (*besterr == -1 || err < *besterr) {
    *bestep = ep;
    *besterr = err;
    bestxqd[0] = exqd[0];
    bestxqd[1] = exqd[1];
  }
}

static SgrprojInfo search_selfguided_restoration(
    const uint8_t *dat8, int width, int height, int dat_stride,
    const uint8_t *src8, int src_stride, int use_highbitdepth, int bit_depth,
    int pu_width, int pu_height, int32_t *rstbuf, int enable_sgr_ep_pruning,
    struct aom_internal_error_info *error_info) {
  int32_t *flt0 = rstbuf;
  int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX;
  int ep, idx, bestep = 0;
  int64_t besterr = -1;
  int exqd[2], bestxqd[2] = { 0, 0 };
  int flt_stride = ((width + 7) & ~7) + 8;
  assert(pu_width == (RESTORATION_PROC_UNIT_SIZE >> 1) ||
         pu_width == RESTORATION_PROC_UNIT_SIZE);
  assert(pu_height == (RESTORATION_PROC_UNIT_SIZE >> 1) ||
         pu_height == RESTORATION_PROC_UNIT_SIZE);
  if (!enable_sgr_ep_pruning) {
    for (ep = 0; ep < SGRPROJ_PARAMS; ep++) {
      int64_t err;
      compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride,
                          use_highbitdepth, bit_depth, pu_width, pu_height, ep,
                          flt0, flt1, flt_stride, exqd, &err, error_info);
      get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
    }
  } else {
    // evaluate first four seed ep in first group
    for (idx = 0; idx < SGRPROJ_EP_GRP1_SEARCH_COUNT; idx++) {
      ep = sgproj_ep_grp1_seed[idx];
      int64_t err;
      compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride,
                          use_highbitdepth, bit_depth, pu_width, pu_height, ep,
                          flt0, flt1, flt_stride, exqd, &err, error_info);
      get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
    }
    // evaluate left and right ep of winner in seed ep
    int bestep_ref = bestep;
    for (ep = bestep_ref - 1; ep < bestep_ref + 2; ep += 2) {
      if (ep < SGRPROJ_EP_GRP1_START_IDX || ep > SGRPROJ_EP_GRP1_END_IDX)
        continue;
      int64_t err;
      compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride,
                          use_highbitdepth, bit_depth, pu_width, pu_height, ep,
                          flt0, flt1, flt_stride, exqd, &err, error_info);
      get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
    }
    // evaluate last two group
    for (idx = 0; idx < SGRPROJ_EP_GRP2_3_SEARCH_COUNT; idx++) {
      ep = sgproj_ep_grp2_3[idx][bestep];
      int64_t err;
      compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride,
                          use_highbitdepth, bit_depth, pu_width, pu_height, ep,
                          flt0, flt1, flt_stride, exqd, &err, error_info);
      get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
    }
  }

  SgrprojInfo ret;
  ret.ep = bestep;
  ret.xqd[0] = bestxqd[0];
  ret.xqd[1] = bestxqd[1];
  return ret;
}

static int count_sgrproj_bits(SgrprojInfo *sgrproj_info,
                              SgrprojInfo *ref_sgrproj_info) {
  int bits = SGRPROJ_PARAMS_BITS;
  const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
  if (params->r[0] > 0)
    bits += aom_count_primitive_refsubexpfin(
        SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
        ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
        sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
  if (params->r[1] > 0)
    bits += aom_count_primitive_refsubexpfin(
        SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
        ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
        sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
  return bits;
}

static AOM_INLINE void search_sgrproj(
    const RestorationTileLimits *limits, int rest_unit_idx, void *priv,
    int32_t *tmpbuf, RestorationLineBuffers *rlbs,
    struct aom_internal_error_info *error_info) {
  (void)rlbs;
  RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
  RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];

  const MACROBLOCK *const x = rsc->x;
  const AV1_COMMON *const cm = rsc->cm;
  const int highbd = cm->seq_params->use_highbitdepth;
  const int bit_depth = cm->seq_params->bit_depth;

  const int64_t bits_none = x->mode_costs.sgrproj_restore_cost[0];
  // Prune evaluation of RESTORE_SGRPROJ if 'skip_sgr_eval' is set
  if (rsc->skip_sgr_eval) {
    rsc->total_bits[RESTORE_SGRPROJ] += bits_none;
    rsc->total_sse[RESTORE_SGRPROJ] += rsc->sse[RESTORE_NONE];
    rusi->best_rtype[RESTORE_SGRPROJ - 1] = RESTORE_NONE;
    rsc->sse[RESTORE_SGRPROJ] = INT64_MAX;
    return;
  }

  uint8_t *dgd_start =
      rsc->dgd_buffer + limits->v_start * rsc->dgd_stride + limits->h_start;
  const uint8_t *src_start =
      rsc->src_buffer + limits->v_start * rsc->src_stride + limits->h_start;

  const int is_uv = rsc->plane > 0;
  const int ss_x = is_uv && cm->seq_params->subsampling_x;
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
  const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x;
  const int procunit_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;

  rusi->sgrproj = search_selfguided_restoration(
      dgd_start, limits->h_end - limits->h_start,
      limits->v_end - limits->v_start, rsc->dgd_stride, src_start,
      rsc->src_stride, highbd, bit_depth, procunit_width, procunit_height,
      tmpbuf, rsc->lpf_sf->enable_sgr_ep_pruning, error_info);

  RestorationUnitInfo rui;
  rui.restoration_type = RESTORE_SGRPROJ;
  rui.sgrproj_info = rusi->sgrproj;

  rsc->sse[RESTORE_SGRPROJ] = try_restoration_unit(rsc, limits, &rui);

  const int64_t bits_sgr =
      x->mode_costs.sgrproj_restore_cost[1] +
      (count_sgrproj_bits(&rusi->sgrproj, &rsc->ref_sgrproj)
       << AV1_PROB_COST_SHIFT);
  double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST(
      x->rdmult, bits_none >> 4, rsc->sse[RESTORE_NONE], bit_depth);
  double cost_sgr = RDCOST_DBL_WITH_NATIVE_BD_DIST(
      x->rdmult, bits_sgr >> 4, rsc->sse[RESTORE_SGRPROJ], bit_depth);
  if (rusi->sgrproj.ep < 10)
    cost_sgr *=
        (1 + DUAL_SGR_PENALTY_MULT * rsc->lpf_sf->dual_sgr_penalty_level);

  RestorationType rtype =
      (cost_sgr < cost_none) ? RESTORE_SGRPROJ : RESTORE_NONE;
  rusi->best_rtype[RESTORE_SGRPROJ - 1] = rtype;

#if DEBUG_LR_COSTING
  // Store ref params for later checking
  lr_ref_params[RESTORE_SGRPROJ][rsc->plane][rest_unit_idx].sgrproj_info =
      rsc->ref_sgrproj;
#endif  // DEBUG_LR_COSTING

  rsc->total_sse[RESTORE_SGRPROJ] += rsc->sse[rtype];
  rsc->total_bits[RESTORE_SGRPROJ] +=
      (cost_sgr < cost_none) ? bits_sgr : bits_none;
  if (cost_sgr < cost_none) rsc->ref_sgrproj = rusi->sgrproj;
}

static void acc_stat_one_line(const uint8_t *dgd, const uint8_t *src,
                              int dgd_stride, int h_start, int h_end,
                              uint8_t avg, const int wiener_halfwin,
                              const int wiener_win2, int32_t *M_int32,
                              int32_t *H_int32, int count) {
  int j, k, l;
  int16_t Y[WIENER_WIN2];

  for (j = h_start; j < h_end; j++) {
    const int16_t X = (int16_t)src[j] - (int16_t)avg;
    int idx = 0;
    for (k = -wiener_halfwin; k <= wiener_halfwin; k++) {
      for (l = -wiener_halfwin; l <= wiener_halfwin; l++) {
        Y[idx] =
            (int16_t)dgd[(count + l) * dgd_stride + (j + k)] - (int16_t)avg;
        idx++;
      }
    }
    assert(idx == wiener_win2);
    for (k = 0; k < wiener_win2; ++k) {
      M_int32[k] += (int32_t)Y[k] * X;
      for (l = k; l < wiener_win2; ++l) {
        // H is a symmetric matrix, so we only need to fill out the upper
        // triangle here. We can copy it down to the lower triangle outside
        // the (i, j) loops.
        H_int32[k * wiener_win2 + l] += (int32_t)Y[k] * Y[l];
      }
    }
  }
}

void av1_compute_stats_c(int wiener_win, const uint8_t *dgd, const uint8_t *src,
                         int16_t *dgd_avg, int16_t *src_avg, int h_start,
                         int h_end, int v_start, int v_end, int dgd_stride,
                         int src_stride, int64_t *M, int64_t *H,
                         int use_downsampled_wiener_stats) {
  (void)dgd_avg;
  (void)src_avg;
  int i, k, l;
  const int wiener_win2 = wiener_win * wiener_win;
  const int wiener_halfwin = (wiener_win >> 1);
  uint8_t avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
  int32_t M_row[WIENER_WIN2] = { 0 };
  int32_t H_row[WIENER_WIN2 * WIENER_WIN2] = { 0 };
  int downsample_factor =
      use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;

  memset(M, 0, sizeof(*M) * wiener_win2);
  memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2);

  for (i = v_start; i < v_end; i = i + downsample_factor) {
    if (use_downsampled_wiener_stats &&
        (v_end - i < WIENER_STATS_DOWNSAMPLE_FACTOR)) {
      downsample_factor = v_end - i;
    }

    memset(M_row, 0, sizeof(int32_t) * WIENER_WIN2);
    memset(H_row, 0, sizeof(int32_t) * WIENER_WIN2 * WIENER_WIN2);
    acc_stat_one_line(dgd, src + i * src_stride, dgd_stride, h_start, h_end,
                      avg, wiener_halfwin, wiener_win2, M_row, H_row, i);

    for (k = 0; k < wiener_win2; ++k) {
      // Scale M matrix based on the downsampling factor
      M[k] += ((int64_t)M_row[k] * downsample_factor);
      for (l = k; l < wiener_win2; ++l) {
        // H is a symmetric matrix, so we only need to fill out the upper
        // triangle here. We can copy it down to the lower triangle outside
        // the (i, j) loops.
        // Scale H Matrix based on the downsampling factor
        H[k * wiener_win2 + l] +=
            ((int64_t)H_row[k * wiener_win2 + l] * downsample_factor);
      }
    }
  }

  for (k = 0; k < wiener_win2; ++k) {
    for (l = k + 1; l < wiener_win2; ++l) {
      H[l * wiener_win2 + k] = H[k * wiener_win2 + l];
    }
  }
}

#if CONFIG_AV1_HIGHBITDEPTH
void av1_compute_stats_highbd_c(int wiener_win, const uint8_t *dgd8,
                                const uint8_t *src8, int h_start, int h_end,
                                int v_start, int v_end, int dgd_stride,
                                int src_stride, int64_t *M, int64_t *H,
                                aom_bit_depth_t bit_depth) {
  int i, j, k, l;
  int32_t Y[WIENER_WIN2];
  const int wiener_win2 = wiener_win * wiener_win;
  const int wiener_halfwin = (wiener_win >> 1);
  const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
  const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
  uint16_t avg =
      find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);

  uint8_t bit_depth_divider = 1;
  if (bit_depth == AOM_BITS_12)
    bit_depth_divider = 16;
  else if (bit_depth == AOM_BITS_10)
    bit_depth_divider = 4;

  memset(M, 0, sizeof(*M) * wiener_win2);
  memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2);
  for (i = v_start; i < v_end; i++) {
    for (j = h_start; j < h_end; j++) {
      const int32_t X = (int32_t)src[i * src_stride + j] - (int32_t)avg;
      int idx = 0;
      for (k = -wiener_halfwin; k <= wiener_halfwin; k++) {
        for (l = -wiener_halfwin; l <= wiener_halfwin; l++) {
          Y[idx] = (int32_t)dgd[(i + l) * dgd_stride + (j + k)] - (int32_t)avg;
          idx++;
        }
      }
      assert(idx == wiener_win2);
      for (k = 0; k < wiener_win2; ++k) {
        M[k] += (int64_t)Y[k] * X;
        for (l = k; l < wiener_win2; ++l) {
          // H is a symmetric matrix, so we only need to fill out the upper
          // triangle here. We can copy it down to the lower triangle outside
          // the (i, j) loops.
          H[k * wiener_win2 + l] += (int64_t)Y[k] * Y[l];
        }
      }
    }
  }
  for (k = 0; k < wiener_win2; ++k) {
    M[k] /= bit_depth_divider;
    H[k * wiener_win2 + k] /= bit_depth_divider;
    for (l = k + 1; l < wiener_win2; ++l) {
      H[k * wiener_win2 + l] /= bit_depth_divider;
      H[l * wiener_win2 + k] = H[k * wiener_win2 + l];
    }
  }
}
#endif  // CONFIG_AV1_HIGHBITDEPTH

static INLINE int wrap_index(int i, int wiener_win) {
  const int wiener_halfwin1 = (wiener_win >> 1) + 1;
  return (i >= wiener_halfwin1 ? wiener_win - 1 - i : i);
}

// Splits each w[i] into smaller components w1[i] and w2[i] such that
// w[i] = w1[i] * WIENER_TAP_SCALE_FACTOR + w2[i].
static INLINE void split_wiener_filter_coefficients(int wiener_win,
                                                    const int32_t *w,
                                                    int32_t *w1, int32_t *w2) {
  for (int i = 0; i < wiener_win; i++) {
    w1[i] = w[i] / WIENER_TAP_SCALE_FACTOR;
    w2[i] = w[i] - w1[i] * WIENER_TAP_SCALE_FACTOR;
    assert(w[i] == w1[i] * WIENER_TAP_SCALE_FACTOR + w2[i]);
  }
}

// Calculates x * w / WIENER_TAP_SCALE_FACTOR, where
// w = w1 * WIENER_TAP_SCALE_FACTOR + w2.
//
// The multiplication x * w may overflow, so we multiply x by the components of
// w (w1 and w2) and combine the multiplication with the division.
static INLINE int64_t multiply_and_scale(int64_t x, int32_t w1, int32_t w2) {
  // Let y = x * w / WIENER_TAP_SCALE_FACTOR
  //       = x * (w1 * WIENER_TAP_SCALE_FACTOR + w2) / WIENER_TAP_SCALE_FACTOR
  const int64_t y = x * w1 + x * w2 / WIENER_TAP_SCALE_FACTOR;
  // Double-check the calculation using __int128.
  // TODO(wtc): Remove after 2024-04-30.
#if !defined(NDEBUG) && defined(__GNUC__) && defined(__LP64__)
  const int32_t w = w1 * WIENER_TAP_SCALE_FACTOR + w2;
  const __int128 z = (__int128)x * w / WIENER_TAP_SCALE_FACTOR;
  assert(z >= INT64_MIN);
  assert(z <= INT64_MAX);
  assert(y == (int64_t)z);
#endif
  return y;
}

// Solve linear equations to find Wiener filter tap values
// Taps are output scaled by WIENER_FILT_STEP
static int linsolve_wiener(int n, int64_t *A, int stride, int64_t *b,
                           int64_t *x) {
  for (int k = 0; k < n - 1; k++) {
    // Partial pivoting: bring the row with the largest pivot to the top
    for (int i = n - 1; i > k; i--) {
      // If row i has a better (bigger) pivot than row (i-1), swap them
      if (llabs(A[(i - 1) * stride + k]) < llabs(A[i * stride + k])) {
        for (int j = 0; j < n; j++) {
          const int64_t c = A[i * stride + j];
          A[i * stride + j] = A[(i - 1) * stride + j];
          A[(i - 1) * stride + j] = c;
        }
        const int64_t c = b[i];
        b[i] = b[i - 1];
        b[i - 1] = c;
      }
    }

    // b/278065963: The multiplies
    //   c / 256 * A[k * stride + j] / cd * 256
    // and
    //   c / 256 * b[k] / cd * 256
    // within Gaussian elimination can cause a signed integer overflow. Rework
    // the multiplies so that larger scaling is used without significantly
    // impacting the overall precision.
    //
    // Precision guidance:
    //   scale_threshold: Pick as high as possible.
    // For max_abs_akj >= scale_threshold scenario:
    //   scaler_A: Pick as low as possible. Needed for A[(i + 1) * stride + j].
    //   scaler_c: Pick as low as possible while maintaining scaler_c >=
    //     (1 << 7). Needed for A[(i + 1) * stride + j] and b[i + 1].
    int64_t max_abs_akj = 0;
    for (int j = 0; j < n; j++) {
      const int64_t abs_akj = llabs(A[k * stride + j]);
      if (abs_akj > max_abs_akj) max_abs_akj = abs_akj;
    }
    const int scale_threshold = 1 << 22;
    const int scaler_A = max_abs_akj < scale_threshold ? 1 : (1 << 5);
    const int scaler_c = max_abs_akj < scale_threshold ? 1 : (1 << 7);
    const int scaler = scaler_c * scaler_A;

    // Forward elimination (convert A to row-echelon form)
    for (int i = k; i < n - 1; i++) {
      if (A[k * stride + k] == 0) return 0;
      const int64_t c = A[(i + 1) * stride + k] / scaler_c;
      const int64_t cd = A[k * stride + k];
      for (int j = 0; j < n; j++) {
        A[(i + 1) * stride + j] -=
            A[k * stride + j] / scaler_A * c / cd * scaler;
      }
      b[i + 1] -= c * b[k] / cd * scaler_c;
    }
  }
  // Back-substitution
  for (int i = n - 1; i >= 0; i--) {
    if (A[i * stride + i] == 0) return 0;
    int64_t c = 0;
    for (int j = i + 1; j <= n - 1; j++) {
      c += A[i * stride + j] * x[j] / WIENER_TAP_SCALE_FACTOR;
    }
    // Store filter taps x in scaled form.
    x[i] = WIENER_TAP_SCALE_FACTOR * (b[i] - c) / A[i * stride + i];
  }

  return 1;
}

// Fix vector b, update vector a
static AOM_INLINE void update_a_sep_sym(int wiener_win, int64_t **Mc,
                                        int64_t **Hc, int32_t *a,
                                        const int32_t *b) {
  int i, j;
  int64_t S[WIENER_WIN];
  int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1];
  int32_t b1[WIENER_WIN], b2[WIENER_WIN];
  const int wiener_win2 = wiener_win * wiener_win;
  const int wiener_halfwin1 = (wiener_win >> 1) + 1;
  memset(A, 0, sizeof(A));
  memset(B, 0, sizeof(B));
  for (i = 0; i < wiener_win; i++) {
    for (j = 0; j < wiener_win; ++j) {
      const int jj = wrap_index(j, wiener_win);
      A[jj] += Mc[i][j] * b[i] / WIENER_TAP_SCALE_FACTOR;
    }
  }
  split_wiener_filter_coefficients(wiener_win, b, b1, b2);

  for (i = 0; i < wiener_win; i++) {
    for (j = 0; j < wiener_win; j++) {
      int k, l;
      for (k = 0; k < wiener_win; ++k) {
        const int kk = wrap_index(k, wiener_win);
        for (l = 0; l < wiener_win; ++l) {
          const int ll = wrap_index(l, wiener_win);
          // Calculate
          // B[ll * wiener_halfwin1 + kk] +=
          //    Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] /
          //    WIENER_TAP_SCALE_FACTOR * b[j] / WIENER_TAP_SCALE_FACTOR;
          //
          // The last multiplication may overflow, so we combine the last
          // multiplication with the last division.
          const int64_t x = Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] /
                            WIENER_TAP_SCALE_FACTOR;
          // b[j] = b1[j] * WIENER_TAP_SCALE_FACTOR + b2[j]
          B[ll * wiener_halfwin1 + kk] += multiply_and_scale(x, b1[j], b2[j]);
        }
      }
    }
  }
  // Normalization enforcement in the system of equations itself
  for (i = 0; i < wiener_halfwin1 - 1; ++i) {
    A[i] -=
        A[wiener_halfwin1 - 1] * 2 +
        B[i * wiener_halfwin1 + wiener_halfwin1 - 1] -
        2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)];
  }
  for (i = 0; i < wiener_halfwin1 - 1; ++i) {
    for (j = 0; j < wiener_halfwin1 - 1; ++j) {
      B[i * wiener_halfwin1 + j] -=
          2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] +
               B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] -
               2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 +
                     (wiener_halfwin1 - 1)]);
    }
  }
  if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) {
    S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR;
    for (i = wiener_halfwin1; i < wiener_win; ++i) {
      S[i] = S[wiener_win - 1 - i];
      S[wiener_halfwin1 - 1] -= 2 * S[i];
    }
    for (i = 0; i < wiener_win; ++i) {
      a[i] = (int32_t)CLIP(S[i], -(1 << (WIENER_FILT_BITS - 1)),
                           (1 << (WIENER_FILT_BITS - 1)) - 1);
    }
  }
}

// Fix vector a, update vector b
static AOM_INLINE void update_b_sep_sym(int wiener_win, int64_t **Mc,
                                        int64_t **Hc, const int32_t *a,
                                        int32_t *b) {
  int i, j;
  int64_t S[WIENER_WIN];
  int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1];
  int32_t a1[WIENER_WIN], a2[WIENER_WIN];
  const int wiener_win2 = wiener_win * wiener_win;
  const int wiener_halfwin1 = (wiener_win >> 1) + 1;
  memset(A, 0, sizeof(A));
  memset(B, 0, sizeof(B));
  for (i = 0; i < wiener_win; i++) {
    const int ii = wrap_index(i, wiener_win);
    for (j = 0; j < wiener_win; j++) {
      A[ii] += Mc[i][j] * a[j] / WIENER_TAP_SCALE_FACTOR;
    }
  }
  split_wiener_filter_coefficients(wiener_win, a, a1, a2);

  for (i = 0; i < wiener_win; i++) {
    const int ii = wrap_index(i, wiener_win);
    for (j = 0; j < wiener_win; j++) {
      const int jj = wrap_index(j, wiener_win);
      int k, l;
      for (k = 0; k < wiener_win; ++k) {
        for (l = 0; l < wiener_win; ++l) {
          // Calculate
          // B[jj * wiener_halfwin1 + ii] +=
          //     Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] /
          //     WIENER_TAP_SCALE_FACTOR * a[l] / WIENER_TAP_SCALE_FACTOR;
          //
          // The last multiplication may overflow, so we combine the last
          // multiplication with the last division.
          const int64_t x = Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] /
                            WIENER_TAP_SCALE_FACTOR;
          // a[l] = a1[l] * WIENER_TAP_SCALE_FACTOR + a2[l]
          B[jj * wiener_halfwin1 + ii] += multiply_and_scale(x, a1[l], a2[l]);
        }
      }
    }
  }
  // Normalization enforcement in the system of equations itself
  for (i = 0; i < wiener_halfwin1 - 1; ++i) {
    A[i] -=
        A[wiener_halfwin1 - 1] * 2 +
        B[i * wiener_halfwin1 + wiener_halfwin1 - 1] -
        2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)];
  }
  for (i = 0; i < wiener_halfwin1 - 1; ++i) {
    for (j = 0; j < wiener_halfwin1 - 1; ++j) {
      B[i * wiener_halfwin1 + j] -=
          2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] +
               B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] -
               2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 +
                     (wiener_halfwin1 - 1)]);
    }
  }
  if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) {
    S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR;
    for (i = wiener_halfwin1; i < wiener_win; ++i) {
      S[i] = S[wiener_win - 1 - i];
      S[wiener_halfwin1 - 1] -= 2 * S[i];
    }
    for (i = 0; i < wiener_win; ++i) {
      b[i] = (int32_t)CLIP(S[i], -(1 << (WIENER_FILT_BITS - 1)),
                           (1 << (WIENER_FILT_BITS - 1)) - 1);
    }
  }
}

static void wiener_decompose_sep_sym(int wiener_win, int64_t *M, int64_t *H,
                                     int32_t *a, int32_t *b) {
  static const int32_t init_filt[WIENER_WIN] = {
    WIENER_FILT_TAP0_MIDV, WIENER_FILT_TAP1_MIDV, WIENER_FILT_TAP2_MIDV,
    WIENER_FILT_TAP3_MIDV, WIENER_FILT_TAP2_MIDV, WIENER_FILT_TAP1_MIDV,
    WIENER_FILT_TAP0_MIDV,
  };
  int64_t *Hc[WIENER_WIN2];
  int64_t *Mc[WIENER_WIN];
  int i, j, iter;
  const int plane_off = (WIENER_WIN - wiener_win) >> 1;
  const int wiener_win2 = wiener_win * wiener_win;
  for (i = 0; i < wiener_win; i++) {
    a[i] = b[i] =
        WIENER_TAP_SCALE_FACTOR / WIENER_FILT_STEP * init_filt[i + plane_off];
  }
  for (i = 0; i < wiener_win; i++) {
    Mc[i] = M + i * wiener_win;
    for (j = 0; j < wiener_win; j++) {
      Hc[i * wiener_win + j] =
          H + i * wiener_win * wiener_win2 + j * wiener_win;
    }
  }

  iter = 1;
  while (iter < NUM_WIENER_ITERS) {
    update_a_sep_sym(wiener_win, Mc, Hc, a, b);
    update_b_sep_sym(wiener_win, Mc, Hc, a, b);
    iter++;
  }
}

// Computes the function x'*H*x - x'*M for the learned 2D filter x, and compares
// against identity filters; Final score is defined as the difference between
// the function values
static int64_t compute_score(int wiener_win, int64_t *M, int64_t *H,
                             InterpKernel vfilt, InterpKernel hfilt) {
  int32_t ab[WIENER_WIN * WIENER_WIN];
  int16_t a[WIENER_WIN], b[WIENER_WIN];
  int64_t P = 0, Q = 0;
  int64_t iP = 0, iQ = 0;
  int64_t Score, iScore;
  int i, k, l;
  const int plane_off = (WIENER_WIN - wiener_win) >> 1;
  const int wiener_win2 = wiener_win * wiener_win;

  a[WIENER_HALFWIN] = b[WIENER_HALFWIN] = WIENER_FILT_STEP;
  for (i = 0; i < WIENER_HALFWIN; ++i) {
    a[i] = a[WIENER_WIN - i - 1] = vfilt[i];
    b[i] = b[WIENER_WIN - i - 1] = hfilt[i];
    a[WIENER_HALFWIN] -= 2 * a[i];
    b[WIENER_HALFWIN] -= 2 * b[i];
  }
  memset(ab, 0, sizeof(ab));
  for (k = 0; k < wiener_win; ++k) {
    for (l = 0; l < wiener_win; ++l)
      ab[k * wiener_win + l] = a[l + plane_off] * b[k + plane_off];
  }
  for (k = 0; k < wiener_win2; ++k) {
    P += ab[k] * M[k] / WIENER_FILT_STEP / WIENER_FILT_STEP;
    for (l = 0; l < wiener_win2; ++l) {
      Q += ab[k] * H[k * wiener_win2 + l] * ab[l] / WIENER_FILT_STEP /
           WIENER_FILT_STEP / WIENER_FILT_STEP / WIENER_FILT_STEP;
    }
  }
  Score = Q - 2 * P;

  iP = M[wiener_win2 >> 1];
  iQ = H[(wiener_win2 >> 1) * wiener_win2 + (wiener_win2 >> 1)];
  iScore = iQ - 2 * iP;

  return Score - iScore;
}

static AOM_INLINE void finalize_sym_filter(int wiener_win, int32_t *f,
                                           InterpKernel fi) {
  int i;
  const int wiener_halfwin = (wiener_win >> 1);

  for (i = 0; i < wiener_halfwin; ++i) {
    const int64_t dividend = (int64_t)f[i] * WIENER_FILT_STEP;
    const int64_t divisor = WIENER_TAP_SCALE_FACTOR;
    // Perform this division with proper rounding rather than truncation
    if (dividend < 0) {
      fi[i] = (int16_t)((dividend - (divisor / 2)) / divisor);
    } else {
      fi[i] = (int16_t)((dividend + (divisor / 2)) / divisor);
    }
  }
  // Specialize for 7-tap filter
  if (wiener_win == WIENER_WIN) {
    fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV);
    fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
    fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
  } else {
    fi[2] = CLIP(fi[1], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
    fi[1] = CLIP(fi[0], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
    fi[0] = 0;
  }
  // Satisfy filter constraints
  fi[WIENER_WIN - 1] = fi[0];
  fi[WIENER_WIN - 2] = fi[1];
  fi[WIENER_WIN - 3] = fi[2];
  // The central element has an implicit +WIENER_FILT_STEP
  fi[3] = -2 * (fi[0] + fi[1] + fi[2]);
}

static int count_wiener_bits(int wiener_win, WienerInfo *wiener_info,
                             WienerInfo *ref_wiener_info) {
  int bits = 0;
  if (wiener_win == WIENER_WIN)
    bits += aom_count_primitive_refsubexpfin(
        WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
        WIENER_FILT_TAP0_SUBEXP_K,
        ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
        wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
  bits += aom_count_primitive_refsubexpfin(
      WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
      WIENER_FILT_TAP1_SUBEXP_K,
      ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
      wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
  bits += aom_count_primitive_refsubexpfin(
      WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
      WIENER_FILT_TAP2_SUBEXP_K,
      ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
      wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
  if (wiener_win == WIENER_WIN)
    bits += aom_count_primitive_refsubexpfin(
        WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
        WIENER_FILT_TAP0_SUBEXP_K,
        ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
        wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
  bits += aom_count_primitive_refsubexpfin(
      WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
      WIENER_FILT_TAP1_SUBEXP_K,
      ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
      wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
  bits += aom_count_primitive_refsubexpfin(
      WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
      WIENER_FILT_TAP2_SUBEXP_K,
      ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
      wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
  return bits;
}

static int64_t finer_search_wiener(const RestSearchCtxt *rsc,
                                   const RestorationTileLimits *limits,
                                   RestorationUnitInfo *rui, int wiener_win) {
  const int plane_off = (WIENER_WIN - wiener_win) >> 1;
  int64_t err = try_restoration_unit(rsc, limits, rui);

  if (rsc->lpf_sf->disable_wiener_coeff_refine_search) return err;

  // Refinement search around the wiener filter coefficients.
  int64_t err2;
  int tap_min[] = { WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP1_MINV,
                    WIENER_FILT_TAP2_MINV };
  int tap_max[] = { WIENER_FILT_TAP0_MAXV, WIENER_FILT_TAP1_MAXV,
                    WIENER_FILT_TAP2_MAXV };

  WienerInfo *plane_wiener = &rui->wiener_info;

  // printf("err  pre = %"PRId64"\n", err);
  const int start_step = 4;
  for (int s = start_step; s >= 1; s >>= 1) {
    for (int p = plane_off; p < WIENER_HALFWIN; ++p) {
      int skip = 0;
      do {
        if (plane_wiener->hfilter[p] - s >= tap_min[p]) {
          plane_wiener->hfilter[p] -= s;
          plane_wiener->hfilter[WIENER_WIN - p - 1] -= s;
          plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s;
          err2 = try_restoration_unit(rsc, limits, rui);
          if (err2 > err) {
            plane_wiener->hfilter[p] += s;
            plane_wiener->hfilter[WIENER_WIN - p - 1] += s;
            plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s;
          } else {
            err = err2;
            skip = 1;
            // At the highest step size continue moving in the same direction
            if (s == start_step) continue;
          }
        }
        break;
      } while (1);
      if (skip) break;
      do {
        if (plane_wiener->hfilter[p] + s <= tap_max[p]) {
          plane_wiener->hfilter[p] += s;
          plane_wiener->hfilter[WIENER_WIN - p - 1] += s;
          plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s;
          err2 = try_restoration_unit(rsc, limits, rui);
          if (err2 > err) {
            plane_wiener->hfilter[p] -= s;
            plane_wiener->hfilter[WIENER_WIN - p - 1] -= s;
            plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s;
          } else {
            err = err2;
            // At the highest step size continue moving in the same direction
            if (s == start_step) continue;
          }
        }
        break;
      } while (1);
    }
    for (int p = plane_off; p < WIENER_HALFWIN; ++p) {
      int skip = 0;
      do {
        if (plane_wiener->vfilter[p] - s >= tap_min[p]) {
          plane_wiener->vfilter[p] -= s;
          plane_wiener->vfilter[WIENER_WIN - p - 1] -= s;
          plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s;
          err2 = try_restoration_unit(rsc, limits, rui);
          if (err2 > err) {
            plane_wiener->vfilter[p] += s;
            plane_wiener->vfilter[WIENER_WIN - p - 1] += s;
            plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s;
          } else {
            err = err2;
            skip = 1;
            // At the highest step size continue moving in the same direction
            if (s == start_step) continue;
          }
        }
        break;
      } while (1);
      if (skip) break;
      do {
        if (plane_wiener->vfilter[p] + s <= tap_max[p]) {
          plane_wiener->vfilter[p] += s;
          plane_wiener->vfilter[WIENER_WIN - p - 1] += s;
          plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s;
          err2 = try_restoration_unit(rsc, limits, rui);
          if (err2 > err) {
            plane_wiener->vfilter[p] -= s;
            plane_wiener->vfilter[WIENER_WIN - p - 1] -= s;
            plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s;
          } else {
            err = err2;
            // At the highest step size continue moving in the same direction
            if (s == start_step) continue;
          }
        }
        break;
      } while (1);
    }
  }
  // printf("err post = %"PRId64"\n", err);
  return err;
}

static AOM_INLINE void search_wiener(
    const RestorationTileLimits *limits, int rest_unit_idx, void *priv,
    int32_t *tmpbuf, RestorationLineBuffers *rlbs,
    struct aom_internal_error_info *error_info) {
  (void)tmpbuf;
  (void)rlbs;
  (void)error_info;
  RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
  RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];

  const MACROBLOCK *const x = rsc->x;
  const int64_t bits_none = x->mode_costs.wiener_restore_cost[0];

  // Skip Wiener search for low variance contents
  if (rsc->lpf_sf->prune_wiener_based_on_src_var) {
    const int scale[3] = { 0, 1, 2 };
    // Obtain the normalized Qscale
    const int qs = av1_dc_quant_QTX(rsc->cm->quant_params.base_qindex, 0,
                                    rsc->cm->seq_params->bit_depth) >>
                   3;
    // Derive threshold as sqr(normalized Qscale) * scale / 16,
    const uint64_t thresh =
        (qs * qs * scale[rsc->lpf_sf->prune_wiener_based_on_src_var]) >> 4;
    const int highbd = rsc->cm->seq_params->use_highbitdepth;
    const uint64_t src_var =
        var_restoration_unit(limits, rsc->src, rsc->plane, highbd);
    // Do not perform Wiener search if source variance is lower than threshold
    // or if the reconstruction error is zero
    int prune_wiener = (src_var < thresh) || (rsc->sse[RESTORE_NONE] == 0);
    if (prune_wiener) {
      rsc->total_bits[RESTORE_WIENER] += bits_none;
      rsc->total_sse[RESTORE_WIENER] += rsc->sse[RESTORE_NONE];
      rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE;
      rsc->sse[RESTORE_WIENER] = INT64_MAX;
      if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) rsc->skip_sgr_eval = 1;
      return;
    }
  }

  const int wiener_win =
      (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA;

  int reduced_wiener_win = wiener_win;
  if (rsc->lpf_sf->reduce_wiener_window_size) {
    reduced_wiener_win =
        (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN_REDUCED : WIENER_WIN_CHROMA;
  }

  int64_t M[WIENER_WIN2];
  int64_t H[WIENER_WIN2 * WIENER_WIN2];
  int32_t vfilter[WIENER_WIN], hfilter[WIENER_WIN];

#if CONFIG_AV1_HIGHBITDEPTH
  const AV1_COMMON *const cm = rsc->cm;
  if (cm->seq_params->use_highbitdepth) {
    // TODO(any) : Add support for use_downsampled_wiener_stats SF in HBD
    // functions. Optimize intrinsics of HBD design similar to LBD (i.e.,
    // pre-calculate d and s buffers and avoid most of the C operations).
    av1_compute_stats_highbd(reduced_wiener_win, rsc->dgd_buffer,
                             rsc->src_buffer, limits->h_start, limits->h_end,
                             limits->v_start, limits->v_end, rsc->dgd_stride,
                             rsc->src_stride, M, H, cm->seq_params->bit_depth);
  } else {
    av1_compute_stats(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer,
                      rsc->dgd_avg, rsc->src_avg, limits->h_start,
                      limits->h_end, limits->v_start, limits->v_end,
                      rsc->dgd_stride, rsc->src_stride, M, H,
                      rsc->lpf_sf->use_downsampled_wiener_stats);
  }
#else
  av1_compute_stats(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer,
                    rsc->dgd_avg, rsc->src_avg, limits->h_start, limits->h_end,
                    limits->v_start, limits->v_end, rsc->dgd_stride,
                    rsc->src_stride, M, H,
                    rsc->lpf_sf->use_downsampled_wiener_stats);
#endif

  wiener_decompose_sep_sym(reduced_wiener_win, M, H, vfilter, hfilter);

  RestorationUnitInfo rui;
  memset(&rui, 0, sizeof(rui));
  rui.restoration_type = RESTORE_WIENER;
  finalize_sym_filter(reduced_wiener_win, vfilter, rui.wiener_info.vfilter);
  finalize_sym_filter(reduced_wiener_win, hfilter, rui.wiener_info.hfilter);

  // Filter score computes the value of the function x'*A*x - x'*b for the
  // learned filter and compares it against identity filer. If there is no
  // reduction in the function, the filter is reverted back to identity
  if (compute_score(reduced_wiener_win, M, H, rui.wiener_info.vfilter,
                    rui.wiener_info.hfilter) > 0) {
    rsc->total_bits[RESTORE_WIENER] += bits_none;
    rsc->total_sse[RESTORE_WIENER] += rsc->sse[RESTORE_NONE];
    rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE;
    rsc->sse[RESTORE_WIENER] = INT64_MAX;
    if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) rsc->skip_sgr_eval = 1;
    return;
  }

  rsc->sse[RESTORE_WIENER] =
      finer_search_wiener(rsc, limits, &rui, reduced_wiener_win);
  rusi->wiener = rui.wiener_info;

  if (reduced_wiener_win != WIENER_WIN) {
    assert(rui.wiener_info.vfilter[0] == 0 &&
           rui.wiener_info.vfilter[WIENER_WIN - 1] == 0);
    assert(rui.wiener_info.hfilter[0] == 0 &&
           rui.wiener_info.hfilter[WIENER_WIN - 1] == 0);
  }

  const int64_t bits_wiener =
      x->mode_costs.wiener_restore_cost[1] +
      (count_wiener_bits(wiener_win, &rusi->wiener, &rsc->ref_wiener)
       << AV1_PROB_COST_SHIFT);

  double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST(
      x->rdmult, bits_none >> 4, rsc->sse[RESTORE_NONE],
      rsc->cm->seq_params->bit_depth);
  double cost_wiener = RDCOST_DBL_WITH_NATIVE_BD_DIST(
      x->rdmult, bits_wiener >> 4, rsc->sse[RESTORE_WIENER],
      rsc->cm->seq_params->bit_depth);

  RestorationType rtype =
      (cost_wiener < cost_none) ? RESTORE_WIENER : RESTORE_NONE;
  rusi->best_rtype[RESTORE_WIENER - 1] = rtype;

  // Set 'skip_sgr_eval' based on rdcost ratio of RESTORE_WIENER and
  // RESTORE_NONE or based on best_rtype
  if (rsc->lpf_sf->prune_sgr_based_on_wiener == 1) {
    rsc->skip_sgr_eval = cost_wiener > (1.01 * cost_none);
  } else if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) {
    rsc->skip_sgr_eval = rusi->best_rtype[RESTORE_WIENER - 1] == RESTORE_NONE;
  }

#if DEBUG_LR_COSTING
  // Store ref params for later checking
  lr_ref_params[RESTORE_WIENER][rsc->plane][rest_unit_idx].wiener_info =
      rsc->ref_wiener;
#endif  // DEBUG_LR_COSTING

  rsc->total_sse[RESTORE_WIENER] += rsc->sse[rtype];
  rsc->total_bits[RESTORE_WIENER] +=
      (cost_wiener < cost_none) ? bits_wiener : bits_none;
  if (cost_wiener < cost_none) rsc->ref_wiener = rusi->wiener;
}

static AOM_INLINE void search_norestore(
    const RestorationTileLimits *limits, int rest_unit_idx, void *priv,
    int32_t *tmpbuf, RestorationLineBuffers *rlbs,
    struct aom_internal_error_info *error_info) {
  (void)rest_unit_idx;
  (void)tmpbuf;
  (void)rlbs;
  (void)error_info;

  RestSearchCtxt *rsc = (RestSearchCtxt *)priv;

  const int highbd = rsc->cm->seq_params->use_highbitdepth;
  rsc->sse[RESTORE_NONE] = sse_restoration_unit(
      limits, rsc->src, &rsc->cm->cur_frame->buf, rsc->plane, highbd);

  rsc->total_sse[RESTORE_NONE] += rsc->sse[RESTORE_NONE];
}

static AOM_INLINE void search_switchable(
    const RestorationTileLimits *limits, int rest_unit_idx, void *priv,
    int32_t *tmpbuf, RestorationLineBuffers *rlbs,
    struct aom_internal_error_info *error_info) {
  (void)limits;
  (void)tmpbuf;
  (void)rlbs;
  (void)error_info;
  RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
  RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];

  const MACROBLOCK *const x = rsc->x;

  const int wiener_win =
      (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA;

  double best_cost = 0;
  int64_t best_bits = 0;
  RestorationType best_rtype = RESTORE_NONE;

  for (RestorationType r = 0; r < RESTORE_SWITCHABLE_TYPES; ++r) {
    // If this restoration mode was skipped, or could not find a solution
    // that was better than RESTORE_NONE, then we can't select it here either.
    //
    // Note: It is possible for the restoration search functions to find a
    // filter which is better than RESTORE_NONE when looking purely at SSE, but
    // for it to be rejected overall due to its rate cost. In this case, there
    // is a chance that it may be have a lower rate cost when looking at
    // RESTORE_SWITCHABLE, and so it might be acceptable here.
    //
    // Therefore we prune based on SSE, rather than on whether or not the
    // previous search function selected this mode.
    if (r > RESTORE_NONE) {
      if (rsc->sse[r] > rsc->sse[RESTORE_NONE]) continue;
    }

    const int64_t sse = rsc->sse[r];
    int64_t coeff_pcost = 0;
    switch (r) {
      case RESTORE_NONE: coeff_pcost = 0; break;
      case RESTORE_WIENER:
        coeff_pcost = count_wiener_bits(wiener_win, &rusi->wiener,
                                        &rsc->switchable_ref_wiener);
        break;
      case RESTORE_SGRPROJ:
        coeff_pcost =
            count_sgrproj_bits(&rusi->sgrproj, &rsc->switchable_ref_sgrproj);
        break;
      default: assert(0); break;
    }
    const int64_t coeff_bits = coeff_pcost << AV1_PROB_COST_SHIFT;
    const int64_t bits = x->mode_costs.switchable_restore_cost[r] + coeff_bits;
    double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST(
        x->rdmult, bits >> 4, sse, rsc->cm->seq_params->bit_depth);
    if (r == RESTORE_SGRPROJ && rusi->sgrproj.ep < 10)
      cost *= (1 + DUAL_SGR_PENALTY_MULT * rsc->lpf_sf->dual_sgr_penalty_level);
    if (r == 0 || cost < best_cost) {
      best_cost = cost;
      best_bits = bits;
      best_rtype = r;
    }
  }

  rusi->best_rtype[RESTORE_SWITCHABLE - 1] = best_rtype;

#if DEBUG_LR_COSTING
  // Store ref params for later checking
  lr_ref_params[RESTORE_SWITCHABLE][rsc->plane][rest_unit_idx].wiener_info =
      rsc->switchable_ref_wiener;
  lr_ref_params[RESTORE_SWITCHABLE][rsc->plane][rest_unit_idx].sgrproj_info =
      rsc->switchable_ref_sgrproj;
#endif  // DEBUG_LR_COSTING

  rsc->total_sse[RESTORE_SWITCHABLE] += rsc->sse[best_rtype];
  rsc->total_bits[RESTORE_SWITCHABLE] += best_bits;
  if (best_rtype == RESTORE_WIENER) rsc->switchable_ref_wiener = rusi->wiener;
  if (best_rtype == RESTORE_SGRPROJ)
    rsc->switchable_ref_sgrproj = rusi->sgrproj;
}

static AOM_INLINE void copy_unit_info(RestorationType frame_rtype,
                                      const RestUnitSearchInfo *rusi,
                                      RestorationUnitInfo *rui) {
  assert(frame_rtype > 0);
  rui->restoration_type = rusi->best_rtype[frame_rtype - 1];
  if (rui->restoration_type == RESTORE_WIENER)
    rui->wiener_info = rusi->wiener;
  else
    rui->sgrproj_info = rusi->sgrproj;
}

static void restoration_search(AV1_COMMON *cm, int plane, RestSearchCtxt *rsc,
                               bool *disable_lr_filter) {
  const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
  const int mib_size_log2 = cm->seq_params->mib_size_log2;
  const CommonTileParams *tiles = &cm->tiles;
  const int is_uv = plane > 0;
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
  RestorationInfo *rsi = &cm->rst_info[plane];
  const int ru_size = rsi->restoration_unit_size;
  const int ext_size = ru_size * 3 / 2;

  int plane_w, plane_h;
  av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);

  static const rest_unit_visitor_t funs[RESTORE_TYPES] = {
    search_norestore, search_wiener, search_sgrproj, search_switchable
  };

  const int plane_num_units = rsi->num_rest_units;
  const RestorationType num_rtypes =
      (plane_num_units > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES;

  reset_rsc(rsc);

  // Iterate over restoration units in encoding order, so that each RU gets
  // the correct reference parameters when we cost it up. This is effectively
  // a nested iteration over:
  // * Each tile, order does not matter
  //   * Each superblock within that tile, in raster order
  //     * Each LR unit which is coded within that superblock, in raster order
  for (int tile_row = 0; tile_row < tiles->rows; tile_row++) {
    int sb_row_start = tiles->row_start_sb[tile_row];
    int sb_row_end = tiles->row_start_sb[tile_row + 1];
    for (int tile_col = 0; tile_col < tiles->cols; tile_col++) {
      int sb_col_start = tiles->col_start_sb[tile_col];
      int sb_col_end = tiles->col_start_sb[tile_col + 1];

      // Reset reference parameters for delta-coding at the start of each tile
      rsc_on_tile(rsc);

      for (int sb_row = sb_row_start; sb_row < sb_row_end; sb_row++) {
        int mi_row = sb_row << mib_size_log2;
        for (int sb_col = sb_col_start; sb_col < sb_col_end; sb_col++) {
          int mi_col = sb_col << mib_size_log2;

          int rcol0, rcol1, rrow0, rrow1;
          int has_lr_info = av1_loop_restoration_corners_in_sb(
              cm, plane, mi_row, mi_col, sb_size, &rcol0, &rcol1, &rrow0,
              &rrow1);

          if (!has_lr_info) continue;

          RestorationTileLimits limits;
          for (int rrow = rrow0; rrow < rrow1; rrow++) {
            int y0 = rrow * ru_size;
            int remaining_h = plane_h - y0;
            int h = (remaining_h < ext_size) ? remaining_h : ru_size;

            limits.v_start = y0;
            limits.v_end = y0 + h;
            assert(limits.v_end <= plane_h);
            // Offset upwards to align with the restoration processing stripe
            const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
            limits.v_start = AOMMAX(0, limits.v_start - voffset);
            if (limits.v_end < plane_h) limits.v_end -= voffset;

            for (int rcol = rcol0; rcol < rcol1; rcol++) {
              int x0 = rcol * ru_size;
              int remaining_w = plane_w - x0;
              int w = (remaining_w < ext_size) ? remaining_w : ru_size;

              limits.h_start = x0;
              limits.h_end = x0 + w;
              assert(limits.h_end <= plane_w);

              const int unit_idx = rrow * rsi->horz_units + rcol;

              rsc->skip_sgr_eval = 0;
              for (RestorationType r = RESTORE_NONE; r < num_rtypes; r++) {
                if (disable_lr_filter[r]) continue;

                funs[r](&limits, unit_idx, rsc, rsc->cm->rst_tmpbuf, NULL,
                        cm->error);
              }
            }
          }
        }
      }
    }
  }
}

static INLINE void av1_derive_flags_for_lr_processing(
    const LOOP_FILTER_SPEED_FEATURES *lpf_sf, bool *disable_lr_filter) {
  const bool is_wiener_disabled = lpf_sf->disable_wiener_filter;
  const bool is_sgr_disabled = lpf_sf->disable_sgr_filter;

  // Enable None Loop restoration filter if either of Wiener or Self-guided is
  // enabled.
  disable_lr_filter[RESTORE_NONE] = (is_wiener_disabled && is_sgr_disabled);

  disable_lr_filter[RESTORE_WIENER] = is_wiener_disabled;
  disable_lr_filter[RESTORE_SGRPROJ] = is_sgr_disabled;

  // Enable Swicthable Loop restoration filter if both of the Wiener and
  // Self-guided are enabled.
  disable_lr_filter[RESTORE_SWITCHABLE] =
      (is_wiener_disabled || is_sgr_disabled);
}

#define COUPLED_CHROMA_FROM_LUMA_RESTORATION 0
// Allocate both decoder-side and encoder-side info structs for a single plane.
// The unit size passed in should be the minimum size which we are going to
// search; before each search, set_restoration_unit_size() must be called to
// configure the actual size.
static RestUnitSearchInfo *allocate_search_structs(AV1_COMMON *cm,
                                                   RestorationInfo *rsi,
                                                   int is_uv,
                                                   int min_luma_unit_size) {
#if COUPLED_CHROMA_FROM_LUMA_RESTORATION
  int sx = cm->seq_params.subsampling_x;
  int sy = cm->seq_params.subsampling_y;
  int s = (p > 0) ? AOMMIN(sx, sy) : 0;
#else
  int s = 0;
#endif  // !COUPLED_CHROMA_FROM_LUMA_RESTORATION
  int min_unit_size = min_luma_unit_size >> s;

  int plane_w, plane_h;
  av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);

  const int max_horz_units = av1_lr_count_units(min_unit_size, plane_w);
  const int max_vert_units = av1_lr_count_units(min_unit_size, plane_h);
  const int max_num_units = max_horz_units * max_vert_units;

  aom_free(rsi->unit_info);
  CHECK_MEM_ERROR(cm, rsi->unit_info,
                  (RestorationUnitInfo *)aom_memalign(
                      16, sizeof(*rsi->unit_info) * max_num_units));

  RestUnitSearchInfo *rusi;
  CHECK_MEM_ERROR(
      cm, rusi,
      (RestUnitSearchInfo *)aom_memalign(16, sizeof(*rusi) * max_num_units));

  // If the restoration unit dimensions are not multiples of
  // rsi->restoration_unit_size then some elements of the rusi array may be
  // left uninitialised when we reach copy_unit_info(...). This is not a
  // problem, as these elements are ignored later, but in order to quiet
  // Valgrind's warnings we initialise the array below.
  memset(rusi, 0, sizeof(*rusi) * max_num_units);

  return rusi;
}

static void set_restoration_unit_size(AV1_COMMON *cm, RestorationInfo *rsi,
                                      int is_uv, int luma_unit_size) {
#if COUPLED_CHROMA_FROM_LUMA_RESTORATION
  int sx = cm->seq_params.subsampling_x;
  int sy = cm->seq_params.subsampling_y;
  int s = (p > 0) ? AOMMIN(sx, sy) : 0;
#else
  int s = 0;
#endif  // !COUPLED_CHROMA_FROM_LUMA_RESTORATION
  int unit_size = luma_unit_size >> s;

  int plane_w, plane_h;
  av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);

  const int horz_units = av1_lr_count_units(unit_size, plane_w);
  const int vert_units = av1_lr_count_units(unit_size, plane_h);

  rsi->restoration_unit_size = unit_size;
  rsi->num_rest_units = horz_units * vert_units;
  rsi->horz_units = horz_units;
  rsi->vert_units = vert_units;
}

void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCK *const x = &cpi->td.mb;
  const SequenceHeader *const seq_params = cm->seq_params;
  const LOOP_FILTER_SPEED_FEATURES *lpf_sf = &cpi->sf.lpf_sf;
  const int num_planes = av1_num_planes(cm);
  const int highbd = cm->seq_params->use_highbitdepth;
  assert(!cm->features.all_lossless);

  av1_fill_lr_rates(&x->mode_costs, x->e_mbd.tile_ctx);

  // Select unit size based on speed feature settings, and allocate
  // rui structs based on this size
  int min_lr_unit_size = cpi->sf.lpf_sf.min_lr_unit_size;
  int max_lr_unit_size = cpi->sf.lpf_sf.max_lr_unit_size;

  // The minimum allowed unit size at a syntax level is 1 superblock.
  // Apply this constraint here so that the speed features code which sets
  // cpi->sf.lpf_sf.min_lr_unit_size does not need to know the superblock size
  min_lr_unit_size =
      AOMMAX(min_lr_unit_size, block_size_wide[cm->seq_params->sb_size]);

  for (int plane = 0; plane < num_planes; ++plane) {
    cpi->pick_lr_ctxt.rusi[plane] = allocate_search_structs(
        cm, &cm->rst_info[plane], plane > 0, min_lr_unit_size);
  }

  x->rdmult = cpi->rd.RDMULT;

  // Allocate the frame buffer trial_frame_rst, which is used to temporarily
  // store the loop restored frame.
  if (aom_realloc_frame_buffer(
          &cpi->trial_frame_rst, cm->superres_upscaled_width,
          cm->superres_upscaled_height, seq_params->subsampling_x,
          seq_params->subsampling_y, highbd, AOM_RESTORATION_FRAME_BORDER,
          cm->features.byte_alignment, NULL, NULL, NULL, false, 0))
    aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
                       "Failed to allocate trial restored frame buffer");

  RestSearchCtxt rsc;

  // The buffers 'src_avg' and 'dgd_avg' are used to compute H and M buffers.
  // These buffers are only required for the AVX2 and NEON implementations of
  // av1_compute_stats. The buffer size required is calculated based on maximum
  // width and height of the LRU (i.e., from foreach_rest_unit_in_plane() 1.5
  // times the RESTORATION_UNITSIZE_MAX) allowed for Wiener filtering. The width
  // and height aligned to multiple of 16 is considered for intrinsic purpose.
  rsc.dgd_avg = NULL;
  rsc.src_avg = NULL;
#if HAVE_AVX2 || HAVE_NEON
  // The buffers allocated below are used during Wiener filter processing of low
  // bitdepth path. Hence, allocate the same when Wiener filter is enabled in
  // low bitdepth path.
  if (!cpi->sf.lpf_sf.disable_wiener_filter && !highbd) {
    const int buf_size = sizeof(*cpi->pick_lr_ctxt.dgd_avg) * 6 *
                         RESTORATION_UNITSIZE_MAX * RESTORATION_UNITSIZE_MAX;
    CHECK_MEM_ERROR(cm, cpi->pick_lr_ctxt.dgd_avg,
                    (int16_t *)aom_memalign(32, buf_size));

    rsc.dgd_avg = cpi->pick_lr_ctxt.dgd_avg;
    // When LRU width isn't multiple of 16, the 256 bits load instruction used
    // in AVX2 intrinsic can read data beyond valid LRU. Hence, in order to
    // silence Valgrind warning this buffer is initialized with zero. Overhead
    // due to this initialization is negligible since it is done at frame level.
    memset(rsc.dgd_avg, 0, buf_size);
    rsc.src_avg =
        rsc.dgd_avg + 3 * RESTORATION_UNITSIZE_MAX * RESTORATION_UNITSIZE_MAX;
    // Asserts the starting address of src_avg is always 32-bytes aligned.
    assert(!((intptr_t)rsc.src_avg % 32));
  }
#endif

  // Initialize all planes, so that any planes we skip searching will still have
  // valid data
  for (int plane = 0; plane < num_planes; plane++) {
    cm->rst_info[plane].frame_restoration_type = RESTORE_NONE;
  }

  // Decide which planes to search
  int plane_start, plane_end;

  if (lpf_sf->disable_loop_restoration_luma) {
    plane_start = AOM_PLANE_U;
  } else {
    plane_start = AOM_PLANE_Y;
  }

  if (num_planes == 1 || lpf_sf->disable_loop_restoration_chroma) {
    plane_end = AOM_PLANE_Y;
  } else {
    plane_end = AOM_PLANE_V;
  }

  // Derive the flags to enable/disable Loop restoration filters based on the
  // speed features 'disable_wiener_filter' and 'disable_sgr_filter'.
  bool disable_lr_filter[RESTORE_TYPES] = { false };
  av1_derive_flags_for_lr_processing(lpf_sf, disable_lr_filter);

  for (int plane = plane_start; plane <= plane_end; plane++) {
    const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf;
    const int is_uv = plane != AOM_PLANE_Y;
    int plane_w, plane_h;
    av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
    av1_extend_frame(dgd->buffers[plane], plane_w, plane_h, dgd->strides[is_uv],
                     RESTORATION_BORDER, RESTORATION_BORDER, highbd);
  }

  double best_cost = DBL_MAX;
  int best_luma_unit_size = max_lr_unit_size;
  for (int luma_unit_size = max_lr_unit_size;
       luma_unit_size >= min_lr_unit_size; luma_unit_size >>= 1) {
    int64_t bits_this_size = 0;
    int64_t sse_this_size = 0;
    RestorationType best_rtype[MAX_MB_PLANE] = { RESTORE_NONE, RESTORE_NONE,
                                                 RESTORE_NONE };
    for (int plane = plane_start; plane <= plane_end; ++plane) {
      set_restoration_unit_size(cm, &cm->rst_info[plane], plane > 0,
                                luma_unit_size);
      init_rsc(src, &cpi->common, x, lpf_sf, plane,
               cpi->pick_lr_ctxt.rusi[plane], &cpi->trial_frame_rst, &rsc);

      restoration_search(cm, plane, &rsc, disable_lr_filter);

      const int plane_num_units = cm->rst_info[plane].num_rest_units;
      const RestorationType num_rtypes =
          (plane_num_units > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES;
      double best_cost_this_plane = DBL_MAX;
      for (RestorationType r = 0; r < num_rtypes; ++r) {
        // Disable Loop restoration filter based on the flags set using speed
        // feature 'disable_wiener_filter' and 'disable_sgr_filter'.
        if (disable_lr_filter[r]) continue;

        double cost_this_plane = RDCOST_DBL_WITH_NATIVE_BD_DIST(
            x->rdmult, rsc.total_bits[r] >> 4, rsc.total_sse[r],
            cm->seq_params->bit_depth);

        if (cost_this_plane < best_cost_this_plane) {
          best_cost_this_plane = cost_this_plane;
          best_rtype[plane] = r;
        }
      }

      bits_this_size += rsc.total_bits[best_rtype[plane]];
      sse_this_size += rsc.total_sse[best_rtype[plane]];
    }

    double cost_this_size = RDCOST_DBL_WITH_NATIVE_BD_DIST(
        x->rdmult, bits_this_size >> 4, sse_this_size,
        cm->seq_params->bit_depth);

    if (cost_this_size < best_cost) {
      best_cost = cost_this_size;
      best_luma_unit_size = luma_unit_size;
      // Copy parameters out of rusi struct, before we overwrite it at
      // the start of the next iteration
      bool all_none = true;
      for (int plane = plane_start; plane <= plane_end; ++plane) {
        cm->rst_info[plane].frame_restoration_type = best_rtype[plane];
        if (best_rtype[plane] != RESTORE_NONE) {
          all_none = false;
          const int plane_num_units = cm->rst_info[plane].num_rest_units;
          for (int u = 0; u < plane_num_units; ++u) {
            copy_unit_info(best_rtype[plane], &cpi->pick_lr_ctxt.rusi[plane][u],
                           &cm->rst_info[plane].unit_info[u]);
          }
        }
      }
      // Heuristic: If all best_rtype entries are RESTORE_NONE, this means we
      // couldn't find any good filters at this size. So we likely won't find
      // any good filters at a smaller size either, so skip
      if (all_none) {
        break;
      }
    } else {
      // Heuristic: If this size is worse than the previous (larger) size, then
      // the next size down will likely be even worse, so skip
      break;
    }
  }

  // Final fixup to set the correct unit size
  // We set this for all planes, even ones we have skipped searching,
  // so that other code does not need to care which planes were and weren't
  // searched
  for (int plane = 0; plane < num_planes; ++plane) {
    set_restoration_unit_size(cm, &cm->rst_info[plane], plane > 0,
                              best_luma_unit_size);
  }

#if HAVE_AVX || HAVE_NEON
  if (!cpi->sf.lpf_sf.disable_wiener_filter && !highbd) {
    aom_free(cpi->pick_lr_ctxt.dgd_avg);
    cpi->pick_lr_ctxt.dgd_avg = NULL;
  }
#endif
  for (int plane = 0; plane < num_planes; plane++) {
    aom_free(cpi->pick_lr_ctxt.rusi[plane]);
    cpi->pick_lr_ctxt.rusi[plane] = NULL;
  }
}