summaryrefslogtreecommitdiffstats
path: root/third_party/aom/test/av1_fwd_txfm2d_test.cc
blob: 4a5a634545d81f0ba0a44433219634094db882e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <tuple>
#include <vector>

#include "config/av1_rtcd.h"

#include "test/acm_random.h"
#include "test/util.h"
#include "test/av1_txfm_test.h"
#include "av1/common/av1_txfm.h"
#include "av1/encoder/hybrid_fwd_txfm.h"

using libaom_test::ACMRandom;
using libaom_test::bd;
using libaom_test::compute_avg_abs_error;
using libaom_test::input_base;
using libaom_test::tx_type_name;
using libaom_test::TYPE_TXFM;

using std::vector;

namespace {
// tx_type_, tx_size_, max_error_, max_avg_error_
typedef std::tuple<TX_TYPE, TX_SIZE, double, double> AV1FwdTxfm2dParam;

class AV1FwdTxfm2d : public ::testing::TestWithParam<AV1FwdTxfm2dParam> {
 public:
  void SetUp() override {
    tx_type_ = GET_PARAM(0);
    tx_size_ = GET_PARAM(1);
    max_error_ = GET_PARAM(2);
    max_avg_error_ = GET_PARAM(3);
    count_ = 500;
    TXFM_2D_FLIP_CFG fwd_txfm_flip_cfg;
    av1_get_fwd_txfm_cfg(tx_type_, tx_size_, &fwd_txfm_flip_cfg);
    amplify_factor_ = libaom_test::get_amplification_factor(tx_type_, tx_size_);
    tx_width_ = tx_size_wide[fwd_txfm_flip_cfg.tx_size];
    tx_height_ = tx_size_high[fwd_txfm_flip_cfg.tx_size];
    ud_flip_ = fwd_txfm_flip_cfg.ud_flip;
    lr_flip_ = fwd_txfm_flip_cfg.lr_flip;

    fwd_txfm_ = libaom_test::fwd_txfm_func_ls[tx_size_];
    txfm2d_size_ = tx_width_ * tx_height_;
    input_ = reinterpret_cast<int16_t *>(
        aom_memalign(16, sizeof(input_[0]) * txfm2d_size_));
    ASSERT_NE(input_, nullptr);
    output_ = reinterpret_cast<int32_t *>(
        aom_memalign(16, sizeof(output_[0]) * txfm2d_size_));
    ASSERT_NE(output_, nullptr);
    ref_input_ = reinterpret_cast<double *>(
        aom_memalign(16, sizeof(ref_input_[0]) * txfm2d_size_));
    ASSERT_NE(ref_input_, nullptr);
    ref_output_ = reinterpret_cast<double *>(
        aom_memalign(16, sizeof(ref_output_[0]) * txfm2d_size_));
    ASSERT_NE(ref_output_, nullptr);
  }

  void RunFwdAccuracyCheck() {
    ACMRandom rnd(ACMRandom::DeterministicSeed());
    double avg_abs_error = 0;
    for (int ci = 0; ci < count_; ci++) {
      for (int ni = 0; ni < txfm2d_size_; ++ni) {
        input_[ni] = rnd.Rand16() % input_base;
        ref_input_[ni] = static_cast<double>(input_[ni]);
        output_[ni] = 0;
        ref_output_[ni] = 0;
      }

      fwd_txfm_(input_, output_, tx_width_, tx_type_, bd);

      if (lr_flip_ && ud_flip_) {
        libaom_test::fliplrud(ref_input_, tx_width_, tx_height_, tx_width_);
      } else if (lr_flip_) {
        libaom_test::fliplr(ref_input_, tx_width_, tx_height_, tx_width_);
      } else if (ud_flip_) {
        libaom_test::flipud(ref_input_, tx_width_, tx_height_, tx_width_);
      }

      libaom_test::reference_hybrid_2d(ref_input_, ref_output_, tx_type_,
                                       tx_size_);

      double actual_max_error = 0;
      for (int ni = 0; ni < txfm2d_size_; ++ni) {
        ref_output_[ni] = round(ref_output_[ni]);
        const double this_error =
            fabs(output_[ni] - ref_output_[ni]) / amplify_factor_;
        actual_max_error = AOMMAX(actual_max_error, this_error);
      }
      EXPECT_GE(max_error_, actual_max_error)
          << "tx_w: " << tx_width_ << " tx_h: " << tx_height_
          << ", tx_type = " << (int)tx_type_;
      if (actual_max_error > max_error_) {  // exit early.
        break;
      }

      avg_abs_error += compute_avg_abs_error<int32_t, double>(
          output_, ref_output_, txfm2d_size_);
    }

    avg_abs_error /= amplify_factor_;
    avg_abs_error /= count_;
    EXPECT_GE(max_avg_error_, avg_abs_error)
        << "tx_size = " << tx_size_ << ", tx_type = " << tx_type_;
  }

  void TearDown() override {
    aom_free(input_);
    aom_free(output_);
    aom_free(ref_input_);
    aom_free(ref_output_);
  }

 private:
  double max_error_;
  double max_avg_error_;
  int count_;
  double amplify_factor_;
  TX_TYPE tx_type_;
  TX_SIZE tx_size_;
  int tx_width_;
  int tx_height_;
  int txfm2d_size_;
  FwdTxfm2dFunc fwd_txfm_;
  int16_t *input_;
  int32_t *output_;
  double *ref_input_;
  double *ref_output_;
  int ud_flip_;  // flip upside down
  int lr_flip_;  // flip left to right
};

static double avg_error_ls[TX_SIZES_ALL] = {
  0.5,   // 4x4 transform
  0.5,   // 8x8 transform
  1.2,   // 16x16 transform
  6.1,   // 32x32 transform
  3.4,   // 64x64 transform
  0.57,  // 4x8 transform
  0.68,  // 8x4 transform
  0.92,  // 8x16 transform
  1.1,   // 16x8 transform
  4.1,   // 16x32 transform
  6,     // 32x16 transform
  3.5,   // 32x64 transform
  5.7,   // 64x32 transform
  0.6,   // 4x16 transform
  0.9,   // 16x4 transform
  1.2,   // 8x32 transform
  1.7,   // 32x8 transform
  2.0,   // 16x64 transform
  4.7,   // 64x16 transform
};

static double max_error_ls[TX_SIZES_ALL] = {
  3,    // 4x4 transform
  5,    // 8x8 transform
  11,   // 16x16 transform
  70,   // 32x32 transform
  64,   // 64x64 transform
  3.9,  // 4x8 transform
  4.3,  // 8x4 transform
  12,   // 8x16 transform
  12,   // 16x8 transform
  32,   // 16x32 transform
  46,   // 32x16 transform
  136,  // 32x64 transform
  136,  // 64x32 transform
  5,    // 4x16 transform
  6,    // 16x4 transform
  21,   // 8x32 transform
  13,   // 32x8 transform
  30,   // 16x64 transform
  36,   // 64x16 transform
};

vector<AV1FwdTxfm2dParam> GetTxfm2dParamList() {
  vector<AV1FwdTxfm2dParam> param_list;
  for (int s = 0; s < TX_SIZES; ++s) {
    const double max_error = max_error_ls[s];
    const double avg_error = avg_error_ls[s];
    for (int t = 0; t < TX_TYPES; ++t) {
      const TX_TYPE tx_type = static_cast<TX_TYPE>(t);
      const TX_SIZE tx_size = static_cast<TX_SIZE>(s);
      if (libaom_test::IsTxSizeTypeValid(tx_size, tx_type)) {
        param_list.push_back(
            AV1FwdTxfm2dParam(tx_type, tx_size, max_error, avg_error));
      }
    }
  }
  return param_list;
}

INSTANTIATE_TEST_SUITE_P(C, AV1FwdTxfm2d,
                         ::testing::ValuesIn(GetTxfm2dParamList()));

TEST_P(AV1FwdTxfm2d, RunFwdAccuracyCheck) { RunFwdAccuracyCheck(); }

TEST(AV1FwdTxfm2d, CfgTest) {
  for (int bd_idx = 0; bd_idx < BD_NUM; ++bd_idx) {
    int bd = libaom_test::bd_arr[bd_idx];
    int8_t low_range = libaom_test::low_range_arr[bd_idx];
    int8_t high_range = libaom_test::high_range_arr[bd_idx];
    for (int tx_size = 0; tx_size < TX_SIZES_ALL; ++tx_size) {
      for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
        if (libaom_test::IsTxSizeTypeValid(static_cast<TX_SIZE>(tx_size),
                                           static_cast<TX_TYPE>(tx_type)) ==
            false) {
          continue;
        }
        TXFM_2D_FLIP_CFG cfg;
        av1_get_fwd_txfm_cfg(static_cast<TX_TYPE>(tx_type),
                             static_cast<TX_SIZE>(tx_size), &cfg);
        int8_t stage_range_col[MAX_TXFM_STAGE_NUM];
        int8_t stage_range_row[MAX_TXFM_STAGE_NUM];
        av1_gen_fwd_stage_range(stage_range_col, stage_range_row, &cfg, bd);
        libaom_test::txfm_stage_range_check(stage_range_col, cfg.stage_num_col,
                                            cfg.cos_bit_col, low_range,
                                            high_range);
        libaom_test::txfm_stage_range_check(stage_range_row, cfg.stage_num_row,
                                            cfg.cos_bit_row, low_range,
                                            high_range);
      }
    }
  }
}

typedef void (*lowbd_fwd_txfm_func)(const int16_t *src_diff, tran_low_t *coeff,
                                    int diff_stride, TxfmParam *txfm_param);

void AV1FwdTxfm2dMatchTest(TX_SIZE tx_size, lowbd_fwd_txfm_func target_func) {
  const int bd = 8;
  TxfmParam param;
  memset(&param, 0, sizeof(param));
  const int rows = tx_size_high[tx_size];
  const int cols = tx_size_wide[tx_size];
  // printf("%d x %d\n", cols, rows);
  for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
    if (libaom_test::IsTxSizeTypeValid(
            tx_size, static_cast<TX_TYPE>(tx_type)) == false) {
      continue;
    }

    FwdTxfm2dFunc ref_func = libaom_test::fwd_txfm_func_ls[tx_size];
    if (ref_func != nullptr) {
      DECLARE_ALIGNED(32, int16_t, input[64 * 64]) = { 0 };
      DECLARE_ALIGNED(32, int32_t, output[64 * 64]);
      DECLARE_ALIGNED(32, int32_t, ref_output[64 * 64]);
      int input_stride = 64;
      ACMRandom rnd(ACMRandom::DeterministicSeed());
      for (int cnt = 0; cnt < 500; ++cnt) {
        if (cnt == 0) {
          for (int c = 0; c < cols; ++c) {
            for (int r = 0; r < rows; ++r) {
              input[r * input_stride + c] = (1 << bd) - 1;
            }
          }
        } else {
          for (int r = 0; r < rows; ++r) {
            for (int c = 0; c < cols; ++c) {
              input[r * input_stride + c] = rnd.Rand16() % (1 << bd);
            }
          }
        }
        param.tx_type = (TX_TYPE)tx_type;
        param.tx_size = (TX_SIZE)tx_size;
        param.tx_set_type = EXT_TX_SET_ALL16;
        param.bd = bd;
        ref_func(input, ref_output, input_stride, (TX_TYPE)tx_type, bd);
        target_func(input, output, input_stride, &param);
        const int check_cols = AOMMIN(32, cols);
        const int check_rows = AOMMIN(32, rows * cols / check_cols);
        for (int r = 0; r < check_rows; ++r) {
          for (int c = 0; c < check_cols; ++c) {
            ASSERT_EQ(ref_output[r * check_cols + c],
                      output[r * check_cols + c])
                << "[" << r << "," << c << "] cnt:" << cnt
                << " tx_size: " << cols << "x" << rows
                << " tx_type: " << tx_type_name[tx_type];
          }
        }
      }
    }
  }
}

void AV1FwdTxfm2dSpeedTest(TX_SIZE tx_size, lowbd_fwd_txfm_func target_func) {
  TxfmParam param;
  memset(&param, 0, sizeof(param));
  const int rows = tx_size_high[tx_size];
  const int cols = tx_size_wide[tx_size];
  const int num_loops = 1000000 / (rows * cols);

  const int bd = 8;
  for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
    if (libaom_test::IsTxSizeTypeValid(
            tx_size, static_cast<TX_TYPE>(tx_type)) == false) {
      continue;
    }

    FwdTxfm2dFunc ref_func = libaom_test::fwd_txfm_func_ls[tx_size];
    if (ref_func != nullptr) {
      DECLARE_ALIGNED(32, int16_t, input[64 * 64]) = { 0 };
      DECLARE_ALIGNED(32, int32_t, output[64 * 64]);
      DECLARE_ALIGNED(32, int32_t, ref_output[64 * 64]);
      int input_stride = 64;
      ACMRandom rnd(ACMRandom::DeterministicSeed());

      for (int r = 0; r < rows; ++r) {
        for (int c = 0; c < cols; ++c) {
          input[r * input_stride + c] = rnd.Rand16() % (1 << bd);
        }
      }

      param.tx_type = (TX_TYPE)tx_type;
      param.tx_size = (TX_SIZE)tx_size;
      param.tx_set_type = EXT_TX_SET_ALL16;
      param.bd = bd;

      aom_usec_timer ref_timer, test_timer;

      aom_usec_timer_start(&ref_timer);
      for (int i = 0; i < num_loops; ++i) {
        ref_func(input, ref_output, input_stride, (TX_TYPE)tx_type, bd);
      }
      aom_usec_timer_mark(&ref_timer);
      const int elapsed_time_c =
          static_cast<int>(aom_usec_timer_elapsed(&ref_timer));

      aom_usec_timer_start(&test_timer);
      for (int i = 0; i < num_loops; ++i) {
        target_func(input, output, input_stride, &param);
      }
      aom_usec_timer_mark(&test_timer);
      const int elapsed_time_simd =
          static_cast<int>(aom_usec_timer_elapsed(&test_timer));

      printf(
          "txfm_size[%2dx%-2d] \t txfm_type[%d] \t c_time=%d \t"
          "simd_time=%d \t gain=%d \n",
          rows, cols, tx_type, elapsed_time_c, elapsed_time_simd,
          (elapsed_time_c / elapsed_time_simd));
    }
  }
}

typedef std::tuple<TX_SIZE, lowbd_fwd_txfm_func> LbdFwdTxfm2dParam;

class AV1FwdTxfm2dTest : public ::testing::TestWithParam<LbdFwdTxfm2dParam> {};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1FwdTxfm2dTest);

TEST_P(AV1FwdTxfm2dTest, match) {
  AV1FwdTxfm2dMatchTest(GET_PARAM(0), GET_PARAM(1));
}
TEST_P(AV1FwdTxfm2dTest, DISABLED_Speed) {
  AV1FwdTxfm2dSpeedTest(GET_PARAM(0), GET_PARAM(1));
}
TEST(AV1FwdTxfm2dTest, DCTScaleTest) {
  BitDepthInfo bd_info;
  bd_info.bit_depth = 8;
  bd_info.use_highbitdepth_buf = 0;
  DECLARE_ALIGNED(32, int16_t, src_diff[1024]);
  DECLARE_ALIGNED(32, tran_low_t, coeff[1024]);

  const TX_SIZE tx_size_list[4] = { TX_4X4, TX_8X8, TX_16X16, TX_32X32 };
  const int stride_list[4] = { 4, 8, 16, 32 };
  const int ref_scale_list[4] = { 64, 64, 64, 16 };

  for (int i = 0; i < 4; i++) {
    TX_SIZE tx_size = tx_size_list[i];
    int stride = stride_list[i];
    int array_size = stride * stride;

    for (int j = 0; j < array_size; j++) {
      src_diff[j] = 8;
      coeff[j] = 0;
    }

    av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, stride,
                   coeff);

    double input_sse = 0;
    double output_sse = 0;
    for (int j = 0; j < array_size; j++) {
      input_sse += pow(src_diff[j], 2);
      output_sse += pow(coeff[j], 2);
    }

    double scale = output_sse / input_sse;

    EXPECT_NEAR(scale, ref_scale_list[i], 5);
  }
}
TEST(AV1FwdTxfm2dTest, HadamardScaleTest) {
  BitDepthInfo bd_info;
  bd_info.bit_depth = 8;
  bd_info.use_highbitdepth_buf = 0;
  DECLARE_ALIGNED(32, int16_t, src_diff[1024]);
  DECLARE_ALIGNED(32, tran_low_t, coeff[1024]);

  const TX_SIZE tx_size_list[4] = { TX_4X4, TX_8X8, TX_16X16, TX_32X32 };
  const int stride_list[4] = { 4, 8, 16, 32 };
  const int ref_scale_list[4] = { 1, 64, 64, 16 };

  for (int i = 0; i < 4; i++) {
    TX_SIZE tx_size = tx_size_list[i];
    int stride = stride_list[i];
    int array_size = stride * stride;

    for (int j = 0; j < array_size; j++) {
      src_diff[j] = 8;
      coeff[j] = 0;
    }

    av1_quick_txfm(/*use_hadamard=*/1, tx_size, bd_info, src_diff, stride,
                   coeff);

    double input_sse = 0;
    double output_sse = 0;
    for (int j = 0; j < array_size; j++) {
      input_sse += pow(src_diff[j], 2);
      output_sse += pow(coeff[j], 2);
    }

    double scale = output_sse / input_sse;

    EXPECT_NEAR(scale, ref_scale_list[i], 5);
  }
}
using ::testing::Combine;
using ::testing::Values;
using ::testing::ValuesIn;

#if AOM_ARCH_X86 && HAVE_SSE2
static TX_SIZE fwd_txfm_for_sse2[] = {
  TX_4X4,
  TX_8X8,
  TX_16X16,
  TX_32X32,
  // TX_64X64,
  TX_4X8,
  TX_8X4,
  TX_8X16,
  TX_16X8,
  TX_16X32,
  TX_32X16,
  // TX_32X64,
  // TX_64X32,
  TX_4X16,
  TX_16X4,
  TX_8X32,
  TX_32X8,
  TX_16X64,
  TX_64X16,
};

INSTANTIATE_TEST_SUITE_P(SSE2, AV1FwdTxfm2dTest,
                         Combine(ValuesIn(fwd_txfm_for_sse2),
                                 Values(av1_lowbd_fwd_txfm_sse2)));
#endif  // AOM_ARCH_X86 && HAVE_SSE2

#if HAVE_SSE4_1
static TX_SIZE fwd_txfm_for_sse41[] = { TX_4X4,   TX_8X8,   TX_16X16, TX_32X32,
                                        TX_64X64, TX_4X8,   TX_8X4,   TX_8X16,
                                        TX_16X8,  TX_16X32, TX_32X16, TX_32X64,
                                        TX_64X32, TX_4X16,  TX_16X4,  TX_8X32,
                                        TX_32X8,  TX_16X64, TX_64X16 };

INSTANTIATE_TEST_SUITE_P(SSE4_1, AV1FwdTxfm2dTest,
                         Combine(ValuesIn(fwd_txfm_for_sse41),
                                 Values(av1_lowbd_fwd_txfm_sse4_1)));
#endif  // HAVE_SSE4_1

#if HAVE_AVX2
static TX_SIZE fwd_txfm_for_avx2[] = {
  TX_4X4,  TX_8X8,  TX_16X16, TX_32X32, TX_64X64, TX_4X8,   TX_8X4,
  TX_8X16, TX_16X8, TX_16X32, TX_32X16, TX_32X64, TX_64X32, TX_4X16,
  TX_16X4, TX_8X32, TX_32X8,  TX_16X64, TX_64X16,
};

INSTANTIATE_TEST_SUITE_P(AVX2, AV1FwdTxfm2dTest,
                         Combine(ValuesIn(fwd_txfm_for_avx2),
                                 Values(av1_lowbd_fwd_txfm_avx2)));
#endif  // HAVE_AVX2

#if HAVE_NEON

static TX_SIZE fwd_txfm_for_neon[] = { TX_4X4,   TX_8X8,   TX_16X16, TX_32X32,
                                       TX_64X64, TX_4X8,   TX_8X4,   TX_8X16,
                                       TX_16X8,  TX_16X32, TX_32X16, TX_32X64,
                                       TX_64X32, TX_4X16,  TX_16X4,  TX_8X32,
                                       TX_32X8,  TX_16X64, TX_64X16 };

INSTANTIATE_TEST_SUITE_P(NEON, AV1FwdTxfm2dTest,
                         Combine(ValuesIn(fwd_txfm_for_neon),
                                 Values(av1_lowbd_fwd_txfm_neon)));

#endif  // HAVE_NEON

typedef void (*Highbd_fwd_txfm_func)(const int16_t *src_diff, tran_low_t *coeff,
                                     int diff_stride, TxfmParam *txfm_param);

void AV1HighbdFwdTxfm2dMatchTest(TX_SIZE tx_size,
                                 Highbd_fwd_txfm_func target_func) {
  const int bd_ar[2] = { 10, 12 };
  TxfmParam param;
  memset(&param, 0, sizeof(param));
  const int rows = tx_size_high[tx_size];
  const int cols = tx_size_wide[tx_size];
  for (int i = 0; i < 2; ++i) {
    const int bd = bd_ar[i];
    for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
      if (libaom_test::IsTxSizeTypeValid(
              tx_size, static_cast<TX_TYPE>(tx_type)) == false) {
        continue;
      }

      FwdTxfm2dFunc ref_func = libaom_test::fwd_txfm_func_ls[tx_size];
      if (ref_func != nullptr) {
        DECLARE_ALIGNED(32, int16_t, input[64 * 64]) = { 0 };
        DECLARE_ALIGNED(32, int32_t, output[64 * 64]);
        DECLARE_ALIGNED(32, int32_t, ref_output[64 * 64]);
        int input_stride = 64;
        ACMRandom rnd(ACMRandom::DeterministicSeed());
        for (int cnt = 0; cnt < 500; ++cnt) {
          if (cnt == 0) {
            for (int r = 0; r < rows; ++r) {
              for (int c = 0; c < cols; ++c) {
                input[r * input_stride + c] = (1 << bd) - 1;
              }
            }
          } else {
            for (int r = 0; r < rows; ++r) {
              for (int c = 0; c < cols; ++c) {
                input[r * input_stride + c] = rnd.Rand16() % (1 << bd);
              }
            }
          }
          param.tx_type = (TX_TYPE)tx_type;
          param.tx_size = (TX_SIZE)tx_size;
          param.tx_set_type = EXT_TX_SET_ALL16;
          param.bd = bd;

          ref_func(input, ref_output, input_stride, (TX_TYPE)tx_type, bd);
          target_func(input, output, input_stride, &param);
          const int check_cols = AOMMIN(32, cols);
          const int check_rows = AOMMIN(32, rows * cols / check_cols);
          for (int r = 0; r < check_rows; ++r) {
            for (int c = 0; c < check_cols; ++c) {
              ASSERT_EQ(ref_output[c * check_rows + r],
                        output[c * check_rows + r])
                  << "[" << r << "," << c << "] cnt:" << cnt
                  << " tx_size: " << cols << "x" << rows
                  << " tx_type: " << tx_type;
            }
          }
        }
      }
    }
  }
}

void AV1HighbdFwdTxfm2dSpeedTest(TX_SIZE tx_size,
                                 Highbd_fwd_txfm_func target_func) {
  const int bd_ar[2] = { 10, 12 };
  TxfmParam param;
  memset(&param, 0, sizeof(param));
  const int rows = tx_size_high[tx_size];
  const int cols = tx_size_wide[tx_size];
  const int num_loops = 1000000 / (rows * cols);

  for (int i = 0; i < 2; ++i) {
    const int bd = bd_ar[i];
    for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
      if (libaom_test::IsTxSizeTypeValid(
              tx_size, static_cast<TX_TYPE>(tx_type)) == false) {
        continue;
      }

      FwdTxfm2dFunc ref_func = libaom_test::fwd_txfm_func_ls[tx_size];
      if (ref_func != nullptr) {
        DECLARE_ALIGNED(32, int16_t, input[64 * 64]) = { 0 };
        DECLARE_ALIGNED(32, int32_t, output[64 * 64]);
        DECLARE_ALIGNED(32, int32_t, ref_output[64 * 64]);
        int input_stride = 64;
        ACMRandom rnd(ACMRandom::DeterministicSeed());

        for (int r = 0; r < rows; ++r) {
          for (int c = 0; c < cols; ++c) {
            input[r * input_stride + c] = rnd.Rand16() % (1 << bd);
          }
        }

        param.tx_type = (TX_TYPE)tx_type;
        param.tx_size = (TX_SIZE)tx_size;
        param.tx_set_type = EXT_TX_SET_ALL16;
        param.bd = bd;

        aom_usec_timer ref_timer, test_timer;

        aom_usec_timer_start(&ref_timer);
        for (int j = 0; j < num_loops; ++j) {
          ref_func(input, ref_output, input_stride, (TX_TYPE)tx_type, bd);
        }
        aom_usec_timer_mark(&ref_timer);
        const int elapsed_time_c =
            static_cast<int>(aom_usec_timer_elapsed(&ref_timer));

        aom_usec_timer_start(&test_timer);
        for (int j = 0; j < num_loops; ++j) {
          target_func(input, output, input_stride, &param);
        }
        aom_usec_timer_mark(&test_timer);
        const int elapsed_time_simd =
            static_cast<int>(aom_usec_timer_elapsed(&test_timer));

        printf(
            "txfm_size[%2dx%-2d] \t txfm_type[%d] \t c_time=%d \t"
            "simd_time=%d \t gain=%d \n",
            cols, rows, tx_type, elapsed_time_c, elapsed_time_simd,
            (elapsed_time_c / elapsed_time_simd));
      }
    }
  }
}

typedef std::tuple<TX_SIZE, Highbd_fwd_txfm_func> HighbdFwdTxfm2dParam;

class AV1HighbdFwdTxfm2dTest
    : public ::testing::TestWithParam<HighbdFwdTxfm2dParam> {};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1HighbdFwdTxfm2dTest);

TEST_P(AV1HighbdFwdTxfm2dTest, match) {
  AV1HighbdFwdTxfm2dMatchTest(GET_PARAM(0), GET_PARAM(1));
}

TEST_P(AV1HighbdFwdTxfm2dTest, DISABLED_Speed) {
  AV1HighbdFwdTxfm2dSpeedTest(GET_PARAM(0), GET_PARAM(1));
}

using ::testing::Combine;
using ::testing::Values;
using ::testing::ValuesIn;

#if HAVE_SSE4_1
static TX_SIZE Highbd_fwd_txfm_for_sse4_1[] = {
  TX_4X4,  TX_8X8,  TX_16X16, TX_32X32, TX_64X64, TX_4X8,   TX_8X4,
  TX_8X16, TX_16X8, TX_16X32, TX_32X16, TX_32X64, TX_64X32,
#if !CONFIG_REALTIME_ONLY
  TX_4X16, TX_16X4, TX_8X32,  TX_32X8,  TX_16X64, TX_64X16,
#endif
};

INSTANTIATE_TEST_SUITE_P(SSE4_1, AV1HighbdFwdTxfm2dTest,
                         Combine(ValuesIn(Highbd_fwd_txfm_for_sse4_1),
                                 Values(av1_highbd_fwd_txfm)));
#endif  // HAVE_SSE4_1
#if HAVE_AVX2
static TX_SIZE Highbd_fwd_txfm_for_avx2[] = { TX_8X8,   TX_16X16, TX_32X32,
                                              TX_64X64, TX_8X16,  TX_16X8 };

INSTANTIATE_TEST_SUITE_P(AVX2, AV1HighbdFwdTxfm2dTest,
                         Combine(ValuesIn(Highbd_fwd_txfm_for_avx2),
                                 Values(av1_highbd_fwd_txfm)));
#endif  // HAVE_AVX2

#if HAVE_NEON
static TX_SIZE Highbd_fwd_txfm_for_neon[] = {
  TX_4X4,  TX_8X8,  TX_16X16, TX_32X32, TX_64X64, TX_4X8,   TX_8X4,
  TX_8X16, TX_16X8, TX_16X32, TX_32X16, TX_32X64, TX_64X32, TX_4X16,
  TX_16X4, TX_8X32, TX_32X8,  TX_16X64, TX_64X16
};

INSTANTIATE_TEST_SUITE_P(NEON, AV1HighbdFwdTxfm2dTest,
                         Combine(ValuesIn(Highbd_fwd_txfm_for_neon),
                                 Values(av1_highbd_fwd_txfm)));
#endif  // HAVE_NEON

}  // namespace