1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/enc_xyb.h"
#include <algorithm>
#include <atomic>
#include <cstdlib>
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jxl/enc_xyb.cc"
#include <hwy/foreach_target.h>
#include <hwy/highway.h>
#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/base/data_parallel.h"
#include "lib/jxl/base/fast_math-inl.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/cms/opsin_params.h"
#include "lib/jxl/cms/transfer_functions-inl.h"
#include "lib/jxl/color_encoding_internal.h"
#include "lib/jxl/enc_bit_writer.h"
#include "lib/jxl/enc_image_bundle.h"
#include "lib/jxl/fields.h"
#include "lib/jxl/image_bundle.h"
#include "lib/jxl/image_ops.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {
// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::Add;
using hwy::HWY_NAMESPACE::Mul;
using hwy::HWY_NAMESPACE::MulAdd;
using hwy::HWY_NAMESPACE::Sub;
using hwy::HWY_NAMESPACE::ZeroIfNegative;
// 4x3 matrix * 3x1 SIMD vectors
template <class V>
JXL_INLINE void OpsinAbsorbance(const V r, const V g, const V b,
const float* JXL_RESTRICT premul_absorb,
V* JXL_RESTRICT mixed0, V* JXL_RESTRICT mixed1,
V* JXL_RESTRICT mixed2) {
const float* bias = &jxl::cms::kOpsinAbsorbanceBias[0];
const HWY_FULL(float) d;
const size_t N = Lanes(d);
const auto m0 = Load(d, premul_absorb + 0 * N);
const auto m1 = Load(d, premul_absorb + 1 * N);
const auto m2 = Load(d, premul_absorb + 2 * N);
const auto m3 = Load(d, premul_absorb + 3 * N);
const auto m4 = Load(d, premul_absorb + 4 * N);
const auto m5 = Load(d, premul_absorb + 5 * N);
const auto m6 = Load(d, premul_absorb + 6 * N);
const auto m7 = Load(d, premul_absorb + 7 * N);
const auto m8 = Load(d, premul_absorb + 8 * N);
*mixed0 = MulAdd(m0, r, MulAdd(m1, g, MulAdd(m2, b, Set(d, bias[0]))));
*mixed1 = MulAdd(m3, r, MulAdd(m4, g, MulAdd(m5, b, Set(d, bias[1]))));
*mixed2 = MulAdd(m6, r, MulAdd(m7, g, MulAdd(m8, b, Set(d, bias[2]))));
}
template <class V>
void StoreXYB(const V r, V g, const V b, float* JXL_RESTRICT valx,
float* JXL_RESTRICT valy, float* JXL_RESTRICT valz) {
const HWY_FULL(float) d;
const V half = Set(d, 0.5f);
Store(Mul(half, Sub(r, g)), d, valx);
Store(Mul(half, Add(r, g)), d, valy);
Store(b, d, valz);
}
// Converts one RGB vector to XYB.
template <class V>
void LinearRGBToXYB(const V r, const V g, const V b,
const float* JXL_RESTRICT premul_absorb,
float* JXL_RESTRICT valx, float* JXL_RESTRICT valy,
float* JXL_RESTRICT valz) {
V mixed0, mixed1, mixed2;
OpsinAbsorbance(r, g, b, premul_absorb, &mixed0, &mixed1, &mixed2);
// mixed* should be non-negative even for wide-gamut, so clamp to zero.
mixed0 = ZeroIfNegative(mixed0);
mixed1 = ZeroIfNegative(mixed1);
mixed2 = ZeroIfNegative(mixed2);
const HWY_FULL(float) d;
const size_t N = Lanes(d);
mixed0 = CubeRootAndAdd(mixed0, Load(d, premul_absorb + 9 * N));
mixed1 = CubeRootAndAdd(mixed1, Load(d, premul_absorb + 10 * N));
mixed2 = CubeRootAndAdd(mixed2, Load(d, premul_absorb + 11 * N));
StoreXYB(mixed0, mixed1, mixed2, valx, valy, valz);
// For wide-gamut inputs, r/g/b and valx (but not y/z) are often negative.
}
void LinearRGBRowToXYB(float* JXL_RESTRICT row0, float* JXL_RESTRICT row1,
float* JXL_RESTRICT row2,
const float* JXL_RESTRICT premul_absorb, size_t xsize) {
const HWY_FULL(float) d;
for (size_t x = 0; x < xsize; x += Lanes(d)) {
const auto r = Load(d, row0 + x);
const auto g = Load(d, row1 + x);
const auto b = Load(d, row2 + x);
LinearRGBToXYB(r, g, b, premul_absorb, row0 + x, row1 + x, row2 + x);
}
}
// Input/output uses the codec.h scaling: nominally 0-1 if in-gamut.
template <class V>
V LinearFromSRGB(V encoded) {
return TF_SRGB().DisplayFromEncoded(encoded);
}
Status LinearSRGBToXYB(const float* JXL_RESTRICT premul_absorb,
ThreadPool* pool, Image3F* JXL_RESTRICT image) {
const size_t xsize = image->xsize();
const HWY_FULL(float) d;
return RunOnPool(
pool, 0, static_cast<uint32_t>(image->ysize()), ThreadPool::NoInit,
[&](const uint32_t task, size_t /*thread*/) {
const size_t y = static_cast<size_t>(task);
float* JXL_RESTRICT row0 = image->PlaneRow(0, y);
float* JXL_RESTRICT row1 = image->PlaneRow(1, y);
float* JXL_RESTRICT row2 = image->PlaneRow(2, y);
for (size_t x = 0; x < xsize; x += Lanes(d)) {
const auto in_r = Load(d, row0 + x);
const auto in_g = Load(d, row1 + x);
const auto in_b = Load(d, row2 + x);
LinearRGBToXYB(in_r, in_g, in_b, premul_absorb, row0 + x, row1 + x,
row2 + x);
}
},
"LinearToXYB");
}
Status SRGBToXYB(const float* JXL_RESTRICT premul_absorb, ThreadPool* pool,
Image3F* JXL_RESTRICT image) {
const size_t xsize = image->xsize();
const HWY_FULL(float) d;
return RunOnPool(
pool, 0, static_cast<uint32_t>(image->ysize()), ThreadPool::NoInit,
[&](const uint32_t task, size_t /*thread*/) {
const size_t y = static_cast<size_t>(task);
float* JXL_RESTRICT row0 = image->PlaneRow(0, y);
float* JXL_RESTRICT row1 = image->PlaneRow(1, y);
float* JXL_RESTRICT row2 = image->PlaneRow(2, y);
for (size_t x = 0; x < xsize; x += Lanes(d)) {
const auto in_r = LinearFromSRGB(Load(d, row0 + x));
const auto in_g = LinearFromSRGB(Load(d, row1 + x));
const auto in_b = LinearFromSRGB(Load(d, row2 + x));
LinearRGBToXYB(in_r, in_g, in_b, premul_absorb, row0 + x, row1 + x,
row2 + x);
}
},
"SRGBToXYB");
}
Status SRGBToXYBAndLinear(const float* JXL_RESTRICT premul_absorb,
ThreadPool* pool, Image3F* JXL_RESTRICT image,
Image3F* JXL_RESTRICT linear) {
const size_t xsize = image->xsize();
const HWY_FULL(float) d;
return RunOnPool(
pool, 0, static_cast<uint32_t>(image->ysize()), ThreadPool::NoInit,
[&](const uint32_t task, size_t /*thread*/) {
const size_t y = static_cast<size_t>(task);
float* JXL_RESTRICT row_image0 = image->PlaneRow(0, y);
float* JXL_RESTRICT row_image1 = image->PlaneRow(1, y);
float* JXL_RESTRICT row_image2 = image->PlaneRow(2, y);
float* JXL_RESTRICT row_linear0 = linear->PlaneRow(0, y);
float* JXL_RESTRICT row_linear1 = linear->PlaneRow(1, y);
float* JXL_RESTRICT row_linear2 = linear->PlaneRow(2, y);
for (size_t x = 0; x < xsize; x += Lanes(d)) {
const auto in_r = LinearFromSRGB(Load(d, row_image0 + x));
const auto in_g = LinearFromSRGB(Load(d, row_image1 + x));
const auto in_b = LinearFromSRGB(Load(d, row_image2 + x));
Store(in_r, d, row_linear0 + x);
Store(in_g, d, row_linear1 + x);
Store(in_b, d, row_linear2 + x);
LinearRGBToXYB(in_r, in_g, in_b, premul_absorb, row_image0 + x,
row_image1 + x, row_image2 + x);
}
},
"SRGBToXYBAndLinear");
}
void ComputePremulAbsorb(float intensity_target, float* premul_absorb) {
const HWY_FULL(float) d;
const size_t N = Lanes(d);
const float mul = intensity_target / 255.0f;
for (size_t i = 0; i < 9; ++i) {
const auto absorb = Set(d, jxl::cms::kOpsinAbsorbanceMatrix[i] * mul);
Store(absorb, d, premul_absorb + i * N);
}
for (size_t i = 0; i < 3; ++i) {
const auto neg_bias_cbrt =
Set(d, -cbrtf(jxl::cms::kOpsinAbsorbanceBias[i]));
Store(neg_bias_cbrt, d, premul_absorb + (9 + i) * N);
}
}
Image3F TransformToLinearRGB(const Image3F& in,
const ColorEncoding& color_encoding,
float intensity_target, const JxlCmsInterface& cms,
ThreadPool* pool) {
ColorSpaceTransform c_transform(cms);
bool is_gray = color_encoding.IsGray();
const ColorEncoding& c_desired = ColorEncoding::LinearSRGB(is_gray);
Image3F out(in.xsize(), in.ysize());
std::atomic<bool> ok{true};
JXL_CHECK(RunOnPool(
pool, 0, in.ysize(),
[&](const size_t num_threads) {
return c_transform.Init(color_encoding, c_desired, intensity_target,
in.xsize(), num_threads);
},
[&](const uint32_t y, const size_t thread) {
float* mutable_src_buf = c_transform.BufSrc(thread);
const float* src_buf = mutable_src_buf;
// Interleave input.
if (is_gray) {
src_buf = in.ConstPlaneRow(0, y);
} else {
const float* JXL_RESTRICT row_in0 = in.ConstPlaneRow(0, y);
const float* JXL_RESTRICT row_in1 = in.ConstPlaneRow(1, y);
const float* JXL_RESTRICT row_in2 = in.ConstPlaneRow(2, y);
for (size_t x = 0; x < in.xsize(); x++) {
mutable_src_buf[3 * x + 0] = row_in0[x];
mutable_src_buf[3 * x + 1] = row_in1[x];
mutable_src_buf[3 * x + 2] = row_in2[x];
}
}
float* JXL_RESTRICT dst_buf = c_transform.BufDst(thread);
if (!c_transform.Run(thread, src_buf, dst_buf)) {
ok.store(false);
return;
}
float* JXL_RESTRICT row_out0 = out.PlaneRow(0, y);
float* JXL_RESTRICT row_out1 = out.PlaneRow(1, y);
float* JXL_RESTRICT row_out2 = out.PlaneRow(2, y);
// De-interleave output and convert type.
if (is_gray) {
for (size_t x = 0; x < in.xsize(); x++) {
row_out0[x] = dst_buf[x];
row_out1[x] = dst_buf[x];
row_out2[x] = dst_buf[x];
}
} else {
for (size_t x = 0; x < in.xsize(); x++) {
row_out0[x] = dst_buf[3 * x + 0];
row_out1[x] = dst_buf[3 * x + 1];
row_out2[x] = dst_buf[3 * x + 2];
}
}
},
"Colorspace transform"));
JXL_CHECK(ok.load());
return out;
}
// This is different from Butteraugli's OpsinDynamicsImage() in the sense that
// it does not contain a sensitivity multiplier based on the blurred image.
void ToXYB(const ColorEncoding& c_current, float intensity_target,
const ImageF* black, ThreadPool* pool, Image3F* JXL_RESTRICT image,
const JxlCmsInterface& cms, Image3F* const JXL_RESTRICT linear) {
if (black) JXL_ASSERT(SameSize(*image, *black));
if (linear) JXL_ASSERT(SameSize(*image, *linear));
const HWY_FULL(float) d;
// Pre-broadcasted constants
HWY_ALIGN float premul_absorb[MaxLanes(d) * 12];
ComputePremulAbsorb(intensity_target, premul_absorb);
const bool want_linear = linear != nullptr;
const ColorEncoding& c_linear_srgb =
ColorEncoding::LinearSRGB(c_current.IsGray());
// Linear sRGB inputs are rare but can be useful for the fastest encoders, for
// which undoing the sRGB transfer function would be a large part of the cost.
if (c_linear_srgb.SameColorEncoding(c_current)) {
// This only happens if kitten or slower, moving ImageBundle might be
// possible but the encoder is much slower than this copy.
if (want_linear) {
CopyImageTo(*image, linear);
}
JXL_CHECK(LinearSRGBToXYB(premul_absorb, pool, image));
return;
}
// Common case: already sRGB, can avoid the color transform
if (c_current.IsSRGB()) {
// Common case: can avoid allocating/copying
if (want_linear) {
// Slow encoder also wants linear sRGB.
JXL_CHECK(SRGBToXYBAndLinear(premul_absorb, pool, image, linear));
} else {
JXL_CHECK(SRGBToXYB(premul_absorb, pool, image));
}
return;
}
JXL_CHECK(ApplyColorTransform(c_current, intensity_target, *image, black,
Rect(*image), c_linear_srgb, cms, pool,
want_linear ? linear : image));
if (want_linear) {
CopyImageTo(*linear, image);
}
JXL_CHECK(LinearSRGBToXYB(premul_absorb, pool, image));
}
// Transform RGB to YCbCr.
// Could be performed in-place (i.e. Y, Cb and Cr could alias R, B and B).
Status RgbToYcbcr(const ImageF& r_plane, const ImageF& g_plane,
const ImageF& b_plane, ImageF* y_plane, ImageF* cb_plane,
ImageF* cr_plane, ThreadPool* pool) {
const HWY_FULL(float) df;
const size_t S = Lanes(df); // Step.
const size_t xsize = r_plane.xsize();
const size_t ysize = r_plane.ysize();
if ((xsize == 0) || (ysize == 0)) return true;
// Full-range BT.601 as defined by JFIF Clause 7:
// https://www.itu.int/rec/T-REC-T.871-201105-I/en
const auto k128 = Set(df, 128.0f / 255);
const auto kR = Set(df, 0.299f); // NTSC luma
const auto kG = Set(df, 0.587f);
const auto kB = Set(df, 0.114f);
const auto kAmpR = Set(df, 0.701f);
const auto kAmpB = Set(df, 0.886f);
const auto kDiffR = Add(kAmpR, kR);
const auto kDiffB = Add(kAmpB, kB);
const auto kNormR = Div(Set(df, 1.0f), (Add(kAmpR, Add(kG, kB))));
const auto kNormB = Div(Set(df, 1.0f), (Add(kR, Add(kG, kAmpB))));
constexpr size_t kGroupArea = kGroupDim * kGroupDim;
const size_t lines_per_group = DivCeil(kGroupArea, xsize);
const size_t num_stripes = DivCeil(ysize, lines_per_group);
const auto transform = [&](int idx, int /* thread*/) {
const size_t y0 = idx * lines_per_group;
const size_t y1 = std::min<size_t>(y0 + lines_per_group, ysize);
for (size_t y = y0; y < y1; ++y) {
const float* r_row = r_plane.ConstRow(y);
const float* g_row = g_plane.ConstRow(y);
const float* b_row = b_plane.ConstRow(y);
float* y_row = y_plane->Row(y);
float* cb_row = cb_plane->Row(y);
float* cr_row = cr_plane->Row(y);
for (size_t x = 0; x < xsize; x += S) {
const auto r = Load(df, r_row + x);
const auto g = Load(df, g_row + x);
const auto b = Load(df, b_row + x);
const auto r_base = Mul(r, kR);
const auto r_diff = Mul(r, kDiffR);
const auto g_base = Mul(g, kG);
const auto b_base = Mul(b, kB);
const auto b_diff = Mul(b, kDiffB);
const auto y_base = Add(r_base, Add(g_base, b_base));
const auto y_vec = Sub(y_base, k128);
const auto cb_vec = Mul(Sub(b_diff, y_base), kNormB);
const auto cr_vec = Mul(Sub(r_diff, y_base), kNormR);
Store(y_vec, df, y_row + x);
Store(cb_vec, df, cb_row + x);
Store(cr_vec, df, cr_row + x);
}
}
};
return RunOnPool(pool, 0, static_cast<int>(num_stripes), ThreadPool::NoInit,
transform, "RgbToYcbCr");
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace jxl
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace jxl {
HWY_EXPORT(ToXYB);
void ToXYB(const ColorEncoding& c_current, float intensity_target,
const ImageF* black, ThreadPool* pool, Image3F* JXL_RESTRICT image,
const JxlCmsInterface& cms, Image3F* const JXL_RESTRICT linear) {
HWY_DYNAMIC_DISPATCH(ToXYB)
(c_current, intensity_target, black, pool, image, cms, linear);
}
void ToXYB(const ImageBundle& in, ThreadPool* pool, Image3F* JXL_RESTRICT xyb,
const JxlCmsInterface& cms, Image3F* JXL_RESTRICT linear) {
*xyb = Image3F(in.xsize(), in.ysize());
CopyImageTo(in.color(), xyb);
ToXYB(in.c_current(), in.metadata()->IntensityTarget(),
in.HasBlack() ? &in.black() : nullptr, pool, xyb, cms, linear);
}
HWY_EXPORT(LinearRGBRowToXYB);
void LinearRGBRowToXYB(float* JXL_RESTRICT row0, float* JXL_RESTRICT row1,
float* JXL_RESTRICT row2,
const float* JXL_RESTRICT premul_absorb, size_t xsize) {
HWY_DYNAMIC_DISPATCH(LinearRGBRowToXYB)
(row0, row1, row2, premul_absorb, xsize);
}
HWY_EXPORT(ComputePremulAbsorb);
void ComputePremulAbsorb(float intensity_target, float* premul_absorb) {
HWY_DYNAMIC_DISPATCH(ComputePremulAbsorb)(intensity_target, premul_absorb);
}
void ScaleXYBRow(float* JXL_RESTRICT row0, float* JXL_RESTRICT row1,
float* JXL_RESTRICT row2, size_t xsize) {
for (size_t x = 0; x < xsize; x++) {
row2[x] = (row2[x] - row1[x] + jxl::cms::kScaledXYBOffset[2]) *
jxl::cms::kScaledXYBScale[2];
row0[x] = (row0[x] + jxl::cms::kScaledXYBOffset[0]) *
jxl::cms::kScaledXYBScale[0];
row1[x] = (row1[x] + jxl::cms::kScaledXYBOffset[1]) *
jxl::cms::kScaledXYBScale[1];
}
}
void ScaleXYB(Image3F* opsin) {
for (size_t y = 0; y < opsin->ysize(); y++) {
float* row0 = opsin->PlaneRow(0, y);
float* row1 = opsin->PlaneRow(1, y);
float* row2 = opsin->PlaneRow(2, y);
ScaleXYBRow(row0, row1, row2, opsin->xsize());
}
}
HWY_EXPORT(RgbToYcbcr);
Status RgbToYcbcr(const ImageF& r_plane, const ImageF& g_plane,
const ImageF& b_plane, ImageF* y_plane, ImageF* cb_plane,
ImageF* cr_plane, ThreadPool* pool) {
return HWY_DYNAMIC_DISPATCH(RgbToYcbcr)(r_plane, g_plane, b_plane, y_plane,
cb_plane, cr_plane, pool);
}
} // namespace jxl
#endif // HWY_ONCE
|