summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_coding/neteq/delay_manager_unittest.cc
blob: da5f53188caf0fe8a8d2dabb25832c4d207dc3bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

// Unit tests for DelayManager class.

#include "modules/audio_coding/neteq/delay_manager.h"

#include <math.h>

#include <memory>

#include "absl/types/optional.h"
#include "modules/audio_coding/neteq/histogram.h"
#include "modules/audio_coding/neteq/mock/mock_histogram.h"
#include "modules/audio_coding/neteq/mock/mock_statistics_calculator.h"
#include "rtc_base/checks.h"
#include "test/field_trial.h"
#include "test/gmock.h"
#include "test/gtest.h"

namespace webrtc {

namespace {
constexpr int kMaxNumberOfPackets = 200;
constexpr int kTimeStepMs = 10;
constexpr int kFrameSizeMs = 20;
constexpr int kMaxBufferSizeMs = kMaxNumberOfPackets * kFrameSizeMs;

}  // namespace

class DelayManagerTest : public ::testing::Test {
 protected:
  DelayManagerTest();
  virtual void SetUp();
  void Update(int delay);
  void IncreaseTime(int inc_ms);

  TickTimer tick_timer_;
  DelayManager dm_;
};

DelayManagerTest::DelayManagerTest()
    : dm_(DelayManager::Config(), &tick_timer_) {}

void DelayManagerTest::SetUp() {
  dm_.SetPacketAudioLength(kFrameSizeMs);
}

void DelayManagerTest::Update(int delay) {
  dm_.Update(delay, false);
}

void DelayManagerTest::IncreaseTime(int inc_ms) {
  for (int t = 0; t < inc_ms; t += kTimeStepMs) {
    tick_timer_.Increment();
  }
}

TEST_F(DelayManagerTest, CreateAndDestroy) {
  // Nothing to do here. The test fixture creates and destroys the DelayManager
  // object.
}

TEST_F(DelayManagerTest, UpdateNormal) {
  for (int i = 0; i < 50; ++i) {
    Update(0);
    IncreaseTime(kFrameSizeMs);
  }
  EXPECT_EQ(20, dm_.TargetDelayMs());
}

TEST_F(DelayManagerTest, MaxDelay) {
  Update(0);
  const int kMaxDelayMs = 60;
  EXPECT_GT(dm_.TargetDelayMs(), kMaxDelayMs);
  EXPECT_TRUE(dm_.SetMaximumDelay(kMaxDelayMs));
  Update(0);
  EXPECT_EQ(kMaxDelayMs, dm_.TargetDelayMs());
}

TEST_F(DelayManagerTest, MinDelay) {
  Update(0);
  int kMinDelayMs = 7 * kFrameSizeMs;
  EXPECT_LT(dm_.TargetDelayMs(), kMinDelayMs);
  dm_.SetMinimumDelay(kMinDelayMs);
  IncreaseTime(kFrameSizeMs);
  Update(0);
  EXPECT_EQ(kMinDelayMs, dm_.TargetDelayMs());
}

TEST_F(DelayManagerTest, BaseMinimumDelayCheckValidRange) {
  // Base minimum delay should be between [0, 10000] milliseconds.
  EXPECT_FALSE(dm_.SetBaseMinimumDelay(-1));
  EXPECT_FALSE(dm_.SetBaseMinimumDelay(10001));
  EXPECT_EQ(dm_.GetBaseMinimumDelay(), 0);

  EXPECT_TRUE(dm_.SetBaseMinimumDelay(7999));
  EXPECT_EQ(dm_.GetBaseMinimumDelay(), 7999);
}

TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMinimumDelay) {
  constexpr int kBaseMinimumDelayMs = 100;
  constexpr int kMinimumDelayMs = 200;

  // Base minimum delay sets lower bound on minimum. That is why when base
  // minimum delay is lower than minimum delay we use minimum delay.
  RTC_DCHECK_LT(kBaseMinimumDelayMs, kMinimumDelayMs);

  EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
  EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
  EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMinimumDelayMs);
}

TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMinimumDelay) {
  constexpr int kBaseMinimumDelayMs = 70;
  constexpr int kMinimumDelayMs = 30;

  // Base minimum delay sets lower bound on minimum. That is why when base
  // minimum delay is greater than minimum delay we use base minimum delay.
  RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs);

  EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
  EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
  EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs);
}

TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanBufferSize) {
  constexpr int kBaseMinimumDelayMs = kMaxBufferSizeMs + 1;
  constexpr int kMinimumDelayMs = 12;
  constexpr int kMaximumDelayMs = 20;
  constexpr int kMaxBufferSizeMsQ75 = 3 * kMaxBufferSizeMs / 4;

  EXPECT_TRUE(dm_.SetMaximumDelay(kMaximumDelayMs));

  // Base minimum delay is greater than minimum delay, that is why we clamp
  // it to current the highest possible value which is maximum delay.
  RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs);
  RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaxBufferSizeMs);
  RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaximumDelayMs);
  RTC_DCHECK_LT(kMaximumDelayMs, kMaxBufferSizeMsQ75);

  EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
  EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));

  // Unset maximum value.
  EXPECT_TRUE(dm_.SetMaximumDelay(0));

  // With maximum value unset, the highest possible value now is 75% of
  // currently possible maximum buffer size.
  EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMaxBufferSizeMsQ75);
}

TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMaximumDelay) {
  constexpr int kMaximumDelayMs = 400;
  constexpr int kBaseMinimumDelayMs = kMaximumDelayMs + 1;
  constexpr int kMinimumDelayMs = 20;

  // Base minimum delay is greater than minimum delay, that is why we clamp
  // it to current the highest possible value which is kMaximumDelayMs.
  RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs);
  RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaximumDelayMs);
  RTC_DCHECK_LT(kMaximumDelayMs, kMaxBufferSizeMs);

  EXPECT_TRUE(dm_.SetMaximumDelay(kMaximumDelayMs));
  EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
  EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
  EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMaximumDelayMs);
}

TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMaxSize) {
  constexpr int kMaximumDelayMs = 400;
  constexpr int kBaseMinimumDelayMs = kMaximumDelayMs - 1;
  constexpr int kMinimumDelayMs = 20;

  // Base minimum delay is greater than minimum delay, and lower than maximum
  // delays that is why it is used.
  RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs);
  RTC_DCHECK_LT(kBaseMinimumDelayMs, kMaximumDelayMs);

  EXPECT_TRUE(dm_.SetMaximumDelay(kMaximumDelayMs));
  EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
  EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
  EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs);
}

TEST_F(DelayManagerTest, MinimumDelayMemorization) {
  // Check that when we increase base minimum delay to value higher than
  // minimum delay then minimum delay is still memorized. This allows to
  // restore effective minimum delay to memorized minimum delay value when we
  // decrease base minimum delay.
  constexpr int kBaseMinimumDelayMsLow = 10;
  constexpr int kMinimumDelayMs = 20;
  constexpr int kBaseMinimumDelayMsHigh = 30;

  EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMsLow));
  EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
  // Minimum delay is used as it is higher than base minimum delay.
  EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMinimumDelayMs);

  EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMsHigh));
  // Base minimum delay is used as it is now higher than minimum delay.
  EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMsHigh);

  EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMsLow));
  // Check that minimum delay is memorized and is used again.
  EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMinimumDelayMs);
}

TEST_F(DelayManagerTest, BaseMinimumDelay) {
  // First packet arrival.
  Update(0);

  constexpr int kBaseMinimumDelayMs = 7 * kFrameSizeMs;
  EXPECT_LT(dm_.TargetDelayMs(), kBaseMinimumDelayMs);
  EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
  EXPECT_EQ(dm_.GetBaseMinimumDelay(), kBaseMinimumDelayMs);

  IncreaseTime(kFrameSizeMs);
  Update(0);
  EXPECT_EQ(dm_.GetBaseMinimumDelay(), kBaseMinimumDelayMs);
  EXPECT_EQ(kBaseMinimumDelayMs, dm_.TargetDelayMs());
}

TEST_F(DelayManagerTest, Failures) {
  // Wrong packet size.
  EXPECT_EQ(-1, dm_.SetPacketAudioLength(0));
  EXPECT_EQ(-1, dm_.SetPacketAudioLength(-1));

  // Minimum delay higher than a maximum delay is not accepted.
  EXPECT_TRUE(dm_.SetMaximumDelay(20));
  EXPECT_FALSE(dm_.SetMinimumDelay(40));

  // Maximum delay less than minimum delay is not accepted.
  EXPECT_TRUE(dm_.SetMaximumDelay(100));
  EXPECT_TRUE(dm_.SetMinimumDelay(80));
  EXPECT_FALSE(dm_.SetMaximumDelay(60));
}

}  // namespace webrtc