summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/video_coding/timing/jitter_estimator.cc
blob: 62757787a14df41b2df28fa569b271e6d5eec122 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
/*
 *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/video_coding/timing/jitter_estimator.h"

#include <math.h>
#include <string.h>

#include <algorithm>
#include <cstdint>

#include "absl/types/optional.h"
#include "api/field_trials_view.h"
#include "api/units/data_size.h"
#include "api/units/frequency.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "modules/video_coding/timing/rtt_filter.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "system_wrappers/include/clock.h"

namespace webrtc {
namespace {

// Number of frames to wait for before post processing estimate. Also used in
// the frame rate estimator ramp-up.
constexpr size_t kFrameProcessingStartupCount = 30;

// Number of frames to wait for before enabling the frame size filters.
constexpr size_t kFramesUntilSizeFiltering = 5;

// Initial value for frame size filters.
constexpr double kInitialAvgAndMaxFrameSizeBytes = 500.0;

// Time constant for average frame size filter.
constexpr double kPhi = 0.97;
// Time constant for max frame size filter.
constexpr double kPsi = 0.9999;
// Default constants for percentile frame size filter.
constexpr double kDefaultMaxFrameSizePercentile = 0.95;
constexpr int kDefaultFrameSizeWindow = 30 * 10;

// Outlier rejection constants.
constexpr double kNumStdDevDelayClamp = 3.5;
constexpr double kNumStdDevDelayOutlier = 15.0;
constexpr double kNumStdDevSizeOutlier = 3.0;
constexpr double kCongestionRejectionFactor = -0.25;

// Rampup constant for deviation noise filters.
constexpr size_t kAlphaCountMax = 400;

// Noise threshold constants.
// ~Less than 1% chance (look up in normal distribution table)...
constexpr double kNoiseStdDevs = 2.33;
// ...of getting 30 ms freezes
constexpr double kNoiseStdDevOffset = 30.0;

// Jitter estimate clamping limits.
constexpr TimeDelta kMinJitterEstimate = TimeDelta::Millis(1);
constexpr TimeDelta kMaxJitterEstimate = TimeDelta::Seconds(10);

// A constant describing the delay from the jitter buffer to the delay on the
// receiving side which is not accounted for by the jitter buffer nor the
// decoding delay estimate.
constexpr TimeDelta OPERATING_SYSTEM_JITTER = TimeDelta::Millis(10);

// Time constant for reseting the NACK count.
constexpr TimeDelta kNackCountTimeout = TimeDelta::Seconds(60);

// RTT mult activation.
constexpr size_t kNackLimit = 3;

// Frame rate estimate clamping limit.
constexpr Frequency kMaxFramerateEstimate = Frequency::Hertz(200);

}  // namespace

constexpr char JitterEstimator::Config::kFieldTrialsKey[];

JitterEstimator::Config JitterEstimator::Config::ParseAndValidate(
    absl::string_view field_trial) {
  Config config;
  config.Parser()->Parse(field_trial);

  // The `MovingPercentileFilter` RTC_CHECKs on the validity of the
  // percentile and window length, so we'd better validate the field trial
  // provided values here.
  if (config.max_frame_size_percentile) {
    double original = *config.max_frame_size_percentile;
    config.max_frame_size_percentile = std::min(std::max(0.0, original), 1.0);
    if (config.max_frame_size_percentile != original) {
      RTC_LOG(LS_ERROR) << "Skipping invalid max_frame_size_percentile="
                        << original;
    }
  }
  if (config.frame_size_window && config.frame_size_window < 1) {
    RTC_LOG(LS_ERROR) << "Skipping invalid frame_size_window="
                      << *config.frame_size_window;
    config.frame_size_window = 1;
  }

  // General sanity checks.
  if (config.num_stddev_delay_clamp && config.num_stddev_delay_clamp < 0.0) {
    RTC_LOG(LS_ERROR) << "Skipping invalid num_stddev_delay_clamp="
                      << *config.num_stddev_delay_clamp;
    config.num_stddev_delay_clamp = 0.0;
  }
  if (config.num_stddev_delay_outlier &&
      config.num_stddev_delay_outlier < 0.0) {
    RTC_LOG(LS_ERROR) << "Skipping invalid num_stddev_delay_outlier="
                      << *config.num_stddev_delay_outlier;
    config.num_stddev_delay_outlier = 0.0;
  }
  if (config.num_stddev_size_outlier && config.num_stddev_size_outlier < 0.0) {
    RTC_LOG(LS_ERROR) << "Skipping invalid num_stddev_size_outlier="
                      << *config.num_stddev_size_outlier;
    config.num_stddev_size_outlier = 0.0;
  }

  return config;
}

JitterEstimator::JitterEstimator(Clock* clock,
                                 const FieldTrialsView& field_trials)
    : config_(Config::ParseAndValidate(
          field_trials.Lookup(Config::kFieldTrialsKey))),
      avg_frame_size_median_bytes_(static_cast<size_t>(
          config_.frame_size_window.value_or(kDefaultFrameSizeWindow))),
      max_frame_size_bytes_percentile_(
          config_.max_frame_size_percentile.value_or(
              kDefaultMaxFrameSizePercentile),
          static_cast<size_t>(
              config_.frame_size_window.value_or(kDefaultFrameSizeWindow))),
      fps_counter_(30),  // TODO(sprang): Use an estimator with limit based
                         // on time, rather than number of samples.
      clock_(clock) {
  Reset();
}

JitterEstimator::~JitterEstimator() = default;

// Resets the JitterEstimate.
void JitterEstimator::Reset() {
  avg_frame_size_bytes_ = kInitialAvgAndMaxFrameSizeBytes;
  max_frame_size_bytes_ = kInitialAvgAndMaxFrameSizeBytes;
  var_frame_size_bytes2_ = 100;
  avg_frame_size_median_bytes_.Reset();
  max_frame_size_bytes_percentile_.Reset();
  last_update_time_ = absl::nullopt;
  prev_estimate_ = absl::nullopt;
  prev_frame_size_ = absl::nullopt;
  avg_noise_ms_ = 0.0;
  var_noise_ms2_ = 4.0;
  alpha_count_ = 1;
  filter_jitter_estimate_ = TimeDelta::Zero();
  latest_nack_ = Timestamp::Zero();
  nack_count_ = 0;
  startup_frame_size_sum_bytes_ = 0;
  startup_frame_size_count_ = 0;
  startup_count_ = 0;
  rtt_filter_.Reset();
  fps_counter_.Reset();

  kalman_filter_ = FrameDelayVariationKalmanFilter();
}

// Updates the estimates with the new measurements.
void JitterEstimator::UpdateEstimate(TimeDelta frame_delay,
                                     DataSize frame_size) {
  if (frame_size.IsZero()) {
    return;
  }
  // Can't use DataSize since this can be negative.
  double delta_frame_bytes =
      frame_size.bytes() - prev_frame_size_.value_or(DataSize::Zero()).bytes();
  if (startup_frame_size_count_ < kFramesUntilSizeFiltering) {
    startup_frame_size_sum_bytes_ += frame_size.bytes();
    startup_frame_size_count_++;
  } else if (startup_frame_size_count_ == kFramesUntilSizeFiltering) {
    // Give the frame size filter.
    avg_frame_size_bytes_ = startup_frame_size_sum_bytes_ /
                            static_cast<double>(startup_frame_size_count_);
    startup_frame_size_count_++;
  }

  double avg_frame_size_bytes =
      kPhi * avg_frame_size_bytes_ + (1 - kPhi) * frame_size.bytes();
  double deviation_size_bytes = 2 * sqrt(var_frame_size_bytes2_);
  if (frame_size.bytes() < avg_frame_size_bytes_ + deviation_size_bytes) {
    // Only update the average frame size if this sample wasn't a key frame.
    avg_frame_size_bytes_ = avg_frame_size_bytes;
  }

  double delta_bytes = frame_size.bytes() - avg_frame_size_bytes;
  var_frame_size_bytes2_ = std::max(
      kPhi * var_frame_size_bytes2_ + (1 - kPhi) * (delta_bytes * delta_bytes),
      1.0);

  // Update non-linear IIR estimate of max frame size.
  max_frame_size_bytes_ =
      std::max<double>(kPsi * max_frame_size_bytes_, frame_size.bytes());

  // Maybe update percentile estimates of frame sizes.
  if (config_.avg_frame_size_median) {
    avg_frame_size_median_bytes_.Insert(frame_size.bytes());
  }
  if (config_.MaxFrameSizePercentileEnabled()) {
    max_frame_size_bytes_percentile_.Insert(frame_size.bytes());
  }

  if (!prev_frame_size_) {
    prev_frame_size_ = frame_size;
    return;
  }
  prev_frame_size_ = frame_size;

  // Cap frame_delay based on the current time deviation noise.
  double num_stddev_delay_clamp =
      config_.num_stddev_delay_clamp.value_or(kNumStdDevDelayClamp);
  TimeDelta max_time_deviation =
      TimeDelta::Millis(num_stddev_delay_clamp * sqrt(var_noise_ms2_) + 0.5);
  frame_delay.Clamp(-max_time_deviation, max_time_deviation);

  double delay_deviation_ms =
      frame_delay.ms() -
      kalman_filter_.GetFrameDelayVariationEstimateTotal(delta_frame_bytes);

  // Outlier rejection: these conditions depend on filtered versions of the
  // delay and frame size _means_, respectively, together with a configurable
  // number of standard deviations. If a sample is large with respect to the
  // corresponding mean and dispersion (defined by the number of
  // standard deviations and the sample standard deviation), it is deemed an
  // outlier. This "empirical rule" is further described in
  // https://en.wikipedia.org/wiki/68-95-99.7_rule. Note that neither of the
  // estimated means are true sample means, which implies that they are possibly
  // not normally distributed. Hence, this rejection method is just a heuristic.
  double num_stddev_delay_outlier =
      config_.num_stddev_delay_outlier.value_or(kNumStdDevDelayOutlier);
  // Delay outlier rejection is two-sided.
  bool abs_delay_is_not_outlier =
      fabs(delay_deviation_ms) <
      num_stddev_delay_outlier * sqrt(var_noise_ms2_);
  // The reasoning above means, in particular, that we should use the sample
  // mean-style `avg_frame_size_bytes_` estimate, as opposed to the
  // median-filtered version, even if configured to use latter for the
  // calculation in `CalculateEstimate()`.
  // Size outlier rejection is one-sided.
  double num_stddev_size_outlier =
      config_.num_stddev_size_outlier.value_or(kNumStdDevSizeOutlier);
  bool size_is_positive_outlier =
      frame_size.bytes() >
      avg_frame_size_bytes_ +
          num_stddev_size_outlier * sqrt(var_frame_size_bytes2_);

  // Only update the Kalman filter if the sample is not considered an extreme
  // outlier. Even if it is an extreme outlier from a delay point of view, if
  // the frame size also is large the deviation is probably due to an incorrect
  // line slope.
  if (abs_delay_is_not_outlier || size_is_positive_outlier) {
    // Prevent updating with frames which have been congested by a large frame,
    // and therefore arrives almost at the same time as that frame.
    // This can occur when we receive a large frame (key frame) which has been
    // delayed. The next frame is of normal size (delta frame), and thus deltaFS
    // will be << 0. This removes all frame samples which arrives after a key
    // frame.
    double congestion_rejection_factor =
        config_.congestion_rejection_factor.value_or(
            kCongestionRejectionFactor);
    double filtered_max_frame_size_bytes =
        config_.MaxFrameSizePercentileEnabled()
            ? max_frame_size_bytes_percentile_.GetFilteredValue()
            : max_frame_size_bytes_;
    bool is_not_congested =
        delta_frame_bytes >
        congestion_rejection_factor * filtered_max_frame_size_bytes;

    if (is_not_congested || config_.estimate_noise_when_congested) {
      // Update the variance of the deviation from the line given by the Kalman
      // filter.
      EstimateRandomJitter(delay_deviation_ms);
    }
    if (is_not_congested) {
      // Neither a delay outlier nor a congested frame, so we can safely update
      // the Kalman filter with the sample.
      kalman_filter_.PredictAndUpdate(frame_delay.ms(), delta_frame_bytes,
                                      filtered_max_frame_size_bytes,
                                      var_noise_ms2_);
    }
  } else {
    // Delay outliers affect the noise estimate through a value equal to the
    // outlier rejection threshold.
    double num_stddev = (delay_deviation_ms >= 0) ? num_stddev_delay_outlier
                                                  : -num_stddev_delay_outlier;
    EstimateRandomJitter(num_stddev * sqrt(var_noise_ms2_));
  }
  // Post process the total estimated jitter
  if (startup_count_ >= kFrameProcessingStartupCount) {
    PostProcessEstimate();
  } else {
    startup_count_++;
  }
}

// Updates the nack/packet ratio.
void JitterEstimator::FrameNacked() {
  if (nack_count_ < kNackLimit) {
    nack_count_++;
  }
  latest_nack_ = clock_->CurrentTime();
}

void JitterEstimator::UpdateRtt(TimeDelta rtt) {
  rtt_filter_.Update(rtt);
}

JitterEstimator::Config JitterEstimator::GetConfigForTest() const {
  return config_;
}

// Estimates the random jitter by calculating the variance of the sample
// distance from the line given by the Kalman filter.
void JitterEstimator::EstimateRandomJitter(double d_dT) {
  Timestamp now = clock_->CurrentTime();
  if (last_update_time_.has_value()) {
    fps_counter_.AddSample((now - *last_update_time_).us());
  }
  last_update_time_ = now;

  if (alpha_count_ == 0) {
    RTC_DCHECK_NOTREACHED();
    return;
  }
  double alpha =
      static_cast<double>(alpha_count_ - 1) / static_cast<double>(alpha_count_);
  alpha_count_++;
  if (alpha_count_ > kAlphaCountMax)
    alpha_count_ = kAlphaCountMax;

  // In order to avoid a low frame rate stream to react slower to changes,
  // scale the alpha weight relative a 30 fps stream.
  Frequency fps = GetFrameRate();
  if (fps > Frequency::Zero()) {
    constexpr Frequency k30Fps = Frequency::Hertz(30);
    double rate_scale = k30Fps / fps;
    // At startup, there can be a lot of noise in the fps estimate.
    // Interpolate rate_scale linearly, from 1.0 at sample #1, to 30.0 / fps
    // at sample #kFrameProcessingStartupCount.
    if (alpha_count_ < kFrameProcessingStartupCount) {
      rate_scale = (alpha_count_ * rate_scale +
                    (kFrameProcessingStartupCount - alpha_count_)) /
                   kFrameProcessingStartupCount;
    }
    alpha = pow(alpha, rate_scale);
  }

  double avg_noise_ms = alpha * avg_noise_ms_ + (1 - alpha) * d_dT;
  double var_noise_ms2 = alpha * var_noise_ms2_ + (1 - alpha) *
                                                      (d_dT - avg_noise_ms_) *
                                                      (d_dT - avg_noise_ms_);
  avg_noise_ms_ = avg_noise_ms;
  var_noise_ms2_ = var_noise_ms2;
  if (var_noise_ms2_ < 1.0) {
    // The variance should never be zero, since we might get stuck and consider
    // all samples as outliers.
    var_noise_ms2_ = 1.0;
  }
}

double JitterEstimator::NoiseThreshold() const {
  double noise_threshold_ms =
      kNoiseStdDevs * sqrt(var_noise_ms2_) - kNoiseStdDevOffset;
  if (noise_threshold_ms < 1.0) {
    noise_threshold_ms = 1.0;
  }
  return noise_threshold_ms;
}

// Calculates the current jitter estimate from the filtered estimates.
TimeDelta JitterEstimator::CalculateEstimate() {
  // Using median- and percentile-filtered versions of the frame sizes may be
  // more robust than using sample mean-style estimates.
  double filtered_avg_frame_size_bytes =
      config_.avg_frame_size_median
          ? avg_frame_size_median_bytes_.GetFilteredValue()
          : avg_frame_size_bytes_;
  double filtered_max_frame_size_bytes =
      config_.MaxFrameSizePercentileEnabled()
          ? max_frame_size_bytes_percentile_.GetFilteredValue()
          : max_frame_size_bytes_;
  double worst_case_frame_size_deviation_bytes =
      filtered_max_frame_size_bytes - filtered_avg_frame_size_bytes;
  double ret_ms = kalman_filter_.GetFrameDelayVariationEstimateSizeBased(
                      worst_case_frame_size_deviation_bytes) +
                  NoiseThreshold();
  TimeDelta ret = TimeDelta::Millis(ret_ms);

  // A very low estimate (or negative) is neglected.
  if (ret < kMinJitterEstimate) {
    ret = prev_estimate_.value_or(kMinJitterEstimate);
    // Sanity check to make sure that no other method has set `prev_estimate_`
    // to a value lower than `kMinJitterEstimate`.
    RTC_DCHECK_GE(ret, kMinJitterEstimate);
  } else if (ret > kMaxJitterEstimate) {  // Sanity
    ret = kMaxJitterEstimate;
  }
  prev_estimate_ = ret;
  return ret;
}

void JitterEstimator::PostProcessEstimate() {
  filter_jitter_estimate_ = CalculateEstimate();
}

// Returns the current filtered estimate if available,
// otherwise tries to calculate an estimate.
TimeDelta JitterEstimator::GetJitterEstimate(
    double rtt_multiplier,
    absl::optional<TimeDelta> rtt_mult_add_cap) {
  TimeDelta jitter = CalculateEstimate() + OPERATING_SYSTEM_JITTER;
  Timestamp now = clock_->CurrentTime();

  if (now - latest_nack_ > kNackCountTimeout)
    nack_count_ = 0;

  if (filter_jitter_estimate_ > jitter)
    jitter = filter_jitter_estimate_;
  if (nack_count_ >= kNackLimit) {
    if (rtt_mult_add_cap.has_value()) {
      jitter += std::min(rtt_filter_.Rtt() * rtt_multiplier,
                         rtt_mult_add_cap.value());
    } else {
      jitter += rtt_filter_.Rtt() * rtt_multiplier;
    }
  }

  static const Frequency kJitterScaleLowThreshold = Frequency::Hertz(5);
  static const Frequency kJitterScaleHighThreshold = Frequency::Hertz(10);
  Frequency fps = GetFrameRate();
  // Ignore jitter for very low fps streams.
  if (fps < kJitterScaleLowThreshold) {
    if (fps.IsZero()) {
      return std::max(TimeDelta::Zero(), jitter);
    }
    return TimeDelta::Zero();
  }

  // Semi-low frame rate; scale by factor linearly interpolated from 0.0 at
  // kJitterScaleLowThreshold to 1.0 at kJitterScaleHighThreshold.
  if (fps < kJitterScaleHighThreshold) {
    jitter = (1.0 / (kJitterScaleHighThreshold - kJitterScaleLowThreshold)) *
             (fps - kJitterScaleLowThreshold) * jitter;
  }

  return std::max(TimeDelta::Zero(), jitter);
}

Frequency JitterEstimator::GetFrameRate() const {
  TimeDelta mean_frame_period = TimeDelta::Micros(fps_counter_.ComputeMean());
  if (mean_frame_period <= TimeDelta::Zero())
    return Frequency::Zero();

  Frequency fps = 1 / mean_frame_period;
  // Sanity check.
  RTC_DCHECK_GE(fps, Frequency::Zero());
  return std::min(fps, kMaxFramerateEstimate);
}
}  // namespace webrtc