summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/rtc_base/swap_queue.h
blob: 3c8149c16399203cf5784991cf71bc641bcc861a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/*
 *  Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#ifndef RTC_BASE_SWAP_QUEUE_H_
#define RTC_BASE_SWAP_QUEUE_H_

#include <stddef.h>

#include <atomic>
#include <utility>
#include <vector>

#include "absl/base/attributes.h"
#include "rtc_base/checks.h"

namespace webrtc {

namespace internal {

// (Internal; please don't use outside this file.)
template <typename T>
bool NoopSwapQueueItemVerifierFunction(const T&) {
  return true;
}

}  // namespace internal

// Functor to use when supplying a verifier function for the queue.
template <typename T,
          bool (*QueueItemVerifierFunction)(const T&) =
              internal::NoopSwapQueueItemVerifierFunction>
class SwapQueueItemVerifier {
 public:
  bool operator()(const T& t) const { return QueueItemVerifierFunction(t); }
};

// This class is a fixed-size queue. A single producer calls Insert() to insert
// an element of type T at the back of the queue, and a single consumer calls
// Remove() to remove an element from the front of the queue. It's safe for the
// producer and the consumer to access the queue concurrently, from different
// threads.
//
// To avoid the construction, copying, and destruction of Ts that a naive
// queue implementation would require, for each "full" T passed from
// producer to consumer, SwapQueue<T> passes an "empty" T in the other
// direction (an "empty" T is one that contains nothing of value for the
// consumer). This bidirectional movement is implemented with swap().
//
// // Create queue:
// Bottle proto(568);  // Prepare an empty Bottle. Heap allocates space for
//                     // 568 ml.
// SwapQueue<Bottle> q(N, proto);  // Init queue with N copies of proto.
//                                 // Each copy allocates on the heap.
// // Producer pseudo-code:
// Bottle b(568); // Prepare an empty Bottle. Heap allocates space for 568 ml.
// loop {
//   b.Fill(amount);  // Where amount <= 568 ml.
//   q.Insert(&b);    // Swap our full Bottle for an empty one from q.
// }
//
// // Consumer pseudo-code:
// Bottle b(568);  // Prepare an empty Bottle. Heap allocates space for 568 ml.
// loop {
//   q.Remove(&b); // Swap our empty Bottle for the next-in-line full Bottle.
//   Drink(&b);
// }
//
// For a well-behaved Bottle class, there are no allocations in the
// producer, since it just fills an empty Bottle that's already large
// enough; no deallocations in the consumer, since it returns each empty
// Bottle to the queue after having drunk it; and no copies along the
// way, since the queue uses swap() everywhere to move full Bottles in
// one direction and empty ones in the other.
template <typename T, typename QueueItemVerifier = SwapQueueItemVerifier<T>>
class SwapQueue {
 public:
  // Creates a queue of size size and fills it with default constructed Ts.
  explicit SwapQueue(size_t size) : queue_(size) {
    RTC_DCHECK(VerifyQueueSlots());
  }

  // Same as above and accepts an item verification functor.
  SwapQueue(size_t size, const QueueItemVerifier& queue_item_verifier)
      : queue_item_verifier_(queue_item_verifier), queue_(size) {
    RTC_DCHECK(VerifyQueueSlots());
  }

  // Creates a queue of size size and fills it with copies of prototype.
  SwapQueue(size_t size, const T& prototype) : queue_(size, prototype) {
    RTC_DCHECK(VerifyQueueSlots());
  }

  // Same as above and accepts an item verification functor.
  SwapQueue(size_t size,
            const T& prototype,
            const QueueItemVerifier& queue_item_verifier)
      : queue_item_verifier_(queue_item_verifier), queue_(size, prototype) {
    RTC_DCHECK(VerifyQueueSlots());
  }

  // Resets the queue to have zero content while maintaining the queue size.
  // Just like Remove(), this can only be called (safely) from the
  // consumer.
  void Clear() {
    // Drop all non-empty elements by resetting num_elements_ and incrementing
    // next_read_index_ by the previous value of num_elements_. Relaxed memory
    // ordering is sufficient since the dropped elements are not accessed.
    next_read_index_ += std::atomic_exchange_explicit(
        &num_elements_, size_t{0}, std::memory_order_relaxed);
    if (next_read_index_ >= queue_.size()) {
      next_read_index_ -= queue_.size();
    }

    RTC_DCHECK_LT(next_read_index_, queue_.size());
  }

  // Inserts a "full" T at the back of the queue by swapping *input with an
  // "empty" T from the queue.
  // Returns true if the item was inserted or false if not (the queue was full).
  // When specified, the T given in *input must pass the ItemVerifier() test.
  // The contents of *input after the call are then also guaranteed to pass the
  // ItemVerifier() test.
  ABSL_MUST_USE_RESULT bool Insert(T* input) {
    RTC_DCHECK(input);

    RTC_DCHECK(queue_item_verifier_(*input));

    // Load the value of num_elements_. Acquire memory ordering prevents reads
    // and writes to queue_[next_write_index_] to be reordered to before the
    // load. (That element might be accessed by a concurrent call to Remove()
    // until the load finishes.)
    if (std::atomic_load_explicit(&num_elements_, std::memory_order_acquire) ==
        queue_.size()) {
      return false;
    }

    using std::swap;
    swap(*input, queue_[next_write_index_]);

    // Increment the value of num_elements_ to account for the inserted element.
    // Release memory ordering prevents the reads and writes to
    // queue_[next_write_index_] to be reordered to after the increment. (Once
    // the increment has finished, Remove() might start accessing that element.)
    const size_t old_num_elements = std::atomic_fetch_add_explicit(
        &num_elements_, size_t{1}, std::memory_order_release);

    ++next_write_index_;
    if (next_write_index_ == queue_.size()) {
      next_write_index_ = 0;
    }

    RTC_DCHECK_LT(next_write_index_, queue_.size());
    RTC_DCHECK_LT(old_num_elements, queue_.size());

    return true;
  }

  // Removes the frontmost "full" T from the queue by swapping it with
  // the "empty" T in *output.
  // Returns true if an item could be removed or false if not (the queue was
  // empty). When specified, The T given in *output must pass the ItemVerifier()
  // test and the contents of *output after the call are then also guaranteed to
  // pass the ItemVerifier() test.
  ABSL_MUST_USE_RESULT bool Remove(T* output) {
    RTC_DCHECK(output);

    RTC_DCHECK(queue_item_verifier_(*output));

    // Load the value of num_elements_. Acquire memory ordering prevents reads
    // and writes to queue_[next_read_index_] to be reordered to before the
    // load. (That element might be accessed by a concurrent call to Insert()
    // until the load finishes.)
    if (std::atomic_load_explicit(&num_elements_, std::memory_order_acquire) ==
        0) {
      return false;
    }

    using std::swap;
    swap(*output, queue_[next_read_index_]);

    // Decrement the value of num_elements_ to account for the removed element.
    // Release memory ordering prevents the reads and writes to
    // queue_[next_write_index_] to be reordered to after the decrement. (Once
    // the decrement has finished, Insert() might start accessing that element.)
    std::atomic_fetch_sub_explicit(&num_elements_, size_t{1},
                                   std::memory_order_release);

    ++next_read_index_;
    if (next_read_index_ == queue_.size()) {
      next_read_index_ = 0;
    }

    RTC_DCHECK_LT(next_read_index_, queue_.size());

    return true;
  }

  // Returns the current number of elements in the queue. Since elements may be
  // concurrently added to the queue, the caller must treat this as a lower
  // bound, not an exact count.
  // May only be called by the consumer.
  size_t SizeAtLeast() const {
    // Acquire memory ordering ensures that we wait for the producer to finish
    // inserting any element in progress.
    return std::atomic_load_explicit(&num_elements_, std::memory_order_acquire);
  }

 private:
  // Verify that the queue slots complies with the ItemVerifier test. This
  // function is not thread-safe and can only be used in the constructors.
  bool VerifyQueueSlots() {
    for (const auto& v : queue_) {
      RTC_DCHECK(queue_item_verifier_(v));
    }
    return true;
  }

  // TODO(peah): Change this to use std::function() once we can use C++11 std
  // lib.
  QueueItemVerifier queue_item_verifier_;

  // Only accessed by the single producer.
  size_t next_write_index_ = 0;

  // Only accessed by the single consumer.
  size_t next_read_index_ = 0;

  // Accessed by both the producer and the consumer and used for synchronization
  // between them.
  std::atomic<size_t> num_elements_{0};

  // The elements of the queue are acced by both the producer and the consumer,
  // mediated by num_elements_. queue_.size() is constant.
  std::vector<T> queue_;

  SwapQueue(const SwapQueue&) = delete;
  SwapQueue& operator=(const SwapQueue&) = delete;
};

}  // namespace webrtc

#endif  // RTC_BASE_SWAP_QUEUE_H_