diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-09-05 13:14:37 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-09-05 13:14:37 +0000 |
commit | fd3b2704efc2b206784615c1a23eb25501842259 (patch) | |
tree | 61ba3a8af2a0ae2ac9ec362bbf18b038f5dc0448 /src/libFLAC/fixed_intrin_sse2.c | |
parent | Initial commit. (diff) | |
download | flac-fd3b2704efc2b206784615c1a23eb25501842259.tar.xz flac-fd3b2704efc2b206784615c1a23eb25501842259.zip |
Adding upstream version 1.4.3+ds.upstream/1.4.3+dsupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/libFLAC/fixed_intrin_sse2.c')
-rw-r--r-- | src/libFLAC/fixed_intrin_sse2.c | 194 |
1 files changed, 194 insertions, 0 deletions
diff --git a/src/libFLAC/fixed_intrin_sse2.c b/src/libFLAC/fixed_intrin_sse2.c new file mode 100644 index 0000000..b92c13c --- /dev/null +++ b/src/libFLAC/fixed_intrin_sse2.c @@ -0,0 +1,194 @@ +/* libFLAC - Free Lossless Audio Codec library + * Copyright (C) 2000-2009 Josh Coalson + * Copyright (C) 2011-2023 Xiph.Org Foundation + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * - Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * - Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * - Neither the name of the Xiph.org Foundation nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifdef HAVE_CONFIG_H +# include <config.h> +#endif + +#include "private/cpu.h" + +#ifndef FLAC__INTEGER_ONLY_LIBRARY +#ifndef FLAC__NO_ASM +#if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X86INTRIN +#include "private/fixed.h" +#ifdef FLAC__SSE2_SUPPORTED + +#include <emmintrin.h> /* SSE2 */ +#include <math.h> +#include "private/macros.h" +#include "share/compat.h" +#include "FLAC/assert.h" + +#ifdef FLAC__CPU_IA32 +#define m128i_to_i64(dest, src) _mm_storel_epi64((__m128i*)&dest, src) +#else +#define m128i_to_i64(dest, src) dest = _mm_cvtsi128_si64(src) +#endif + +#ifdef local_abs +#undef local_abs +#endif +#define local_abs(x) ((uint32_t)((x)<0? -(x) : (x))) + +FLAC__SSE_TARGET("sse2") +uint32_t FLAC__fixed_compute_best_predictor_intrin_sse2(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1]) +{ + FLAC__uint32 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4; + FLAC__int32 i, data_len_int; + uint32_t order; + __m128i total_err0, total_err1, total_err2, total_err3, total_err4; + __m128i prev_err0, prev_err1, prev_err2, prev_err3; + __m128i tempA, tempB, bitmask; + FLAC__int32 data_scalar[4]; + FLAC__int32 prev_err0_scalar[4]; + FLAC__int32 prev_err1_scalar[4]; + FLAC__int32 prev_err2_scalar[4]; + FLAC__int32 prev_err3_scalar[4]; + total_err0 = _mm_setzero_si128(); + total_err1 = _mm_setzero_si128(); + total_err2 = _mm_setzero_si128(); + total_err3 = _mm_setzero_si128(); + total_err4 = _mm_setzero_si128(); + data_len_int = data_len; + + for(i = 0; i < 4; i++){ + prev_err0_scalar[i] = data[-1+i*(data_len_int/4)]; + prev_err1_scalar[i] = data[-1+i*(data_len_int/4)] - data[-2+i*(data_len_int/4)]; + prev_err2_scalar[i] = prev_err1_scalar[i] - (data[-2+i*(data_len_int/4)] - data[-3+i*(data_len_int/4)]); + prev_err3_scalar[i] = prev_err2_scalar[i] - (data[-2+i*(data_len_int/4)] - 2*data[-3+i*(data_len_int/4)] + data[-4+i*(data_len_int/4)]); + } + prev_err0 = _mm_loadu_si128((const __m128i*)prev_err0_scalar); + prev_err1 = _mm_loadu_si128((const __m128i*)prev_err1_scalar); + prev_err2 = _mm_loadu_si128((const __m128i*)prev_err2_scalar); + prev_err3 = _mm_loadu_si128((const __m128i*)prev_err3_scalar); + for(i = 0; i < data_len_int / 4; i++){ + data_scalar[0] = data[i]; + data_scalar[1] = data[i+data_len/4]; + data_scalar[2] = data[i+2*(data_len/4)]; + data_scalar[3] = data[i+3*(data_len/4)]; + tempA = _mm_loadu_si128((const __m128i*)data_scalar); + /* Next three intrinsics calculate tempB as abs of tempA */ + bitmask = _mm_srai_epi32(tempA, 31); + tempB = _mm_xor_si128(tempA, bitmask); + tempB = _mm_sub_epi32(tempB, bitmask); + total_err0 = _mm_add_epi32(total_err0,tempB); + tempB = _mm_sub_epi32(tempA,prev_err0); + prev_err0 = tempA; + /* Next three intrinsics calculate tempA as abs of tempB */ + bitmask = _mm_srai_epi32(tempB, 31); + tempA = _mm_xor_si128(tempB, bitmask); + tempA = _mm_sub_epi32(tempA, bitmask); + total_err1 = _mm_add_epi32(total_err1,tempA); + tempA = _mm_sub_epi32(tempB,prev_err1); + prev_err1 = tempB; + /* Next three intrinsics calculate tempB as abs of tempA */ + bitmask = _mm_srai_epi32(tempA, 31); + tempB = _mm_xor_si128(tempA, bitmask); + tempB = _mm_sub_epi32(tempB, bitmask); + total_err2 = _mm_add_epi32(total_err2,tempB); + tempB = _mm_sub_epi32(tempA,prev_err2); + prev_err2 = tempA; + /* Next three intrinsics calculate tempA as abs of tempB */ + bitmask = _mm_srai_epi32(tempB, 31); + tempA = _mm_xor_si128(tempB, bitmask); + tempA = _mm_sub_epi32(tempA, bitmask); + total_err3 = _mm_add_epi32(total_err3,tempA); + tempA = _mm_sub_epi32(tempB,prev_err3); + prev_err3 = tempB; + /* Next three intrinsics calculate tempB as abs of tempA */ + bitmask = _mm_srai_epi32(tempA, 31); + tempB = _mm_xor_si128(tempA, bitmask); + tempB = _mm_sub_epi32(tempB, bitmask); + total_err4 = _mm_add_epi32(total_err4,tempB); + } + _mm_storeu_si128((__m128i*)data_scalar,total_err0); + total_error_0 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; + _mm_storeu_si128((__m128i*)data_scalar,total_err1); + total_error_1 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; + _mm_storeu_si128((__m128i*)data_scalar,total_err2); + total_error_2 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; + _mm_storeu_si128((__m128i*)data_scalar,total_err3); + total_error_3 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; + _mm_storeu_si128((__m128i*)data_scalar,total_err4); + total_error_4 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; + + /* Now the remainder of samples needs to be processed */ + i *= 4; + if(data_len % 4 > 0){ + FLAC__int32 last_error_0 = data[i-1]; + FLAC__int32 last_error_1 = data[i-1] - data[i-2]; + FLAC__int32 last_error_2 = last_error_1 - (data[i-2] - data[i-3]); + FLAC__int32 last_error_3 = last_error_2 - (data[i-2] - 2*data[i-3] + data[i-4]); + FLAC__int32 error, save; + for(; i < data_len_int; i++) { + error = data[i] ; total_error_0 += local_abs(error); save = error; + error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error; + error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error; + error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error; + error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save; + } + } + + /* prefer lower order */ + if(total_error_0 <= flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4)) + order = 0; + else if(total_error_1 <= flac_min(flac_min(total_error_2, total_error_3), total_error_4)) + order = 1; + else if(total_error_2 <= flac_min(total_error_3, total_error_4)) + order = 2; + else if(total_error_3 <= total_error_4) + order = 3; + else + order = 4; + + /* Estimate the expected number of bits per residual signal sample. */ + /* 'total_error*' is linearly related to the variance of the residual */ + /* signal, so we use it directly to compute E(|x|) */ + FLAC__ASSERT(data_len > 0 || total_error_0 == 0); + FLAC__ASSERT(data_len > 0 || total_error_1 == 0); + FLAC__ASSERT(data_len > 0 || total_error_2 == 0); + FLAC__ASSERT(data_len > 0 || total_error_3 == 0); + FLAC__ASSERT(data_len > 0 || total_error_4 == 0); + + residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0); + residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0); + residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0); + residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0); + residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0); + + return order; +} + +#endif /* FLAC__SSE2_SUPPORTED */ +#endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */ +#endif /* FLAC__NO_ASM */ +#endif /* FLAC__INTEGER_ONLY_LIBRARY */ |