summaryrefslogtreecommitdiffstats
path: root/src/libFLAC/fixed_intrin_sse2.c
blob: b92c13c10853d7765428ae3d1d5602ded120a8da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/* libFLAC - Free Lossless Audio Codec library
 * Copyright (C) 2000-2009  Josh Coalson
 * Copyright (C) 2011-2023  Xiph.Org Foundation
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of the Xiph.org Foundation nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifdef HAVE_CONFIG_H
#  include <config.h>
#endif

#include "private/cpu.h"

#ifndef FLAC__INTEGER_ONLY_LIBRARY
#ifndef FLAC__NO_ASM
#if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X86INTRIN
#include "private/fixed.h"
#ifdef FLAC__SSE2_SUPPORTED

#include <emmintrin.h> /* SSE2 */
#include <math.h>
#include "private/macros.h"
#include "share/compat.h"
#include "FLAC/assert.h"

#ifdef FLAC__CPU_IA32
#define m128i_to_i64(dest, src) _mm_storel_epi64((__m128i*)&dest, src)
#else
#define m128i_to_i64(dest, src) dest = _mm_cvtsi128_si64(src)
#endif

#ifdef local_abs
#undef local_abs
#endif
#define local_abs(x) ((uint32_t)((x)<0? -(x) : (x)))

FLAC__SSE_TARGET("sse2")
uint32_t FLAC__fixed_compute_best_predictor_intrin_sse2(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1])
{
	FLAC__uint32 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4;
	FLAC__int32 i, data_len_int;
	uint32_t order;
	__m128i total_err0, total_err1, total_err2, total_err3, total_err4;
	__m128i prev_err0,  prev_err1,  prev_err2,  prev_err3;
	__m128i tempA, tempB, bitmask;
	FLAC__int32 data_scalar[4];
	FLAC__int32 prev_err0_scalar[4];
	FLAC__int32 prev_err1_scalar[4];
	FLAC__int32 prev_err2_scalar[4];
	FLAC__int32 prev_err3_scalar[4];
	total_err0 = _mm_setzero_si128();
	total_err1 = _mm_setzero_si128();
	total_err2 = _mm_setzero_si128();
	total_err3 = _mm_setzero_si128();
	total_err4 = _mm_setzero_si128();
	data_len_int = data_len;

	for(i = 0; i < 4; i++){
		prev_err0_scalar[i] = data[-1+i*(data_len_int/4)];
		prev_err1_scalar[i] = data[-1+i*(data_len_int/4)] - data[-2+i*(data_len_int/4)];
		prev_err2_scalar[i] = prev_err1_scalar[i] - (data[-2+i*(data_len_int/4)] - data[-3+i*(data_len_int/4)]);
		prev_err3_scalar[i] = prev_err2_scalar[i] - (data[-2+i*(data_len_int/4)] - 2*data[-3+i*(data_len_int/4)] + data[-4+i*(data_len_int/4)]);
	}
	prev_err0 = _mm_loadu_si128((const __m128i*)prev_err0_scalar);
	prev_err1 = _mm_loadu_si128((const __m128i*)prev_err1_scalar);
	prev_err2 = _mm_loadu_si128((const __m128i*)prev_err2_scalar);
	prev_err3 = _mm_loadu_si128((const __m128i*)prev_err3_scalar);
	for(i = 0; i < data_len_int / 4; i++){
		data_scalar[0] = data[i];
		data_scalar[1] = data[i+data_len/4];
		data_scalar[2] = data[i+2*(data_len/4)];
		data_scalar[3] = data[i+3*(data_len/4)];
		tempA = _mm_loadu_si128((const __m128i*)data_scalar);
		/* Next three intrinsics calculate tempB as abs of tempA */
		bitmask = _mm_srai_epi32(tempA, 31);
		tempB   = _mm_xor_si128(tempA, bitmask);
		tempB   = _mm_sub_epi32(tempB, bitmask);
		total_err0 = _mm_add_epi32(total_err0,tempB);
		tempB = _mm_sub_epi32(tempA,prev_err0);
		prev_err0 = tempA;
		/* Next three intrinsics calculate tempA as abs of tempB */
		bitmask = _mm_srai_epi32(tempB, 31);
		tempA   = _mm_xor_si128(tempB, bitmask);
		tempA   = _mm_sub_epi32(tempA, bitmask);
		total_err1 = _mm_add_epi32(total_err1,tempA);
		tempA = _mm_sub_epi32(tempB,prev_err1);
		prev_err1 = tempB;
		/* Next three intrinsics calculate tempB as abs of tempA */
		bitmask = _mm_srai_epi32(tempA, 31);
		tempB   = _mm_xor_si128(tempA, bitmask);
		tempB   = _mm_sub_epi32(tempB, bitmask);
		total_err2 = _mm_add_epi32(total_err2,tempB);
		tempB = _mm_sub_epi32(tempA,prev_err2);
		prev_err2 = tempA;
		/* Next three intrinsics calculate tempA as abs of tempB */
		bitmask = _mm_srai_epi32(tempB, 31);
		tempA   = _mm_xor_si128(tempB, bitmask);
		tempA   = _mm_sub_epi32(tempA, bitmask);
		total_err3 = _mm_add_epi32(total_err3,tempA);
		tempA = _mm_sub_epi32(tempB,prev_err3);
		prev_err3 = tempB;
		/* Next three intrinsics calculate tempB as abs of tempA */
		bitmask = _mm_srai_epi32(tempA, 31);
		tempB   = _mm_xor_si128(tempA, bitmask);
		tempB   = _mm_sub_epi32(tempB, bitmask);
		total_err4 = _mm_add_epi32(total_err4,tempB);
	}
	_mm_storeu_si128((__m128i*)data_scalar,total_err0);
	total_error_0 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
	_mm_storeu_si128((__m128i*)data_scalar,total_err1);
	total_error_1 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
	_mm_storeu_si128((__m128i*)data_scalar,total_err2);
	total_error_2 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
	_mm_storeu_si128((__m128i*)data_scalar,total_err3);
	total_error_3 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
	_mm_storeu_si128((__m128i*)data_scalar,total_err4);
	total_error_4 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];

	/* Now the remainder of samples needs to be processed */
	i *= 4;
	if(data_len % 4 > 0){
		FLAC__int32 last_error_0 = data[i-1];
		FLAC__int32 last_error_1 = data[i-1] - data[i-2];
		FLAC__int32 last_error_2 = last_error_1 - (data[i-2] - data[i-3]);
		FLAC__int32 last_error_3 = last_error_2 - (data[i-2] - 2*data[i-3] + data[i-4]);
		FLAC__int32 error, save;
		for(; i < data_len_int; i++) {
			error  = data[i]     ; total_error_0 += local_abs(error);                      save = error;
			error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error;
			error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error;
			error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error;
			error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save;
		}
	}

	/* prefer lower order */
	if(total_error_0 <= flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4))
		order = 0;
	else if(total_error_1 <= flac_min(flac_min(total_error_2, total_error_3), total_error_4))
		order = 1;
	else if(total_error_2 <= flac_min(total_error_3, total_error_4))
		order = 2;
	else if(total_error_3 <= total_error_4)
		order = 3;
	else
		order = 4;

	/* Estimate the expected number of bits per residual signal sample. */
	/* 'total_error*' is linearly related to the variance of the residual */
	/* signal, so we use it directly to compute E(|x|) */
	FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
	FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
	FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
	FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
	FLAC__ASSERT(data_len > 0 || total_error_4 == 0);

	residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);

	return order;
}

#endif /* FLAC__SSE2_SUPPORTED */
#endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */
#endif /* FLAC__NO_ASM */
#endif /* FLAC__INTEGER_ONLY_LIBRARY */