summaryrefslogtreecommitdiffstats
path: root/src/math/big/example_rat_test.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
commit43a123c1ae6613b3efeed291fa552ecd909d3acf (patch)
treefd92518b7024bc74031f78a1cf9e454b65e73665 /src/math/big/example_rat_test.go
parentInitial commit. (diff)
downloadgolang-1.20-upstream.tar.xz
golang-1.20-upstream.zip
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/math/big/example_rat_test.go')
-rw-r--r--src/math/big/example_rat_test.go68
1 files changed, 68 insertions, 0 deletions
diff --git a/src/math/big/example_rat_test.go b/src/math/big/example_rat_test.go
new file mode 100644
index 0000000..dc67430
--- /dev/null
+++ b/src/math/big/example_rat_test.go
@@ -0,0 +1,68 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big_test
+
+import (
+ "fmt"
+ "math/big"
+)
+
+// Use the classic continued fraction for e
+//
+// e = [1; 0, 1, 1, 2, 1, 1, ... 2n, 1, 1, ...]
+//
+// i.e., for the nth term, use
+//
+// 1 if n mod 3 != 1
+// (n-1)/3 * 2 if n mod 3 == 1
+func recur(n, lim int64) *big.Rat {
+ term := new(big.Rat)
+ if n%3 != 1 {
+ term.SetInt64(1)
+ } else {
+ term.SetInt64((n - 1) / 3 * 2)
+ }
+
+ if n > lim {
+ return term
+ }
+
+ // Directly initialize frac as the fractional
+ // inverse of the result of recur.
+ frac := new(big.Rat).Inv(recur(n+1, lim))
+
+ return term.Add(term, frac)
+}
+
+// This example demonstrates how to use big.Rat to compute the
+// first 15 terms in the sequence of rational convergents for
+// the constant e (base of natural logarithm).
+func Example_eConvergents() {
+ for i := 1; i <= 15; i++ {
+ r := recur(0, int64(i))
+
+ // Print r both as a fraction and as a floating-point number.
+ // Since big.Rat implements fmt.Formatter, we can use %-13s to
+ // get a left-aligned string representation of the fraction.
+ fmt.Printf("%-13s = %s\n", r, r.FloatString(8))
+ }
+
+ // Output:
+ // 2/1 = 2.00000000
+ // 3/1 = 3.00000000
+ // 8/3 = 2.66666667
+ // 11/4 = 2.75000000
+ // 19/7 = 2.71428571
+ // 87/32 = 2.71875000
+ // 106/39 = 2.71794872
+ // 193/71 = 2.71830986
+ // 1264/465 = 2.71827957
+ // 1457/536 = 2.71828358
+ // 2721/1001 = 2.71828172
+ // 23225/8544 = 2.71828184
+ // 25946/9545 = 2.71828182
+ // 49171/18089 = 2.71828183
+ // 517656/190435 = 2.71828183
+}