summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/inline
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/compile/internal/inline')
-rw-r--r--src/cmd/compile/internal/inline/inl.go1781
1 files changed, 1781 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/inline/inl.go b/src/cmd/compile/internal/inline/inl.go
new file mode 100644
index 0000000..84e61f3
--- /dev/null
+++ b/src/cmd/compile/internal/inline/inl.go
@@ -0,0 +1,1781 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+//
+// The inlining facility makes 2 passes: first CanInline determines which
+// functions are suitable for inlining, and for those that are it
+// saves a copy of the body. Then InlineCalls walks each function body to
+// expand calls to inlinable functions.
+//
+// The Debug.l flag controls the aggressiveness. Note that main() swaps level 0 and 1,
+// making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and
+// are not supported.
+// 0: disabled
+// 1: 80-nodes leaf functions, oneliners, panic, lazy typechecking (default)
+// 2: (unassigned)
+// 3: (unassigned)
+// 4: allow non-leaf functions
+//
+// At some point this may get another default and become switch-offable with -N.
+//
+// The -d typcheckinl flag enables early typechecking of all imported bodies,
+// which is useful to flush out bugs.
+//
+// The Debug.m flag enables diagnostic output. a single -m is useful for verifying
+// which calls get inlined or not, more is for debugging, and may go away at any point.
+
+package inline
+
+import (
+ "fmt"
+ "go/constant"
+ "sort"
+ "strconv"
+ "strings"
+
+ "cmd/compile/internal/base"
+ "cmd/compile/internal/ir"
+ "cmd/compile/internal/logopt"
+ "cmd/compile/internal/pgo"
+ "cmd/compile/internal/typecheck"
+ "cmd/compile/internal/types"
+ "cmd/internal/obj"
+ "cmd/internal/src"
+)
+
+// Inlining budget parameters, gathered in one place
+const (
+ inlineMaxBudget = 80
+ inlineExtraAppendCost = 0
+ // default is to inline if there's at most one call. -l=4 overrides this by using 1 instead.
+ inlineExtraCallCost = 57 // 57 was benchmarked to provided most benefit with no bad surprises; see https://github.com/golang/go/issues/19348#issuecomment-439370742
+ inlineExtraPanicCost = 1 // do not penalize inlining panics.
+ inlineExtraThrowCost = inlineMaxBudget // with current (2018-05/1.11) code, inlining runtime.throw does not help.
+
+ inlineBigFunctionNodes = 5000 // Functions with this many nodes are considered "big".
+ inlineBigFunctionMaxCost = 20 // Max cost of inlinee when inlining into a "big" function.
+)
+
+var (
+ // List of all hot callee nodes.
+ // TODO(prattmic): Make this non-global.
+ candHotCalleeMap = make(map[*pgo.IRNode]struct{})
+
+ // List of all hot call sites. CallSiteInfo.Callee is always nil.
+ // TODO(prattmic): Make this non-global.
+ candHotEdgeMap = make(map[pgo.CallSiteInfo]struct{})
+
+ // List of inlined call sites. CallSiteInfo.Callee is always nil.
+ // TODO(prattmic): Make this non-global.
+ inlinedCallSites = make(map[pgo.CallSiteInfo]struct{})
+
+ // Threshold in percentage for hot callsite inlining.
+ inlineHotCallSiteThresholdPercent float64
+
+ // Threshold in CDF percentage for hot callsite inlining,
+ // that is, for a threshold of X the hottest callsites that
+ // make up the top X% of total edge weight will be
+ // considered hot for inlining candidates.
+ inlineCDFHotCallSiteThresholdPercent = float64(99)
+
+ // Budget increased due to hotness.
+ inlineHotMaxBudget int32 = 2000
+)
+
+// pgoInlinePrologue records the hot callsites from ir-graph.
+func pgoInlinePrologue(p *pgo.Profile, decls []ir.Node) {
+ if base.Debug.PGOInlineCDFThreshold != "" {
+ if s, err := strconv.ParseFloat(base.Debug.PGOInlineCDFThreshold, 64); err == nil && s >= 0 && s <= 100 {
+ inlineCDFHotCallSiteThresholdPercent = s
+ } else {
+ base.Fatalf("invalid PGOInlineCDFThreshold, must be between 0 and 100")
+ }
+ }
+ var hotCallsites []pgo.NodeMapKey
+ inlineHotCallSiteThresholdPercent, hotCallsites = hotNodesFromCDF(p)
+ if base.Debug.PGOInline > 0 {
+ fmt.Printf("hot-callsite-thres-from-CDF=%v\n", inlineHotCallSiteThresholdPercent)
+ }
+
+ if x := base.Debug.PGOInlineBudget; x != 0 {
+ inlineHotMaxBudget = int32(x)
+ }
+
+ for _, n := range hotCallsites {
+ // mark inlineable callees from hot edges
+ if callee := p.WeightedCG.IRNodes[n.CalleeName]; callee != nil {
+ candHotCalleeMap[callee] = struct{}{}
+ }
+ // mark hot call sites
+ if caller := p.WeightedCG.IRNodes[n.CallerName]; caller != nil {
+ csi := pgo.CallSiteInfo{LineOffset: n.CallSiteOffset, Caller: caller.AST}
+ candHotEdgeMap[csi] = struct{}{}
+ }
+ }
+
+ if base.Debug.PGOInline >= 2 {
+ fmt.Printf("hot-cg before inline in dot format:")
+ p.PrintWeightedCallGraphDOT(inlineHotCallSiteThresholdPercent)
+ }
+}
+
+// hotNodesFromCDF computes an edge weight threshold and the list of hot
+// nodes that make up the given percentage of the CDF. The threshold, as
+// a percent, is the lower bound of weight for nodes to be considered hot
+// (currently only used in debug prints) (in case of equal weights,
+// comparing with the threshold may not accurately reflect which nodes are
+// considiered hot).
+func hotNodesFromCDF(p *pgo.Profile) (float64, []pgo.NodeMapKey) {
+ nodes := make([]pgo.NodeMapKey, len(p.NodeMap))
+ i := 0
+ for n := range p.NodeMap {
+ nodes[i] = n
+ i++
+ }
+ sort.Slice(nodes, func(i, j int) bool {
+ ni, nj := nodes[i], nodes[j]
+ if wi, wj := p.NodeMap[ni].EWeight, p.NodeMap[nj].EWeight; wi != wj {
+ return wi > wj // want larger weight first
+ }
+ // same weight, order by name/line number
+ if ni.CallerName != nj.CallerName {
+ return ni.CallerName < nj.CallerName
+ }
+ if ni.CalleeName != nj.CalleeName {
+ return ni.CalleeName < nj.CalleeName
+ }
+ return ni.CallSiteOffset < nj.CallSiteOffset
+ })
+ cum := int64(0)
+ for i, n := range nodes {
+ w := p.NodeMap[n].EWeight
+ cum += w
+ if pgo.WeightInPercentage(cum, p.TotalEdgeWeight) > inlineCDFHotCallSiteThresholdPercent {
+ // nodes[:i+1] to include the very last node that makes it to go over the threshold.
+ // (Say, if the CDF threshold is 50% and one hot node takes 60% of weight, we want to
+ // include that node instead of excluding it.)
+ return pgo.WeightInPercentage(w, p.TotalEdgeWeight), nodes[:i+1]
+ }
+ }
+ return 0, nodes
+}
+
+// pgoInlineEpilogue updates IRGraph after inlining.
+func pgoInlineEpilogue(p *pgo.Profile, decls []ir.Node) {
+ if base.Debug.PGOInline >= 2 {
+ ir.VisitFuncsBottomUp(decls, func(list []*ir.Func, recursive bool) {
+ for _, f := range list {
+ name := ir.PkgFuncName(f)
+ if n, ok := p.WeightedCG.IRNodes[name]; ok {
+ p.RedirectEdges(n, inlinedCallSites)
+ }
+ }
+ })
+ // Print the call-graph after inlining. This is a debugging feature.
+ fmt.Printf("hot-cg after inline in dot:")
+ p.PrintWeightedCallGraphDOT(inlineHotCallSiteThresholdPercent)
+ }
+}
+
+// InlinePackage finds functions that can be inlined and clones them before walk expands them.
+func InlinePackage(p *pgo.Profile) {
+ InlineDecls(p, typecheck.Target.Decls, true)
+}
+
+// InlineDecls applies inlining to the given batch of declarations.
+func InlineDecls(p *pgo.Profile, decls []ir.Node, doInline bool) {
+ if p != nil {
+ pgoInlinePrologue(p, decls)
+ }
+
+ ir.VisitFuncsBottomUp(decls, func(list []*ir.Func, recursive bool) {
+ numfns := numNonClosures(list)
+ for _, n := range list {
+ if !recursive || numfns > 1 {
+ // We allow inlining if there is no
+ // recursion, or the recursion cycle is
+ // across more than one function.
+ CanInline(n, p)
+ } else {
+ if base.Flag.LowerM > 1 {
+ fmt.Printf("%v: cannot inline %v: recursive\n", ir.Line(n), n.Nname)
+ }
+ }
+ if doInline {
+ InlineCalls(n, p)
+ }
+ }
+ })
+
+ if p != nil {
+ pgoInlineEpilogue(p, decls)
+ }
+}
+
+// CanInline determines whether fn is inlineable.
+// If so, CanInline saves copies of fn.Body and fn.Dcl in fn.Inl.
+// fn and fn.Body will already have been typechecked.
+func CanInline(fn *ir.Func, profile *pgo.Profile) {
+ if fn.Nname == nil {
+ base.Fatalf("CanInline no nname %+v", fn)
+ }
+
+ var reason string // reason, if any, that the function was not inlined
+ if base.Flag.LowerM > 1 || logopt.Enabled() {
+ defer func() {
+ if reason != "" {
+ if base.Flag.LowerM > 1 {
+ fmt.Printf("%v: cannot inline %v: %s\n", ir.Line(fn), fn.Nname, reason)
+ }
+ if logopt.Enabled() {
+ logopt.LogOpt(fn.Pos(), "cannotInlineFunction", "inline", ir.FuncName(fn), reason)
+ }
+ }
+ }()
+ }
+
+ // If marked "go:noinline", don't inline
+ if fn.Pragma&ir.Noinline != 0 {
+ reason = "marked go:noinline"
+ return
+ }
+
+ // If marked "go:norace" and -race compilation, don't inline.
+ if base.Flag.Race && fn.Pragma&ir.Norace != 0 {
+ reason = "marked go:norace with -race compilation"
+ return
+ }
+
+ // If marked "go:nocheckptr" and -d checkptr compilation, don't inline.
+ if base.Debug.Checkptr != 0 && fn.Pragma&ir.NoCheckPtr != 0 {
+ reason = "marked go:nocheckptr"
+ return
+ }
+
+ // If marked "go:cgo_unsafe_args", don't inline, since the
+ // function makes assumptions about its argument frame layout.
+ if fn.Pragma&ir.CgoUnsafeArgs != 0 {
+ reason = "marked go:cgo_unsafe_args"
+ return
+ }
+
+ // If marked as "go:uintptrkeepalive", don't inline, since the
+ // keep alive information is lost during inlining.
+ //
+ // TODO(prattmic): This is handled on calls during escape analysis,
+ // which is after inlining. Move prior to inlining so the keep-alive is
+ // maintained after inlining.
+ if fn.Pragma&ir.UintptrKeepAlive != 0 {
+ reason = "marked as having a keep-alive uintptr argument"
+ return
+ }
+
+ // If marked as "go:uintptrescapes", don't inline, since the
+ // escape information is lost during inlining.
+ if fn.Pragma&ir.UintptrEscapes != 0 {
+ reason = "marked as having an escaping uintptr argument"
+ return
+ }
+
+ // The nowritebarrierrec checker currently works at function
+ // granularity, so inlining yeswritebarrierrec functions can
+ // confuse it (#22342). As a workaround, disallow inlining
+ // them for now.
+ if fn.Pragma&ir.Yeswritebarrierrec != 0 {
+ reason = "marked go:yeswritebarrierrec"
+ return
+ }
+
+ // If fn has no body (is defined outside of Go), cannot inline it.
+ if len(fn.Body) == 0 {
+ reason = "no function body"
+ return
+ }
+
+ if fn.Typecheck() == 0 {
+ base.Fatalf("CanInline on non-typechecked function %v", fn)
+ }
+
+ n := fn.Nname
+ if n.Func.InlinabilityChecked() {
+ return
+ }
+ defer n.Func.SetInlinabilityChecked(true)
+
+ cc := int32(inlineExtraCallCost)
+ if base.Flag.LowerL == 4 {
+ cc = 1 // this appears to yield better performance than 0.
+ }
+
+ // Update the budget for profile-guided inlining.
+ budget := int32(inlineMaxBudget)
+ if profile != nil {
+ if n, ok := profile.WeightedCG.IRNodes[ir.PkgFuncName(fn)]; ok {
+ if _, ok := candHotCalleeMap[n]; ok {
+ budget = int32(inlineHotMaxBudget)
+ if base.Debug.PGOInline > 0 {
+ fmt.Printf("hot-node enabled increased budget=%v for func=%v\n", budget, ir.PkgFuncName(fn))
+ }
+ }
+ }
+ }
+
+ // At this point in the game the function we're looking at may
+ // have "stale" autos, vars that still appear in the Dcl list, but
+ // which no longer have any uses in the function body (due to
+ // elimination by deadcode). We'd like to exclude these dead vars
+ // when creating the "Inline.Dcl" field below; to accomplish this,
+ // the hairyVisitor below builds up a map of used/referenced
+ // locals, and we use this map to produce a pruned Inline.Dcl
+ // list. See issue 25249 for more context.
+
+ visitor := hairyVisitor{
+ curFunc: fn,
+ budget: budget,
+ maxBudget: budget,
+ extraCallCost: cc,
+ profile: profile,
+ }
+ if visitor.tooHairy(fn) {
+ reason = visitor.reason
+ return
+ }
+
+ n.Func.Inl = &ir.Inline{
+ Cost: budget - visitor.budget,
+ Dcl: pruneUnusedAutos(n.Defn.(*ir.Func).Dcl, &visitor),
+ Body: inlcopylist(fn.Body),
+
+ CanDelayResults: canDelayResults(fn),
+ }
+
+ if base.Flag.LowerM > 1 {
+ fmt.Printf("%v: can inline %v with cost %d as: %v { %v }\n", ir.Line(fn), n, budget-visitor.budget, fn.Type(), ir.Nodes(n.Func.Inl.Body))
+ } else if base.Flag.LowerM != 0 {
+ fmt.Printf("%v: can inline %v\n", ir.Line(fn), n)
+ }
+ if logopt.Enabled() {
+ logopt.LogOpt(fn.Pos(), "canInlineFunction", "inline", ir.FuncName(fn), fmt.Sprintf("cost: %d", budget-visitor.budget))
+ }
+}
+
+// canDelayResults reports whether inlined calls to fn can delay
+// declaring the result parameter until the "return" statement.
+func canDelayResults(fn *ir.Func) bool {
+ // We can delay declaring+initializing result parameters if:
+ // (1) there's exactly one "return" statement in the inlined function;
+ // (2) it's not an empty return statement (#44355); and
+ // (3) the result parameters aren't named.
+
+ nreturns := 0
+ ir.VisitList(fn.Body, func(n ir.Node) {
+ if n, ok := n.(*ir.ReturnStmt); ok {
+ nreturns++
+ if len(n.Results) == 0 {
+ nreturns++ // empty return statement (case 2)
+ }
+ }
+ })
+
+ if nreturns != 1 {
+ return false // not exactly one return statement (case 1)
+ }
+
+ // temporaries for return values.
+ for _, param := range fn.Type().Results().FieldSlice() {
+ if sym := types.OrigSym(param.Sym); sym != nil && !sym.IsBlank() {
+ return false // found a named result parameter (case 3)
+ }
+ }
+
+ return true
+}
+
+// hairyVisitor visits a function body to determine its inlining
+// hairiness and whether or not it can be inlined.
+type hairyVisitor struct {
+ // This is needed to access the current caller in the doNode function.
+ curFunc *ir.Func
+ budget int32
+ maxBudget int32
+ reason string
+ extraCallCost int32
+ usedLocals ir.NameSet
+ do func(ir.Node) bool
+ profile *pgo.Profile
+}
+
+func (v *hairyVisitor) tooHairy(fn *ir.Func) bool {
+ v.do = v.doNode // cache closure
+ if ir.DoChildren(fn, v.do) {
+ return true
+ }
+ if v.budget < 0 {
+ v.reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", v.maxBudget-v.budget, v.maxBudget)
+ return true
+ }
+ return false
+}
+
+func (v *hairyVisitor) doNode(n ir.Node) bool {
+ if n == nil {
+ return false
+ }
+ switch n.Op() {
+ // Call is okay if inlinable and we have the budget for the body.
+ case ir.OCALLFUNC:
+ n := n.(*ir.CallExpr)
+ // Functions that call runtime.getcaller{pc,sp} can not be inlined
+ // because getcaller{pc,sp} expect a pointer to the caller's first argument.
+ //
+ // runtime.throw is a "cheap call" like panic in normal code.
+ if n.X.Op() == ir.ONAME {
+ name := n.X.(*ir.Name)
+ if name.Class == ir.PFUNC && types.IsRuntimePkg(name.Sym().Pkg) {
+ fn := name.Sym().Name
+ if fn == "getcallerpc" || fn == "getcallersp" {
+ v.reason = "call to " + fn
+ return true
+ }
+ if fn == "throw" {
+ v.budget -= inlineExtraThrowCost
+ break
+ }
+ }
+ // Special case for coverage counter updates; although
+ // these correspond to real operations, we treat them as
+ // zero cost for the moment. This is due to the existence
+ // of tests that are sensitive to inlining-- if the
+ // insertion of coverage instrumentation happens to tip a
+ // given function over the threshold and move it from
+ // "inlinable" to "not-inlinable", this can cause changes
+ // in allocation behavior, which can then result in test
+ // failures (a good example is the TestAllocations in
+ // crypto/ed25519).
+ if isAtomicCoverageCounterUpdate(n) {
+ return false
+ }
+ }
+ if n.X.Op() == ir.OMETHEXPR {
+ if meth := ir.MethodExprName(n.X); meth != nil {
+ if fn := meth.Func; fn != nil {
+ s := fn.Sym()
+ var cheap bool
+ if types.IsRuntimePkg(s.Pkg) && s.Name == "heapBits.nextArena" {
+ // Special case: explicitly allow mid-stack inlining of
+ // runtime.heapBits.next even though it calls slow-path
+ // runtime.heapBits.nextArena.
+ cheap = true
+ }
+ // Special case: on architectures that can do unaligned loads,
+ // explicitly mark encoding/binary methods as cheap,
+ // because in practice they are, even though our inlining
+ // budgeting system does not see that. See issue 42958.
+ if base.Ctxt.Arch.CanMergeLoads && s.Pkg.Path == "encoding/binary" {
+ switch s.Name {
+ case "littleEndian.Uint64", "littleEndian.Uint32", "littleEndian.Uint16",
+ "bigEndian.Uint64", "bigEndian.Uint32", "bigEndian.Uint16",
+ "littleEndian.PutUint64", "littleEndian.PutUint32", "littleEndian.PutUint16",
+ "bigEndian.PutUint64", "bigEndian.PutUint32", "bigEndian.PutUint16",
+ "littleEndian.AppendUint64", "littleEndian.AppendUint32", "littleEndian.AppendUint16",
+ "bigEndian.AppendUint64", "bigEndian.AppendUint32", "bigEndian.AppendUint16":
+ cheap = true
+ }
+ }
+ if cheap {
+ break // treat like any other node, that is, cost of 1
+ }
+ }
+ }
+ }
+
+ // Determine if the callee edge is for an inlinable hot callee or not.
+ if v.profile != nil && v.curFunc != nil {
+ if fn := inlCallee(n.X, v.profile); fn != nil && typecheck.HaveInlineBody(fn) {
+ lineOffset := pgo.NodeLineOffset(n, fn)
+ csi := pgo.CallSiteInfo{LineOffset: lineOffset, Caller: v.curFunc}
+ if _, o := candHotEdgeMap[csi]; o {
+ if base.Debug.PGOInline > 0 {
+ fmt.Printf("hot-callsite identified at line=%v for func=%v\n", ir.Line(n), ir.PkgFuncName(v.curFunc))
+ }
+ }
+ }
+ }
+
+ if ir.IsIntrinsicCall(n) {
+ // Treat like any other node.
+ break
+ }
+
+ if fn := inlCallee(n.X, v.profile); fn != nil && typecheck.HaveInlineBody(fn) {
+ v.budget -= fn.Inl.Cost
+ break
+ }
+
+ // Call cost for non-leaf inlining.
+ v.budget -= v.extraCallCost
+
+ case ir.OCALLMETH:
+ base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck")
+
+ // Things that are too hairy, irrespective of the budget
+ case ir.OCALL, ir.OCALLINTER:
+ // Call cost for non-leaf inlining.
+ v.budget -= v.extraCallCost
+
+ case ir.OPANIC:
+ n := n.(*ir.UnaryExpr)
+ if n.X.Op() == ir.OCONVIFACE && n.X.(*ir.ConvExpr).Implicit() {
+ // Hack to keep reflect.flag.mustBe inlinable for TestIntendedInlining.
+ // Before CL 284412, these conversions were introduced later in the
+ // compiler, so they didn't count against inlining budget.
+ v.budget++
+ }
+ v.budget -= inlineExtraPanicCost
+
+ case ir.ORECOVER:
+ // recover matches the argument frame pointer to find
+ // the right panic value, so it needs an argument frame.
+ v.reason = "call to recover"
+ return true
+
+ case ir.OCLOSURE:
+ if base.Debug.InlFuncsWithClosures == 0 {
+ v.reason = "not inlining functions with closures"
+ return true
+ }
+
+ // TODO(danscales): Maybe make budget proportional to number of closure
+ // variables, e.g.:
+ //v.budget -= int32(len(n.(*ir.ClosureExpr).Func.ClosureVars) * 3)
+ v.budget -= 15
+ // Scan body of closure (which DoChildren doesn't automatically
+ // do) to check for disallowed ops in the body and include the
+ // body in the budget.
+ if doList(n.(*ir.ClosureExpr).Func.Body, v.do) {
+ return true
+ }
+
+ case ir.OGO,
+ ir.ODEFER,
+ ir.ODCLTYPE, // can't print yet
+ ir.OTAILCALL:
+ v.reason = "unhandled op " + n.Op().String()
+ return true
+
+ case ir.OAPPEND:
+ v.budget -= inlineExtraAppendCost
+
+ case ir.OADDR:
+ n := n.(*ir.AddrExpr)
+ // Make "&s.f" cost 0 when f's offset is zero.
+ if dot, ok := n.X.(*ir.SelectorExpr); ok && (dot.Op() == ir.ODOT || dot.Op() == ir.ODOTPTR) {
+ if _, ok := dot.X.(*ir.Name); ok && dot.Selection.Offset == 0 {
+ v.budget += 2 // undo ir.OADDR+ir.ODOT/ir.ODOTPTR
+ }
+ }
+
+ case ir.ODEREF:
+ // *(*X)(unsafe.Pointer(&x)) is low-cost
+ n := n.(*ir.StarExpr)
+
+ ptr := n.X
+ for ptr.Op() == ir.OCONVNOP {
+ ptr = ptr.(*ir.ConvExpr).X
+ }
+ if ptr.Op() == ir.OADDR {
+ v.budget += 1 // undo half of default cost of ir.ODEREF+ir.OADDR
+ }
+
+ case ir.OCONVNOP:
+ // This doesn't produce code, but the children might.
+ v.budget++ // undo default cost
+
+ case ir.ODCLCONST, ir.OFALL:
+ // These nodes don't produce code; omit from inlining budget.
+ return false
+
+ case ir.OIF:
+ n := n.(*ir.IfStmt)
+ if ir.IsConst(n.Cond, constant.Bool) {
+ // This if and the condition cost nothing.
+ if doList(n.Init(), v.do) {
+ return true
+ }
+ if ir.BoolVal(n.Cond) {
+ return doList(n.Body, v.do)
+ } else {
+ return doList(n.Else, v.do)
+ }
+ }
+
+ case ir.ONAME:
+ n := n.(*ir.Name)
+ if n.Class == ir.PAUTO {
+ v.usedLocals.Add(n)
+ }
+
+ case ir.OBLOCK:
+ // The only OBLOCK we should see at this point is an empty one.
+ // In any event, let the visitList(n.List()) below take care of the statements,
+ // and don't charge for the OBLOCK itself. The ++ undoes the -- below.
+ v.budget++
+
+ case ir.OMETHVALUE, ir.OSLICELIT:
+ v.budget-- // Hack for toolstash -cmp.
+
+ case ir.OMETHEXPR:
+ v.budget++ // Hack for toolstash -cmp.
+
+ case ir.OAS2:
+ n := n.(*ir.AssignListStmt)
+
+ // Unified IR unconditionally rewrites:
+ //
+ // a, b = f()
+ //
+ // into:
+ //
+ // DCL tmp1
+ // DCL tmp2
+ // tmp1, tmp2 = f()
+ // a, b = tmp1, tmp2
+ //
+ // so that it can insert implicit conversions as necessary. To
+ // minimize impact to the existing inlining heuristics (in
+ // particular, to avoid breaking the existing inlinability regress
+ // tests), we need to compensate for this here.
+ if base.Debug.Unified != 0 {
+ if init := n.Rhs[0].Init(); len(init) == 1 {
+ if _, ok := init[0].(*ir.AssignListStmt); ok {
+ // 4 for each value, because each temporary variable now
+ // appears 3 times (DCL, LHS, RHS), plus an extra DCL node.
+ //
+ // 1 for the extra "tmp1, tmp2 = f()" assignment statement.
+ v.budget += 4*int32(len(n.Lhs)) + 1
+ }
+ }
+ }
+
+ case ir.OAS:
+ // Special case for coverage counter updates and coverage
+ // function registrations. Although these correspond to real
+ // operations, we treat them as zero cost for the moment. This
+ // is primarily due to the existence of tests that are
+ // sensitive to inlining-- if the insertion of coverage
+ // instrumentation happens to tip a given function over the
+ // threshold and move it from "inlinable" to "not-inlinable",
+ // this can cause changes in allocation behavior, which can
+ // then result in test failures (a good example is the
+ // TestAllocations in crypto/ed25519).
+ n := n.(*ir.AssignStmt)
+ if n.X.Op() == ir.OINDEX && isIndexingCoverageCounter(n.X) {
+ return false
+ }
+ }
+
+ v.budget--
+
+ // When debugging, don't stop early, to get full cost of inlining this function
+ if v.budget < 0 && base.Flag.LowerM < 2 && !logopt.Enabled() {
+ v.reason = "too expensive"
+ return true
+ }
+
+ return ir.DoChildren(n, v.do)
+}
+
+func isBigFunc(fn *ir.Func) bool {
+ budget := inlineBigFunctionNodes
+ return ir.Any(fn, func(n ir.Node) bool {
+ budget--
+ return budget <= 0
+ })
+}
+
+// inlcopylist (together with inlcopy) recursively copies a list of nodes, except
+// that it keeps the same ONAME, OTYPE, and OLITERAL nodes. It is used for copying
+// the body and dcls of an inlineable function.
+func inlcopylist(ll []ir.Node) []ir.Node {
+ s := make([]ir.Node, len(ll))
+ for i, n := range ll {
+ s[i] = inlcopy(n)
+ }
+ return s
+}
+
+// inlcopy is like DeepCopy(), but does extra work to copy closures.
+func inlcopy(n ir.Node) ir.Node {
+ var edit func(ir.Node) ir.Node
+ edit = func(x ir.Node) ir.Node {
+ switch x.Op() {
+ case ir.ONAME, ir.OTYPE, ir.OLITERAL, ir.ONIL:
+ return x
+ }
+ m := ir.Copy(x)
+ ir.EditChildren(m, edit)
+ if x.Op() == ir.OCLOSURE {
+ x := x.(*ir.ClosureExpr)
+ // Need to save/duplicate x.Func.Nname,
+ // x.Func.Nname.Ntype, x.Func.Dcl, x.Func.ClosureVars, and
+ // x.Func.Body for iexport and local inlining.
+ oldfn := x.Func
+ newfn := ir.NewFunc(oldfn.Pos())
+ m.(*ir.ClosureExpr).Func = newfn
+ newfn.Nname = ir.NewNameAt(oldfn.Nname.Pos(), oldfn.Nname.Sym())
+ // XXX OK to share fn.Type() ??
+ newfn.Nname.SetType(oldfn.Nname.Type())
+ newfn.Body = inlcopylist(oldfn.Body)
+ // Make shallow copy of the Dcl and ClosureVar slices
+ newfn.Dcl = append([]*ir.Name(nil), oldfn.Dcl...)
+ newfn.ClosureVars = append([]*ir.Name(nil), oldfn.ClosureVars...)
+ }
+ return m
+ }
+ return edit(n)
+}
+
+// InlineCalls/inlnode walks fn's statements and expressions and substitutes any
+// calls made to inlineable functions. This is the external entry point.
+func InlineCalls(fn *ir.Func, profile *pgo.Profile) {
+ savefn := ir.CurFunc
+ ir.CurFunc = fn
+ maxCost := int32(inlineMaxBudget)
+ if isBigFunc(fn) {
+ maxCost = inlineBigFunctionMaxCost
+ }
+ var inlCalls []*ir.InlinedCallExpr
+ var edit func(ir.Node) ir.Node
+ edit = func(n ir.Node) ir.Node {
+ return inlnode(n, maxCost, &inlCalls, edit, profile)
+ }
+ ir.EditChildren(fn, edit)
+
+ // If we inlined any calls, we want to recursively visit their
+ // bodies for further inlining. However, we need to wait until
+ // *after* the original function body has been expanded, or else
+ // inlCallee can have false positives (e.g., #54632).
+ for len(inlCalls) > 0 {
+ call := inlCalls[0]
+ inlCalls = inlCalls[1:]
+ ir.EditChildren(call, edit)
+ }
+
+ ir.CurFunc = savefn
+}
+
+// inlnode recurses over the tree to find inlineable calls, which will
+// be turned into OINLCALLs by mkinlcall. When the recursion comes
+// back up will examine left, right, list, rlist, ninit, ntest, nincr,
+// nbody and nelse and use one of the 4 inlconv/glue functions above
+// to turn the OINLCALL into an expression, a statement, or patch it
+// in to this nodes list or rlist as appropriate.
+// NOTE it makes no sense to pass the glue functions down the
+// recursion to the level where the OINLCALL gets created because they
+// have to edit /this/ n, so you'd have to push that one down as well,
+// but then you may as well do it here. so this is cleaner and
+// shorter and less complicated.
+// The result of inlnode MUST be assigned back to n, e.g.
+//
+// n.Left = inlnode(n.Left)
+func inlnode(n ir.Node, maxCost int32, inlCalls *[]*ir.InlinedCallExpr, edit func(ir.Node) ir.Node, profile *pgo.Profile) ir.Node {
+ if n == nil {
+ return n
+ }
+
+ switch n.Op() {
+ case ir.ODEFER, ir.OGO:
+ n := n.(*ir.GoDeferStmt)
+ switch call := n.Call; call.Op() {
+ case ir.OCALLMETH:
+ base.FatalfAt(call.Pos(), "OCALLMETH missed by typecheck")
+ case ir.OCALLFUNC:
+ call := call.(*ir.CallExpr)
+ call.NoInline = true
+ }
+ case ir.OTAILCALL:
+ n := n.(*ir.TailCallStmt)
+ n.Call.NoInline = true // Not inline a tail call for now. Maybe we could inline it just like RETURN fn(arg)?
+
+ // TODO do them here (or earlier),
+ // so escape analysis can avoid more heapmoves.
+ case ir.OCLOSURE:
+ return n
+ case ir.OCALLMETH:
+ base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck")
+ case ir.OCALLFUNC:
+ n := n.(*ir.CallExpr)
+ if n.X.Op() == ir.OMETHEXPR {
+ // Prevent inlining some reflect.Value methods when using checkptr,
+ // even when package reflect was compiled without it (#35073).
+ if meth := ir.MethodExprName(n.X); meth != nil {
+ s := meth.Sym()
+ if base.Debug.Checkptr != 0 && types.IsReflectPkg(s.Pkg) && (s.Name == "Value.UnsafeAddr" || s.Name == "Value.Pointer") {
+ return n
+ }
+ }
+ }
+ }
+
+ lno := ir.SetPos(n)
+
+ ir.EditChildren(n, edit)
+
+ // with all the branches out of the way, it is now time to
+ // transmogrify this node itself unless inhibited by the
+ // switch at the top of this function.
+ switch n.Op() {
+ case ir.OCALLMETH:
+ base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck")
+
+ case ir.OCALLFUNC:
+ call := n.(*ir.CallExpr)
+ if call.NoInline {
+ break
+ }
+ if base.Flag.LowerM > 3 {
+ fmt.Printf("%v:call to func %+v\n", ir.Line(n), call.X)
+ }
+ if ir.IsIntrinsicCall(call) {
+ break
+ }
+ if fn := inlCallee(call.X, profile); fn != nil && typecheck.HaveInlineBody(fn) {
+ n = mkinlcall(call, fn, maxCost, inlCalls, edit)
+ }
+ }
+
+ base.Pos = lno
+
+ return n
+}
+
+// inlCallee takes a function-typed expression and returns the underlying function ONAME
+// that it refers to if statically known. Otherwise, it returns nil.
+func inlCallee(fn ir.Node, profile *pgo.Profile) *ir.Func {
+ fn = ir.StaticValue(fn)
+ switch fn.Op() {
+ case ir.OMETHEXPR:
+ fn := fn.(*ir.SelectorExpr)
+ n := ir.MethodExprName(fn)
+ // Check that receiver type matches fn.X.
+ // TODO(mdempsky): Handle implicit dereference
+ // of pointer receiver argument?
+ if n == nil || !types.Identical(n.Type().Recv().Type, fn.X.Type()) {
+ return nil
+ }
+ return n.Func
+ case ir.ONAME:
+ fn := fn.(*ir.Name)
+ if fn.Class == ir.PFUNC {
+ return fn.Func
+ }
+ case ir.OCLOSURE:
+ fn := fn.(*ir.ClosureExpr)
+ c := fn.Func
+ CanInline(c, profile)
+ return c
+ }
+ return nil
+}
+
+func inlParam(t *types.Field, as ir.InitNode, inlvars map[*ir.Name]*ir.Name) ir.Node {
+ if t.Nname == nil {
+ return ir.BlankNode
+ }
+ n := t.Nname.(*ir.Name)
+ if ir.IsBlank(n) {
+ return ir.BlankNode
+ }
+ inlvar := inlvars[n]
+ if inlvar == nil {
+ base.Fatalf("missing inlvar for %v", n)
+ }
+ as.PtrInit().Append(ir.NewDecl(base.Pos, ir.ODCL, inlvar))
+ inlvar.Name().Defn = as
+ return inlvar
+}
+
+var inlgen int
+
+// SSADumpInline gives the SSA back end a chance to dump the function
+// when producing output for debugging the compiler itself.
+var SSADumpInline = func(*ir.Func) {}
+
+// InlineCall allows the inliner implementation to be overridden.
+// If it returns nil, the function will not be inlined.
+var InlineCall = oldInlineCall
+
+// If n is a OCALLFUNC node, and fn is an ONAME node for a
+// function with an inlinable body, return an OINLCALL node that can replace n.
+// The returned node's Ninit has the parameter assignments, the Nbody is the
+// inlined function body, and (List, Rlist) contain the (input, output)
+// parameters.
+// The result of mkinlcall MUST be assigned back to n, e.g.
+//
+// n.Left = mkinlcall(n.Left, fn, isddd)
+func mkinlcall(n *ir.CallExpr, fn *ir.Func, maxCost int32, inlCalls *[]*ir.InlinedCallExpr, edit func(ir.Node) ir.Node) ir.Node {
+ if fn.Inl == nil {
+ if logopt.Enabled() {
+ logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc),
+ fmt.Sprintf("%s cannot be inlined", ir.PkgFuncName(fn)))
+ }
+ return n
+ }
+ if fn.Inl.Cost > maxCost {
+ // If the callsite is hot and it is under the inlineHotMaxBudget budget, then try to inline it, or else bail.
+ lineOffset := pgo.NodeLineOffset(n, ir.CurFunc)
+ csi := pgo.CallSiteInfo{LineOffset: lineOffset, Caller: ir.CurFunc}
+ if _, ok := candHotEdgeMap[csi]; ok {
+ if fn.Inl.Cost > inlineHotMaxBudget {
+ if logopt.Enabled() {
+ logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc),
+ fmt.Sprintf("cost %d of %s exceeds max large caller cost %d", fn.Inl.Cost, ir.PkgFuncName(fn), inlineHotMaxBudget))
+ }
+ return n
+ }
+ if base.Debug.PGOInline > 0 {
+ fmt.Printf("hot-budget check allows inlining for call %s at %v\n", ir.PkgFuncName(fn), ir.Line(n))
+ }
+ } else {
+ // The inlined function body is too big. Typically we use this check to restrict
+ // inlining into very big functions. See issue 26546 and 17566.
+ if logopt.Enabled() {
+ logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc),
+ fmt.Sprintf("cost %d of %s exceeds max large caller cost %d", fn.Inl.Cost, ir.PkgFuncName(fn), maxCost))
+ }
+ return n
+ }
+ }
+
+ if fn == ir.CurFunc {
+ // Can't recursively inline a function into itself.
+ if logopt.Enabled() {
+ logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", ir.FuncName(ir.CurFunc)))
+ }
+ return n
+ }
+
+ // The non-unified frontend has issues with inlining and shape parameters.
+ if base.Debug.Unified == 0 {
+ // Don't inline a function fn that has no shape parameters, but is passed at
+ // least one shape arg. This means we must be inlining a non-generic function
+ // fn that was passed into a generic function, and can be called with a shape
+ // arg because it matches an appropriate type parameters. But fn may include
+ // an interface conversion (that may be applied to a shape arg) that was not
+ // apparent when we first created the instantiation of the generic function.
+ // We can't handle this if we actually do the inlining, since we want to know
+ // all interface conversions immediately after stenciling. So, we avoid
+ // inlining in this case, see issue #49309. (1)
+ //
+ // See discussion on go.dev/cl/406475 for more background.
+ if !fn.Type().Params().HasShape() {
+ for _, arg := range n.Args {
+ if arg.Type().HasShape() {
+ if logopt.Enabled() {
+ logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc),
+ fmt.Sprintf("inlining function %v has no-shape params with shape args", ir.FuncName(fn)))
+ }
+ return n
+ }
+ }
+ } else {
+ // Don't inline a function fn that has shape parameters, but is passed no shape arg.
+ // See comments (1) above, and issue #51909.
+ inlineable := len(n.Args) == 0 // Function has shape in type, with no arguments can always be inlined.
+ for _, arg := range n.Args {
+ if arg.Type().HasShape() {
+ inlineable = true
+ break
+ }
+ }
+ if !inlineable {
+ if logopt.Enabled() {
+ logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc),
+ fmt.Sprintf("inlining function %v has shape params with no-shape args", ir.FuncName(fn)))
+ }
+ return n
+ }
+ }
+ }
+
+ if base.Flag.Cfg.Instrumenting && types.IsRuntimePkg(fn.Sym().Pkg) {
+ // Runtime package must not be instrumented.
+ // Instrument skips runtime package. However, some runtime code can be
+ // inlined into other packages and instrumented there. To avoid this,
+ // we disable inlining of runtime functions when instrumenting.
+ // The example that we observed is inlining of LockOSThread,
+ // which lead to false race reports on m contents.
+ return n
+ }
+
+ parent := base.Ctxt.PosTable.Pos(n.Pos()).Base().InliningIndex()
+ sym := fn.Linksym()
+
+ // Check if we've already inlined this function at this particular
+ // call site, in order to stop inlining when we reach the beginning
+ // of a recursion cycle again. We don't inline immediately recursive
+ // functions, but allow inlining if there is a recursion cycle of
+ // many functions. Most likely, the inlining will stop before we
+ // even hit the beginning of the cycle again, but this catches the
+ // unusual case.
+ for inlIndex := parent; inlIndex >= 0; inlIndex = base.Ctxt.InlTree.Parent(inlIndex) {
+ if base.Ctxt.InlTree.InlinedFunction(inlIndex) == sym {
+ if base.Flag.LowerM > 1 {
+ fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", ir.Line(n), fn, ir.FuncName(ir.CurFunc))
+ }
+ return n
+ }
+ }
+
+ typecheck.FixVariadicCall(n)
+
+ inlIndex := base.Ctxt.InlTree.Add(parent, n.Pos(), sym)
+
+ closureInitLSym := func(n *ir.CallExpr, fn *ir.Func) {
+ // The linker needs FuncInfo metadata for all inlined
+ // functions. This is typically handled by gc.enqueueFunc
+ // calling ir.InitLSym for all function declarations in
+ // typecheck.Target.Decls (ir.UseClosure adds all closures to
+ // Decls).
+ //
+ // However, non-trivial closures in Decls are ignored, and are
+ // insteaded enqueued when walk of the calling function
+ // discovers them.
+ //
+ // This presents a problem for direct calls to closures.
+ // Inlining will replace the entire closure definition with its
+ // body, which hides the closure from walk and thus suppresses
+ // symbol creation.
+ //
+ // Explicitly create a symbol early in this edge case to ensure
+ // we keep this metadata.
+ //
+ // TODO: Refactor to keep a reference so this can all be done
+ // by enqueueFunc.
+
+ if n.Op() != ir.OCALLFUNC {
+ // Not a standard call.
+ return
+ }
+ if n.X.Op() != ir.OCLOSURE {
+ // Not a direct closure call.
+ return
+ }
+
+ clo := n.X.(*ir.ClosureExpr)
+ if ir.IsTrivialClosure(clo) {
+ // enqueueFunc will handle trivial closures anyways.
+ return
+ }
+
+ ir.InitLSym(fn, true)
+ }
+
+ closureInitLSym(n, fn)
+
+ if base.Flag.GenDwarfInl > 0 {
+ if !sym.WasInlined() {
+ base.Ctxt.DwFixups.SetPrecursorFunc(sym, fn)
+ sym.Set(obj.AttrWasInlined, true)
+ }
+ }
+
+ if base.Flag.LowerM != 0 {
+ fmt.Printf("%v: inlining call to %v\n", ir.Line(n), fn)
+ }
+ if base.Flag.LowerM > 2 {
+ fmt.Printf("%v: Before inlining: %+v\n", ir.Line(n), n)
+ }
+
+ if base.Debug.PGOInline > 0 {
+ csi := pgo.CallSiteInfo{LineOffset: pgo.NodeLineOffset(n, fn), Caller: ir.CurFunc}
+ if _, ok := inlinedCallSites[csi]; !ok {
+ inlinedCallSites[csi] = struct{}{}
+ }
+ }
+
+ res := InlineCall(n, fn, inlIndex)
+
+ if res == nil {
+ base.FatalfAt(n.Pos(), "inlining call to %v failed", fn)
+ }
+
+ if base.Flag.LowerM > 2 {
+ fmt.Printf("%v: After inlining %+v\n\n", ir.Line(res), res)
+ }
+
+ *inlCalls = append(*inlCalls, res)
+
+ return res
+}
+
+// CalleeEffects appends any side effects from evaluating callee to init.
+func CalleeEffects(init *ir.Nodes, callee ir.Node) {
+ for {
+ init.Append(ir.TakeInit(callee)...)
+
+ switch callee.Op() {
+ case ir.ONAME, ir.OCLOSURE, ir.OMETHEXPR:
+ return // done
+
+ case ir.OCONVNOP:
+ conv := callee.(*ir.ConvExpr)
+ callee = conv.X
+
+ case ir.OINLCALL:
+ ic := callee.(*ir.InlinedCallExpr)
+ init.Append(ic.Body.Take()...)
+ callee = ic.SingleResult()
+
+ default:
+ base.FatalfAt(callee.Pos(), "unexpected callee expression: %v", callee)
+ }
+ }
+}
+
+// oldInlineCall creates an InlinedCallExpr to replace the given call
+// expression. fn is the callee function to be inlined. inlIndex is
+// the inlining tree position index, for use with src.NewInliningBase
+// when rewriting positions.
+func oldInlineCall(call *ir.CallExpr, fn *ir.Func, inlIndex int) *ir.InlinedCallExpr {
+ if base.Debug.TypecheckInl == 0 {
+ typecheck.ImportedBody(fn)
+ }
+
+ SSADumpInline(fn)
+
+ ninit := call.Init()
+
+ // For normal function calls, the function callee expression
+ // may contain side effects. Make sure to preserve these,
+ // if necessary (#42703).
+ if call.Op() == ir.OCALLFUNC {
+ CalleeEffects(&ninit, call.X)
+ }
+
+ // Make temp names to use instead of the originals.
+ inlvars := make(map[*ir.Name]*ir.Name)
+
+ // record formals/locals for later post-processing
+ var inlfvars []*ir.Name
+
+ for _, ln := range fn.Inl.Dcl {
+ if ln.Op() != ir.ONAME {
+ continue
+ }
+ if ln.Class == ir.PPARAMOUT { // return values handled below.
+ continue
+ }
+ inlf := typecheck.Expr(inlvar(ln)).(*ir.Name)
+ inlvars[ln] = inlf
+ if base.Flag.GenDwarfInl > 0 {
+ if ln.Class == ir.PPARAM {
+ inlf.Name().SetInlFormal(true)
+ } else {
+ inlf.Name().SetInlLocal(true)
+ }
+ inlf.SetPos(ln.Pos())
+ inlfvars = append(inlfvars, inlf)
+ }
+ }
+
+ // We can delay declaring+initializing result parameters if:
+ // temporaries for return values.
+ var retvars []ir.Node
+ for i, t := range fn.Type().Results().Fields().Slice() {
+ var m *ir.Name
+ if nn := t.Nname; nn != nil && !ir.IsBlank(nn.(*ir.Name)) && !strings.HasPrefix(nn.Sym().Name, "~r") {
+ n := nn.(*ir.Name)
+ m = inlvar(n)
+ m = typecheck.Expr(m).(*ir.Name)
+ inlvars[n] = m
+ } else {
+ // anonymous return values, synthesize names for use in assignment that replaces return
+ m = retvar(t, i)
+ }
+
+ if base.Flag.GenDwarfInl > 0 {
+ // Don't update the src.Pos on a return variable if it
+ // was manufactured by the inliner (e.g. "~R2"); such vars
+ // were not part of the original callee.
+ if !strings.HasPrefix(m.Sym().Name, "~R") {
+ m.Name().SetInlFormal(true)
+ m.SetPos(t.Pos)
+ inlfvars = append(inlfvars, m)
+ }
+ }
+
+ retvars = append(retvars, m)
+ }
+
+ // Assign arguments to the parameters' temp names.
+ as := ir.NewAssignListStmt(base.Pos, ir.OAS2, nil, nil)
+ as.Def = true
+ if call.Op() == ir.OCALLMETH {
+ base.FatalfAt(call.Pos(), "OCALLMETH missed by typecheck")
+ }
+ as.Rhs.Append(call.Args...)
+
+ if recv := fn.Type().Recv(); recv != nil {
+ as.Lhs.Append(inlParam(recv, as, inlvars))
+ }
+ for _, param := range fn.Type().Params().Fields().Slice() {
+ as.Lhs.Append(inlParam(param, as, inlvars))
+ }
+
+ if len(as.Rhs) != 0 {
+ ninit.Append(typecheck.Stmt(as))
+ }
+
+ if !fn.Inl.CanDelayResults {
+ // Zero the return parameters.
+ for _, n := range retvars {
+ ninit.Append(ir.NewDecl(base.Pos, ir.ODCL, n.(*ir.Name)))
+ ras := ir.NewAssignStmt(base.Pos, n, nil)
+ ninit.Append(typecheck.Stmt(ras))
+ }
+ }
+
+ retlabel := typecheck.AutoLabel(".i")
+
+ inlgen++
+
+ // Add an inline mark just before the inlined body.
+ // This mark is inline in the code so that it's a reasonable spot
+ // to put a breakpoint. Not sure if that's really necessary or not
+ // (in which case it could go at the end of the function instead).
+ // Note issue 28603.
+ ninit.Append(ir.NewInlineMarkStmt(call.Pos().WithIsStmt(), int64(inlIndex)))
+
+ subst := inlsubst{
+ retlabel: retlabel,
+ retvars: retvars,
+ inlvars: inlvars,
+ defnMarker: ir.NilExpr{},
+ bases: make(map[*src.PosBase]*src.PosBase),
+ newInlIndex: inlIndex,
+ fn: fn,
+ }
+ subst.edit = subst.node
+
+ body := subst.list(ir.Nodes(fn.Inl.Body))
+
+ lab := ir.NewLabelStmt(base.Pos, retlabel)
+ body = append(body, lab)
+
+ if base.Flag.GenDwarfInl > 0 {
+ for _, v := range inlfvars {
+ v.SetPos(subst.updatedPos(v.Pos()))
+ }
+ }
+
+ //dumplist("ninit post", ninit);
+
+ res := ir.NewInlinedCallExpr(base.Pos, body, retvars)
+ res.SetInit(ninit)
+ res.SetType(call.Type())
+ res.SetTypecheck(1)
+ return res
+}
+
+// Every time we expand a function we generate a new set of tmpnames,
+// PAUTO's in the calling functions, and link them off of the
+// PPARAM's, PAUTOS and PPARAMOUTs of the called function.
+func inlvar(var_ *ir.Name) *ir.Name {
+ if base.Flag.LowerM > 3 {
+ fmt.Printf("inlvar %+v\n", var_)
+ }
+
+ n := typecheck.NewName(var_.Sym())
+ n.SetType(var_.Type())
+ n.SetTypecheck(1)
+ n.Class = ir.PAUTO
+ n.SetUsed(true)
+ n.SetAutoTemp(var_.AutoTemp())
+ n.Curfn = ir.CurFunc // the calling function, not the called one
+ n.SetAddrtaken(var_.Addrtaken())
+
+ ir.CurFunc.Dcl = append(ir.CurFunc.Dcl, n)
+ return n
+}
+
+// Synthesize a variable to store the inlined function's results in.
+func retvar(t *types.Field, i int) *ir.Name {
+ n := typecheck.NewName(typecheck.LookupNum("~R", i))
+ n.SetType(t.Type)
+ n.SetTypecheck(1)
+ n.Class = ir.PAUTO
+ n.SetUsed(true)
+ n.Curfn = ir.CurFunc // the calling function, not the called one
+ ir.CurFunc.Dcl = append(ir.CurFunc.Dcl, n)
+ return n
+}
+
+// The inlsubst type implements the actual inlining of a single
+// function call.
+type inlsubst struct {
+ // Target of the goto substituted in place of a return.
+ retlabel *types.Sym
+
+ // Temporary result variables.
+ retvars []ir.Node
+
+ inlvars map[*ir.Name]*ir.Name
+ // defnMarker is used to mark a Node for reassignment.
+ // inlsubst.clovar set this during creating new ONAME.
+ // inlsubst.node will set the correct Defn for inlvar.
+ defnMarker ir.NilExpr
+
+ // bases maps from original PosBase to PosBase with an extra
+ // inlined call frame.
+ bases map[*src.PosBase]*src.PosBase
+
+ // newInlIndex is the index of the inlined call frame to
+ // insert for inlined nodes.
+ newInlIndex int
+
+ edit func(ir.Node) ir.Node // cached copy of subst.node method value closure
+
+ // If non-nil, we are inside a closure inside the inlined function, and
+ // newclofn is the Func of the new inlined closure.
+ newclofn *ir.Func
+
+ fn *ir.Func // For debug -- the func that is being inlined
+
+ // If true, then don't update source positions during substitution
+ // (retain old source positions).
+ noPosUpdate bool
+}
+
+// list inlines a list of nodes.
+func (subst *inlsubst) list(ll ir.Nodes) []ir.Node {
+ s := make([]ir.Node, 0, len(ll))
+ for _, n := range ll {
+ s = append(s, subst.node(n))
+ }
+ return s
+}
+
+// fields returns a list of the fields of a struct type representing receiver,
+// params, or results, after duplicating the field nodes and substituting the
+// Nname nodes inside the field nodes.
+func (subst *inlsubst) fields(oldt *types.Type) []*types.Field {
+ oldfields := oldt.FieldSlice()
+ newfields := make([]*types.Field, len(oldfields))
+ for i := range oldfields {
+ newfields[i] = oldfields[i].Copy()
+ if oldfields[i].Nname != nil {
+ newfields[i].Nname = subst.node(oldfields[i].Nname.(*ir.Name))
+ }
+ }
+ return newfields
+}
+
+// clovar creates a new ONAME node for a local variable or param of a closure
+// inside a function being inlined.
+func (subst *inlsubst) clovar(n *ir.Name) *ir.Name {
+ m := ir.NewNameAt(n.Pos(), n.Sym())
+ m.Class = n.Class
+ m.SetType(n.Type())
+ m.SetTypecheck(1)
+ if n.IsClosureVar() {
+ m.SetIsClosureVar(true)
+ }
+ if n.Addrtaken() {
+ m.SetAddrtaken(true)
+ }
+ if n.Used() {
+ m.SetUsed(true)
+ }
+ m.Defn = n.Defn
+
+ m.Curfn = subst.newclofn
+
+ switch defn := n.Defn.(type) {
+ case nil:
+ // ok
+ case *ir.Name:
+ if !n.IsClosureVar() {
+ base.FatalfAt(n.Pos(), "want closure variable, got: %+v", n)
+ }
+ if n.Sym().Pkg != types.LocalPkg {
+ // If the closure came from inlining a function from
+ // another package, must change package of captured
+ // variable to localpkg, so that the fields of the closure
+ // struct are local package and can be accessed even if
+ // name is not exported. If you disable this code, you can
+ // reproduce the problem by running 'go test
+ // go/internal/srcimporter'. TODO(mdempsky) - maybe change
+ // how we create closure structs?
+ m.SetSym(types.LocalPkg.Lookup(n.Sym().Name))
+ }
+ // Make sure any inlvar which is the Defn
+ // of an ONAME closure var is rewritten
+ // during inlining. Don't substitute
+ // if Defn node is outside inlined function.
+ if subst.inlvars[n.Defn.(*ir.Name)] != nil {
+ m.Defn = subst.node(n.Defn)
+ }
+ case *ir.AssignStmt, *ir.AssignListStmt:
+ // Mark node for reassignment at the end of inlsubst.node.
+ m.Defn = &subst.defnMarker
+ case *ir.TypeSwitchGuard:
+ // TODO(mdempsky): Set m.Defn properly. See discussion on #45743.
+ case *ir.RangeStmt:
+ // TODO: Set m.Defn properly if we support inlining range statement in the future.
+ default:
+ base.FatalfAt(n.Pos(), "unexpected Defn: %+v", defn)
+ }
+
+ if n.Outer != nil {
+ // Either the outer variable is defined in function being inlined,
+ // and we will replace it with the substituted variable, or it is
+ // defined outside the function being inlined, and we should just
+ // skip the outer variable (the closure variable of the function
+ // being inlined).
+ s := subst.node(n.Outer).(*ir.Name)
+ if s == n.Outer {
+ s = n.Outer.Outer
+ }
+ m.Outer = s
+ }
+ return m
+}
+
+// closure does the necessary substitions for a ClosureExpr n and returns the new
+// closure node.
+func (subst *inlsubst) closure(n *ir.ClosureExpr) ir.Node {
+ // Prior to the subst edit, set a flag in the inlsubst to indicate
+ // that we don't want to update the source positions in the new
+ // closure function. If we do this, it will appear that the
+ // closure itself has things inlined into it, which is not the
+ // case. See issue #46234 for more details. At the same time, we
+ // do want to update the position in the new ClosureExpr (which is
+ // part of the function we're working on). See #49171 for an
+ // example of what happens if we miss that update.
+ newClosurePos := subst.updatedPos(n.Pos())
+ defer func(prev bool) { subst.noPosUpdate = prev }(subst.noPosUpdate)
+ subst.noPosUpdate = true
+
+ //fmt.Printf("Inlining func %v with closure into %v\n", subst.fn, ir.FuncName(ir.CurFunc))
+
+ oldfn := n.Func
+ newfn := ir.NewClosureFunc(oldfn.Pos(), true)
+
+ if subst.newclofn != nil {
+ //fmt.Printf("Inlining a closure with a nested closure\n")
+ }
+ prevxfunc := subst.newclofn
+
+ // Mark that we are now substituting within a closure (within the
+ // inlined function), and create new nodes for all the local
+ // vars/params inside this closure.
+ subst.newclofn = newfn
+ newfn.Dcl = nil
+ newfn.ClosureVars = nil
+ for _, oldv := range oldfn.Dcl {
+ newv := subst.clovar(oldv)
+ subst.inlvars[oldv] = newv
+ newfn.Dcl = append(newfn.Dcl, newv)
+ }
+ for _, oldv := range oldfn.ClosureVars {
+ newv := subst.clovar(oldv)
+ subst.inlvars[oldv] = newv
+ newfn.ClosureVars = append(newfn.ClosureVars, newv)
+ }
+
+ // Need to replace ONAME nodes in
+ // newfn.Type().FuncType().Receiver/Params/Results.FieldSlice().Nname
+ oldt := oldfn.Type()
+ newrecvs := subst.fields(oldt.Recvs())
+ var newrecv *types.Field
+ if len(newrecvs) > 0 {
+ newrecv = newrecvs[0]
+ }
+ newt := types.NewSignature(oldt.Pkg(), newrecv,
+ nil, subst.fields(oldt.Params()), subst.fields(oldt.Results()))
+
+ newfn.Nname.SetType(newt)
+ newfn.Body = subst.list(oldfn.Body)
+
+ // Remove the nodes for the current closure from subst.inlvars
+ for _, oldv := range oldfn.Dcl {
+ delete(subst.inlvars, oldv)
+ }
+ for _, oldv := range oldfn.ClosureVars {
+ delete(subst.inlvars, oldv)
+ }
+ // Go back to previous closure func
+ subst.newclofn = prevxfunc
+
+ // Actually create the named function for the closure, now that
+ // the closure is inlined in a specific function.
+ newclo := newfn.OClosure
+ newclo.SetPos(newClosurePos)
+ newclo.SetInit(subst.list(n.Init()))
+ return typecheck.Expr(newclo)
+}
+
+// node recursively copies a node from the saved pristine body of the
+// inlined function, substituting references to input/output
+// parameters with ones to the tmpnames, and substituting returns with
+// assignments to the output.
+func (subst *inlsubst) node(n ir.Node) ir.Node {
+ if n == nil {
+ return nil
+ }
+
+ switch n.Op() {
+ case ir.ONAME:
+ n := n.(*ir.Name)
+
+ // Handle captured variables when inlining closures.
+ if n.IsClosureVar() && subst.newclofn == nil {
+ o := n.Outer
+
+ // Deal with case where sequence of closures are inlined.
+ // TODO(danscales) - write test case to see if we need to
+ // go up multiple levels.
+ if o.Curfn != ir.CurFunc {
+ o = o.Outer
+ }
+
+ // make sure the outer param matches the inlining location
+ if o == nil || o.Curfn != ir.CurFunc {
+ base.Fatalf("%v: unresolvable capture %v\n", ir.Line(n), n)
+ }
+
+ if base.Flag.LowerM > 2 {
+ fmt.Printf("substituting captured name %+v -> %+v\n", n, o)
+ }
+ return o
+ }
+
+ if inlvar := subst.inlvars[n]; inlvar != nil { // These will be set during inlnode
+ if base.Flag.LowerM > 2 {
+ fmt.Printf("substituting name %+v -> %+v\n", n, inlvar)
+ }
+ return inlvar
+ }
+
+ if base.Flag.LowerM > 2 {
+ fmt.Printf("not substituting name %+v\n", n)
+ }
+ return n
+
+ case ir.OMETHEXPR:
+ n := n.(*ir.SelectorExpr)
+ return n
+
+ case ir.OLITERAL, ir.ONIL, ir.OTYPE:
+ // If n is a named constant or type, we can continue
+ // using it in the inline copy. Otherwise, make a copy
+ // so we can update the line number.
+ if n.Sym() != nil {
+ return n
+ }
+
+ case ir.ORETURN:
+ if subst.newclofn != nil {
+ // Don't do special substitutions if inside a closure
+ break
+ }
+ // Because of the above test for subst.newclofn,
+ // this return is guaranteed to belong to the current inlined function.
+ n := n.(*ir.ReturnStmt)
+ init := subst.list(n.Init())
+ if len(subst.retvars) != 0 && len(n.Results) != 0 {
+ as := ir.NewAssignListStmt(base.Pos, ir.OAS2, nil, nil)
+
+ // Make a shallow copy of retvars.
+ // Otherwise OINLCALL.Rlist will be the same list,
+ // and later walk and typecheck may clobber it.
+ for _, n := range subst.retvars {
+ as.Lhs.Append(n)
+ }
+ as.Rhs = subst.list(n.Results)
+
+ if subst.fn.Inl.CanDelayResults {
+ for _, n := range as.Lhs {
+ as.PtrInit().Append(ir.NewDecl(base.Pos, ir.ODCL, n.(*ir.Name)))
+ n.Name().Defn = as
+ }
+ }
+
+ init = append(init, typecheck.Stmt(as))
+ }
+ init = append(init, ir.NewBranchStmt(base.Pos, ir.OGOTO, subst.retlabel))
+ typecheck.Stmts(init)
+ return ir.NewBlockStmt(base.Pos, init)
+
+ case ir.OGOTO, ir.OBREAK, ir.OCONTINUE:
+ if subst.newclofn != nil {
+ // Don't do special substitutions if inside a closure
+ break
+ }
+ n := n.(*ir.BranchStmt)
+ m := ir.Copy(n).(*ir.BranchStmt)
+ m.SetPos(subst.updatedPos(m.Pos()))
+ m.SetInit(nil)
+ m.Label = translateLabel(n.Label)
+ return m
+
+ case ir.OLABEL:
+ if subst.newclofn != nil {
+ // Don't do special substitutions if inside a closure
+ break
+ }
+ n := n.(*ir.LabelStmt)
+ m := ir.Copy(n).(*ir.LabelStmt)
+ m.SetPos(subst.updatedPos(m.Pos()))
+ m.SetInit(nil)
+ m.Label = translateLabel(n.Label)
+ return m
+
+ case ir.OCLOSURE:
+ return subst.closure(n.(*ir.ClosureExpr))
+
+ }
+
+ m := ir.Copy(n)
+ m.SetPos(subst.updatedPos(m.Pos()))
+ ir.EditChildren(m, subst.edit)
+
+ if subst.newclofn == nil {
+ // Translate any label on FOR, RANGE loops, SWITCH or SELECT
+ switch m.Op() {
+ case ir.OFOR:
+ m := m.(*ir.ForStmt)
+ m.Label = translateLabel(m.Label)
+ return m
+
+ case ir.ORANGE:
+ m := m.(*ir.RangeStmt)
+ m.Label = translateLabel(m.Label)
+ return m
+
+ case ir.OSWITCH:
+ m := m.(*ir.SwitchStmt)
+ m.Label = translateLabel(m.Label)
+ return m
+
+ case ir.OSELECT:
+ m := m.(*ir.SelectStmt)
+ m.Label = translateLabel(m.Label)
+ return m
+ }
+ }
+
+ switch m := m.(type) {
+ case *ir.AssignStmt:
+ if lhs, ok := m.X.(*ir.Name); ok && lhs.Defn == &subst.defnMarker {
+ lhs.Defn = m
+ }
+ case *ir.AssignListStmt:
+ for _, lhs := range m.Lhs {
+ if lhs, ok := lhs.(*ir.Name); ok && lhs.Defn == &subst.defnMarker {
+ lhs.Defn = m
+ }
+ }
+ }
+
+ return m
+}
+
+// translateLabel makes a label from an inlined function (if non-nil) be unique by
+// adding "·inlgen".
+func translateLabel(l *types.Sym) *types.Sym {
+ if l == nil {
+ return nil
+ }
+ p := fmt.Sprintf("%s·%d", l.Name, inlgen)
+ return typecheck.Lookup(p)
+}
+
+func (subst *inlsubst) updatedPos(xpos src.XPos) src.XPos {
+ if subst.noPosUpdate {
+ return xpos
+ }
+ pos := base.Ctxt.PosTable.Pos(xpos)
+ oldbase := pos.Base() // can be nil
+ newbase := subst.bases[oldbase]
+ if newbase == nil {
+ newbase = src.NewInliningBase(oldbase, subst.newInlIndex)
+ subst.bases[oldbase] = newbase
+ }
+ pos.SetBase(newbase)
+ return base.Ctxt.PosTable.XPos(pos)
+}
+
+func pruneUnusedAutos(ll []*ir.Name, vis *hairyVisitor) []*ir.Name {
+ s := make([]*ir.Name, 0, len(ll))
+ for _, n := range ll {
+ if n.Class == ir.PAUTO {
+ if !vis.usedLocals.Has(n) {
+ continue
+ }
+ }
+ s = append(s, n)
+ }
+ return s
+}
+
+// numNonClosures returns the number of functions in list which are not closures.
+func numNonClosures(list []*ir.Func) int {
+ count := 0
+ for _, fn := range list {
+ if fn.OClosure == nil {
+ count++
+ }
+ }
+ return count
+}
+
+func doList(list []ir.Node, do func(ir.Node) bool) bool {
+ for _, x := range list {
+ if x != nil {
+ if do(x) {
+ return true
+ }
+ }
+ }
+ return false
+}
+
+// isIndexingCoverageCounter returns true if the specified node 'n' is indexing
+// into a coverage counter array.
+func isIndexingCoverageCounter(n ir.Node) bool {
+ if n.Op() != ir.OINDEX {
+ return false
+ }
+ ixn := n.(*ir.IndexExpr)
+ if ixn.X.Op() != ir.ONAME || !ixn.X.Type().IsArray() {
+ return false
+ }
+ nn := ixn.X.(*ir.Name)
+ return nn.CoverageCounter()
+}
+
+// isAtomicCoverageCounterUpdate examines the specified node to
+// determine whether it represents a call to sync/atomic.AddUint32 to
+// increment a coverage counter.
+func isAtomicCoverageCounterUpdate(cn *ir.CallExpr) bool {
+ if cn.X.Op() != ir.ONAME {
+ return false
+ }
+ name := cn.X.(*ir.Name)
+ if name.Class != ir.PFUNC {
+ return false
+ }
+ fn := name.Sym().Name
+ if name.Sym().Pkg.Path != "sync/atomic" ||
+ (fn != "AddUint32" && fn != "StoreUint32") {
+ return false
+ }
+ if len(cn.Args) != 2 || cn.Args[0].Op() != ir.OADDR {
+ return false
+ }
+ adn := cn.Args[0].(*ir.AddrExpr)
+ v := isIndexingCoverageCounter(adn.X)
+ return v
+}