summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/walk/convert.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/compile/internal/walk/convert.go')
-rw-r--r--src/cmd/compile/internal/walk/convert.go527
1 files changed, 527 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/walk/convert.go b/src/cmd/compile/internal/walk/convert.go
new file mode 100644
index 0000000..ca0c806
--- /dev/null
+++ b/src/cmd/compile/internal/walk/convert.go
@@ -0,0 +1,527 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package walk
+
+import (
+ "encoding/binary"
+ "go/constant"
+
+ "cmd/compile/internal/base"
+ "cmd/compile/internal/ir"
+ "cmd/compile/internal/reflectdata"
+ "cmd/compile/internal/ssagen"
+ "cmd/compile/internal/typecheck"
+ "cmd/compile/internal/types"
+ "cmd/internal/sys"
+)
+
+// walkConv walks an OCONV or OCONVNOP (but not OCONVIFACE) node.
+func walkConv(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
+ n.X = walkExpr(n.X, init)
+ if n.Op() == ir.OCONVNOP && n.Type() == n.X.Type() {
+ return n.X
+ }
+ if n.Op() == ir.OCONVNOP && ir.ShouldCheckPtr(ir.CurFunc, 1) {
+ if n.Type().IsUnsafePtr() && n.X.Type().IsUintptr() { // uintptr to unsafe.Pointer
+ return walkCheckPtrArithmetic(n, init)
+ }
+ }
+ param, result := rtconvfn(n.X.Type(), n.Type())
+ if param == types.Txxx {
+ return n
+ }
+ fn := types.BasicTypeNames[param] + "to" + types.BasicTypeNames[result]
+ return typecheck.Conv(mkcall(fn, types.Types[result], init, typecheck.Conv(n.X, types.Types[param])), n.Type())
+}
+
+// walkConvInterface walks an OCONVIFACE node.
+func walkConvInterface(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
+
+ n.X = walkExpr(n.X, init)
+
+ fromType := n.X.Type()
+ toType := n.Type()
+ if !fromType.IsInterface() && !ir.IsBlank(ir.CurFunc.Nname) {
+ // skip unnamed functions (func _())
+ if base.Debug.Unified != 0 && fromType.HasShape() {
+ // Unified IR uses OCONVIFACE for converting all derived types
+ // to interface type. Avoid assertion failure in
+ // MarkTypeUsedInInterface, because we've marked used types
+ // separately anyway.
+ } else {
+ reflectdata.MarkTypeUsedInInterface(fromType, ir.CurFunc.LSym)
+ }
+ }
+
+ if !fromType.IsInterface() {
+ typeWord := reflectdata.ConvIfaceTypeWord(base.Pos, n)
+ l := ir.NewBinaryExpr(base.Pos, ir.OEFACE, typeWord, dataWord(n, init))
+ l.SetType(toType)
+ l.SetTypecheck(n.Typecheck())
+ return l
+ }
+ if fromType.IsEmptyInterface() {
+ base.Fatalf("OCONVIFACE can't operate on an empty interface")
+ }
+
+ // Evaluate the input interface.
+ c := typecheck.Temp(fromType)
+ init.Append(ir.NewAssignStmt(base.Pos, c, n.X))
+
+ // Grab its parts.
+ itab := ir.NewUnaryExpr(base.Pos, ir.OITAB, c)
+ itab.SetType(types.Types[types.TUINTPTR].PtrTo())
+ itab.SetTypecheck(1)
+ data := ir.NewUnaryExpr(n.Pos(), ir.OIDATA, c)
+ data.SetType(types.Types[types.TUINT8].PtrTo()) // Type is generic pointer - we're just passing it through.
+ data.SetTypecheck(1)
+
+ var typeWord ir.Node
+ if toType.IsEmptyInterface() {
+ // Implement interface to empty interface conversion:
+ //
+ // var res *uint8
+ // res = (*uint8)(unsafe.Pointer(itab))
+ // if res != nil {
+ // res = res.type
+ // }
+ typeWord = typecheck.Temp(types.NewPtr(types.Types[types.TUINT8]))
+ init.Append(ir.NewAssignStmt(base.Pos, typeWord, typecheck.Conv(typecheck.Conv(itab, types.Types[types.TUNSAFEPTR]), typeWord.Type())))
+ nif := ir.NewIfStmt(base.Pos, typecheck.Expr(ir.NewBinaryExpr(base.Pos, ir.ONE, typeWord, typecheck.NodNil())), nil, nil)
+ nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, typeWord, itabType(typeWord))}
+ init.Append(nif)
+ } else {
+ // Must be converting I2I (more specific to less specific interface).
+ // res = convI2I(toType, itab)
+ fn := typecheck.LookupRuntime("convI2I")
+ types.CalcSize(fn.Type())
+ call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil)
+ call.Args = []ir.Node{reflectdata.ConvIfaceTypeWord(base.Pos, n), itab}
+ typeWord = walkExpr(typecheck.Expr(call), init)
+ }
+
+ // Build the result.
+ // e = iface{typeWord, data}
+ e := ir.NewBinaryExpr(base.Pos, ir.OEFACE, typeWord, data)
+ e.SetType(toType) // assign type manually, typecheck doesn't understand OEFACE.
+ e.SetTypecheck(1)
+ return e
+}
+
+// Returns the data word (the second word) used to represent conv.X in
+// an interface.
+func dataWord(conv *ir.ConvExpr, init *ir.Nodes) ir.Node {
+ pos, n := conv.Pos(), conv.X
+ fromType := n.Type()
+
+ // If it's a pointer, it is its own representation.
+ if types.IsDirectIface(fromType) {
+ return n
+ }
+
+ isInteger := fromType.IsInteger()
+ isBool := fromType.IsBoolean()
+ if sc := fromType.SoleComponent(); sc != nil {
+ isInteger = sc.IsInteger()
+ isBool = sc.IsBoolean()
+ }
+ // Try a bunch of cases to avoid an allocation.
+ var value ir.Node
+ switch {
+ case fromType.Size() == 0:
+ // n is zero-sized. Use zerobase.
+ cheapExpr(n, init) // Evaluate n for side-effects. See issue 19246.
+ value = ir.NewLinksymExpr(base.Pos, ir.Syms.Zerobase, types.Types[types.TUINTPTR])
+ case isBool || fromType.Size() == 1 && isInteger:
+ // n is a bool/byte. Use staticuint64s[n * 8] on little-endian
+ // and staticuint64s[n * 8 + 7] on big-endian.
+ n = cheapExpr(n, init)
+ n = soleComponent(init, n)
+ // byteindex widens n so that the multiplication doesn't overflow.
+ index := ir.NewBinaryExpr(base.Pos, ir.OLSH, byteindex(n), ir.NewInt(3))
+ if ssagen.Arch.LinkArch.ByteOrder == binary.BigEndian {
+ index = ir.NewBinaryExpr(base.Pos, ir.OADD, index, ir.NewInt(7))
+ }
+ // The actual type is [256]uint64, but we use [256*8]uint8 so we can address
+ // individual bytes.
+ staticuint64s := ir.NewLinksymExpr(base.Pos, ir.Syms.Staticuint64s, types.NewArray(types.Types[types.TUINT8], 256*8))
+ xe := ir.NewIndexExpr(base.Pos, staticuint64s, index)
+ xe.SetBounded(true)
+ value = xe
+ case n.Op() == ir.ONAME && n.(*ir.Name).Class == ir.PEXTERN && n.(*ir.Name).Readonly():
+ // n is a readonly global; use it directly.
+ value = n
+ case conv.Esc() == ir.EscNone && fromType.Size() <= 1024:
+ // n does not escape. Use a stack temporary initialized to n.
+ value = typecheck.Temp(fromType)
+ init.Append(typecheck.Stmt(ir.NewAssignStmt(base.Pos, value, n)))
+ }
+ if value != nil {
+ // The interface data word is &value.
+ return typecheck.Expr(typecheck.NodAddr(value))
+ }
+
+ // Time to do an allocation. We'll call into the runtime for that.
+ fnname, argType, needsaddr := dataWordFuncName(fromType)
+ fn := typecheck.LookupRuntime(fnname)
+
+ var args []ir.Node
+ if needsaddr {
+ // Types of large or unknown size are passed by reference.
+ // Orderexpr arranged for n to be a temporary for all
+ // the conversions it could see. Comparison of an interface
+ // with a non-interface, especially in a switch on interface value
+ // with non-interface cases, is not visible to order.stmt, so we
+ // have to fall back on allocating a temp here.
+ if !ir.IsAddressable(n) {
+ n = copyExpr(n, fromType, init)
+ }
+ fn = typecheck.SubstArgTypes(fn, fromType)
+ args = []ir.Node{reflectdata.ConvIfaceSrcRType(base.Pos, conv), typecheck.NodAddr(n)}
+ } else {
+ // Use a specialized conversion routine that takes the type being
+ // converted by value, not by pointer.
+ var arg ir.Node
+ switch {
+ case fromType == argType:
+ // already in the right type, nothing to do
+ arg = n
+ case fromType.Kind() == argType.Kind(),
+ fromType.IsPtrShaped() && argType.IsPtrShaped():
+ // can directly convert (e.g. named type to underlying type, or one pointer to another)
+ // TODO: never happens because pointers are directIface?
+ arg = ir.NewConvExpr(pos, ir.OCONVNOP, argType, n)
+ case fromType.IsInteger() && argType.IsInteger():
+ // can directly convert (e.g. int32 to uint32)
+ arg = ir.NewConvExpr(pos, ir.OCONV, argType, n)
+ default:
+ // unsafe cast through memory
+ arg = copyExpr(n, fromType, init)
+ var addr ir.Node = typecheck.NodAddr(arg)
+ addr = ir.NewConvExpr(pos, ir.OCONVNOP, argType.PtrTo(), addr)
+ arg = ir.NewStarExpr(pos, addr)
+ arg.SetType(argType)
+ }
+ args = []ir.Node{arg}
+ }
+ call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil)
+ call.Args = args
+ return safeExpr(walkExpr(typecheck.Expr(call), init), init)
+}
+
+// walkConvIData walks an OCONVIDATA node.
+func walkConvIData(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
+ n.X = walkExpr(n.X, init)
+ return dataWord(n, init)
+}
+
+// walkBytesRunesToString walks an OBYTES2STR or ORUNES2STR node.
+func walkBytesRunesToString(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
+ a := typecheck.NodNil()
+ if n.Esc() == ir.EscNone {
+ // Create temporary buffer for string on stack.
+ a = stackBufAddr(tmpstringbufsize, types.Types[types.TUINT8])
+ }
+ if n.Op() == ir.ORUNES2STR {
+ // slicerunetostring(*[32]byte, []rune) string
+ return mkcall("slicerunetostring", n.Type(), init, a, n.X)
+ }
+ // slicebytetostring(*[32]byte, ptr *byte, n int) string
+ n.X = cheapExpr(n.X, init)
+ ptr, len := backingArrayPtrLen(n.X)
+ return mkcall("slicebytetostring", n.Type(), init, a, ptr, len)
+}
+
+// walkBytesToStringTemp walks an OBYTES2STRTMP node.
+func walkBytesToStringTemp(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
+ n.X = walkExpr(n.X, init)
+ if !base.Flag.Cfg.Instrumenting {
+ // Let the backend handle OBYTES2STRTMP directly
+ // to avoid a function call to slicebytetostringtmp.
+ return n
+ }
+ // slicebytetostringtmp(ptr *byte, n int) string
+ n.X = cheapExpr(n.X, init)
+ ptr, len := backingArrayPtrLen(n.X)
+ return mkcall("slicebytetostringtmp", n.Type(), init, ptr, len)
+}
+
+// walkRuneToString walks an ORUNESTR node.
+func walkRuneToString(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
+ a := typecheck.NodNil()
+ if n.Esc() == ir.EscNone {
+ a = stackBufAddr(4, types.Types[types.TUINT8])
+ }
+ // intstring(*[4]byte, rune)
+ return mkcall("intstring", n.Type(), init, a, typecheck.Conv(n.X, types.Types[types.TINT64]))
+}
+
+// walkStringToBytes walks an OSTR2BYTES node.
+func walkStringToBytes(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
+ s := n.X
+ if ir.IsConst(s, constant.String) {
+ sc := ir.StringVal(s)
+
+ // Allocate a [n]byte of the right size.
+ t := types.NewArray(types.Types[types.TUINT8], int64(len(sc)))
+ var a ir.Node
+ if n.Esc() == ir.EscNone && len(sc) <= int(ir.MaxImplicitStackVarSize) {
+ a = stackBufAddr(t.NumElem(), t.Elem())
+ } else {
+ types.CalcSize(t)
+ a = ir.NewUnaryExpr(base.Pos, ir.ONEW, nil)
+ a.SetType(types.NewPtr(t))
+ a.SetTypecheck(1)
+ a.MarkNonNil()
+ }
+ p := typecheck.Temp(t.PtrTo()) // *[n]byte
+ init.Append(typecheck.Stmt(ir.NewAssignStmt(base.Pos, p, a)))
+
+ // Copy from the static string data to the [n]byte.
+ if len(sc) > 0 {
+ sptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, s)
+ sptr.SetBounded(true)
+ as := ir.NewAssignStmt(base.Pos, ir.NewStarExpr(base.Pos, p), ir.NewStarExpr(base.Pos, typecheck.ConvNop(sptr, t.PtrTo())))
+ appendWalkStmt(init, as)
+ }
+
+ // Slice the [n]byte to a []byte.
+ slice := ir.NewSliceExpr(n.Pos(), ir.OSLICEARR, p, nil, nil, nil)
+ slice.SetType(n.Type())
+ slice.SetTypecheck(1)
+ return walkExpr(slice, init)
+ }
+
+ a := typecheck.NodNil()
+ if n.Esc() == ir.EscNone {
+ // Create temporary buffer for slice on stack.
+ a = stackBufAddr(tmpstringbufsize, types.Types[types.TUINT8])
+ }
+ // stringtoslicebyte(*32[byte], string) []byte
+ return mkcall("stringtoslicebyte", n.Type(), init, a, typecheck.Conv(s, types.Types[types.TSTRING]))
+}
+
+// walkStringToBytesTemp walks an OSTR2BYTESTMP node.
+func walkStringToBytesTemp(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
+ // []byte(string) conversion that creates a slice
+ // referring to the actual string bytes.
+ // This conversion is handled later by the backend and
+ // is only for use by internal compiler optimizations
+ // that know that the slice won't be mutated.
+ // The only such case today is:
+ // for i, c := range []byte(string)
+ n.X = walkExpr(n.X, init)
+ return n
+}
+
+// walkStringToRunes walks an OSTR2RUNES node.
+func walkStringToRunes(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
+ a := typecheck.NodNil()
+ if n.Esc() == ir.EscNone {
+ // Create temporary buffer for slice on stack.
+ a = stackBufAddr(tmpstringbufsize, types.Types[types.TINT32])
+ }
+ // stringtoslicerune(*[32]rune, string) []rune
+ return mkcall("stringtoslicerune", n.Type(), init, a, typecheck.Conv(n.X, types.Types[types.TSTRING]))
+}
+
+// dataWordFuncName returns the name of the function used to convert a value of type "from"
+// to the data word of an interface.
+// argType is the type the argument needs to be coerced to.
+// needsaddr reports whether the value should be passed (needaddr==false) or its address (needsaddr==true).
+func dataWordFuncName(from *types.Type) (fnname string, argType *types.Type, needsaddr bool) {
+ if from.IsInterface() {
+ base.Fatalf("can only handle non-interfaces")
+ }
+ switch {
+ case from.Size() == 2 && uint8(from.Alignment()) == 2:
+ return "convT16", types.Types[types.TUINT16], false
+ case from.Size() == 4 && uint8(from.Alignment()) == 4 && !from.HasPointers():
+ return "convT32", types.Types[types.TUINT32], false
+ case from.Size() == 8 && uint8(from.Alignment()) == uint8(types.Types[types.TUINT64].Alignment()) && !from.HasPointers():
+ return "convT64", types.Types[types.TUINT64], false
+ }
+ if sc := from.SoleComponent(); sc != nil {
+ switch {
+ case sc.IsString():
+ return "convTstring", types.Types[types.TSTRING], false
+ case sc.IsSlice():
+ return "convTslice", types.NewSlice(types.Types[types.TUINT8]), false // the element type doesn't matter
+ }
+ }
+
+ if from.HasPointers() {
+ return "convT", types.Types[types.TUNSAFEPTR], true
+ }
+ return "convTnoptr", types.Types[types.TUNSAFEPTR], true
+}
+
+// rtconvfn returns the parameter and result types that will be used by a
+// runtime function to convert from type src to type dst. The runtime function
+// name can be derived from the names of the returned types.
+//
+// If no such function is necessary, it returns (Txxx, Txxx).
+func rtconvfn(src, dst *types.Type) (param, result types.Kind) {
+ if ssagen.Arch.SoftFloat {
+ return types.Txxx, types.Txxx
+ }
+
+ switch ssagen.Arch.LinkArch.Family {
+ case sys.ARM, sys.MIPS:
+ if src.IsFloat() {
+ switch dst.Kind() {
+ case types.TINT64, types.TUINT64:
+ return types.TFLOAT64, dst.Kind()
+ }
+ }
+ if dst.IsFloat() {
+ switch src.Kind() {
+ case types.TINT64, types.TUINT64:
+ return src.Kind(), dst.Kind()
+ }
+ }
+
+ case sys.I386:
+ if src.IsFloat() {
+ switch dst.Kind() {
+ case types.TINT64, types.TUINT64:
+ return types.TFLOAT64, dst.Kind()
+ case types.TUINT32, types.TUINT, types.TUINTPTR:
+ return types.TFLOAT64, types.TUINT32
+ }
+ }
+ if dst.IsFloat() {
+ switch src.Kind() {
+ case types.TINT64, types.TUINT64:
+ return src.Kind(), dst.Kind()
+ case types.TUINT32, types.TUINT, types.TUINTPTR:
+ return types.TUINT32, types.TFLOAT64
+ }
+ }
+ }
+ return types.Txxx, types.Txxx
+}
+
+func soleComponent(init *ir.Nodes, n ir.Node) ir.Node {
+ if n.Type().SoleComponent() == nil {
+ return n
+ }
+ // Keep in sync with cmd/compile/internal/types/type.go:Type.SoleComponent.
+ for {
+ switch {
+ case n.Type().IsStruct():
+ if n.Type().Field(0).Sym.IsBlank() {
+ // Treat blank fields as the zero value as the Go language requires.
+ n = typecheck.Temp(n.Type().Field(0).Type)
+ appendWalkStmt(init, ir.NewAssignStmt(base.Pos, n, nil))
+ continue
+ }
+ n = typecheck.Expr(ir.NewSelectorExpr(n.Pos(), ir.OXDOT, n, n.Type().Field(0).Sym))
+ case n.Type().IsArray():
+ n = typecheck.Expr(ir.NewIndexExpr(n.Pos(), n, ir.NewInt(0)))
+ default:
+ return n
+ }
+ }
+}
+
+// byteindex converts n, which is byte-sized, to an int used to index into an array.
+// We cannot use conv, because we allow converting bool to int here,
+// which is forbidden in user code.
+func byteindex(n ir.Node) ir.Node {
+ // We cannot convert from bool to int directly.
+ // While converting from int8 to int is possible, it would yield
+ // the wrong result for negative values.
+ // Reinterpreting the value as an unsigned byte solves both cases.
+ if !types.Identical(n.Type(), types.Types[types.TUINT8]) {
+ n = ir.NewConvExpr(base.Pos, ir.OCONV, nil, n)
+ n.SetType(types.Types[types.TUINT8])
+ n.SetTypecheck(1)
+ }
+ n = ir.NewConvExpr(base.Pos, ir.OCONV, nil, n)
+ n.SetType(types.Types[types.TINT])
+ n.SetTypecheck(1)
+ return n
+}
+
+func walkCheckPtrArithmetic(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
+ // Calling cheapExpr(n, init) below leads to a recursive call to
+ // walkExpr, which leads us back here again. Use n.Checkptr to
+ // prevent infinite loops.
+ if n.CheckPtr() {
+ return n
+ }
+ n.SetCheckPtr(true)
+ defer n.SetCheckPtr(false)
+
+ // TODO(mdempsky): Make stricter. We only need to exempt
+ // reflect.Value.Pointer and reflect.Value.UnsafeAddr.
+ switch n.X.Op() {
+ case ir.OCALLMETH:
+ base.FatalfAt(n.X.Pos(), "OCALLMETH missed by typecheck")
+ case ir.OCALLFUNC, ir.OCALLINTER:
+ return n
+ }
+
+ if n.X.Op() == ir.ODOTPTR && ir.IsReflectHeaderDataField(n.X) {
+ return n
+ }
+
+ // Find original unsafe.Pointer operands involved in this
+ // arithmetic expression.
+ //
+ // "It is valid both to add and to subtract offsets from a
+ // pointer in this way. It is also valid to use &^ to round
+ // pointers, usually for alignment."
+ var originals []ir.Node
+ var walk func(n ir.Node)
+ walk = func(n ir.Node) {
+ switch n.Op() {
+ case ir.OADD:
+ n := n.(*ir.BinaryExpr)
+ walk(n.X)
+ walk(n.Y)
+ case ir.OSUB, ir.OANDNOT:
+ n := n.(*ir.BinaryExpr)
+ walk(n.X)
+ case ir.OCONVNOP:
+ n := n.(*ir.ConvExpr)
+ if n.X.Type().IsUnsafePtr() {
+ n.X = cheapExpr(n.X, init)
+ originals = append(originals, typecheck.ConvNop(n.X, types.Types[types.TUNSAFEPTR]))
+ }
+ }
+ }
+ walk(n.X)
+
+ cheap := cheapExpr(n, init)
+
+ slice := typecheck.MakeDotArgs(base.Pos, types.NewSlice(types.Types[types.TUNSAFEPTR]), originals)
+ slice.SetEsc(ir.EscNone)
+
+ init.Append(mkcall("checkptrArithmetic", nil, init, typecheck.ConvNop(cheap, types.Types[types.TUNSAFEPTR]), slice))
+ // TODO(khr): Mark backing store of slice as dead. This will allow us to reuse
+ // the backing store for multiple calls to checkptrArithmetic.
+
+ return cheap
+}
+
+// walkSliceToArray walks an OSLICE2ARR expression.
+func walkSliceToArray(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
+ // Replace T(x) with *(*T)(x).
+ conv := typecheck.Expr(ir.NewConvExpr(base.Pos, ir.OCONV, types.NewPtr(n.Type()), n.X)).(*ir.ConvExpr)
+ deref := typecheck.Expr(ir.NewStarExpr(base.Pos, conv)).(*ir.StarExpr)
+
+ // The OSLICE2ARRPTR conversion handles checking the slice length,
+ // so the dereference can't fail.
+ //
+ // However, this is more than just an optimization: if T is a
+ // zero-length array, then x (and thus (*T)(x)) can be nil, but T(x)
+ // should *not* panic. So suppressing the nil check here is
+ // necessary for correctness in that case.
+ deref.SetBounded(true)
+
+ return walkExpr(deref, init)
+}