summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/walk/convert.go
blob: ca0c806a1e1a5264530dd8cb7d1788e8f36ba57f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package walk

import (
	"encoding/binary"
	"go/constant"

	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/reflectdata"
	"cmd/compile/internal/ssagen"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/internal/sys"
)

// walkConv walks an OCONV or OCONVNOP (but not OCONVIFACE) node.
func walkConv(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
	n.X = walkExpr(n.X, init)
	if n.Op() == ir.OCONVNOP && n.Type() == n.X.Type() {
		return n.X
	}
	if n.Op() == ir.OCONVNOP && ir.ShouldCheckPtr(ir.CurFunc, 1) {
		if n.Type().IsUnsafePtr() && n.X.Type().IsUintptr() { // uintptr to unsafe.Pointer
			return walkCheckPtrArithmetic(n, init)
		}
	}
	param, result := rtconvfn(n.X.Type(), n.Type())
	if param == types.Txxx {
		return n
	}
	fn := types.BasicTypeNames[param] + "to" + types.BasicTypeNames[result]
	return typecheck.Conv(mkcall(fn, types.Types[result], init, typecheck.Conv(n.X, types.Types[param])), n.Type())
}

// walkConvInterface walks an OCONVIFACE node.
func walkConvInterface(n *ir.ConvExpr, init *ir.Nodes) ir.Node {

	n.X = walkExpr(n.X, init)

	fromType := n.X.Type()
	toType := n.Type()
	if !fromType.IsInterface() && !ir.IsBlank(ir.CurFunc.Nname) {
		// skip unnamed functions (func _())
		if base.Debug.Unified != 0 && fromType.HasShape() {
			// Unified IR uses OCONVIFACE for converting all derived types
			// to interface type. Avoid assertion failure in
			// MarkTypeUsedInInterface, because we've marked used types
			// separately anyway.
		} else {
			reflectdata.MarkTypeUsedInInterface(fromType, ir.CurFunc.LSym)
		}
	}

	if !fromType.IsInterface() {
		typeWord := reflectdata.ConvIfaceTypeWord(base.Pos, n)
		l := ir.NewBinaryExpr(base.Pos, ir.OEFACE, typeWord, dataWord(n, init))
		l.SetType(toType)
		l.SetTypecheck(n.Typecheck())
		return l
	}
	if fromType.IsEmptyInterface() {
		base.Fatalf("OCONVIFACE can't operate on an empty interface")
	}

	// Evaluate the input interface.
	c := typecheck.Temp(fromType)
	init.Append(ir.NewAssignStmt(base.Pos, c, n.X))

	// Grab its parts.
	itab := ir.NewUnaryExpr(base.Pos, ir.OITAB, c)
	itab.SetType(types.Types[types.TUINTPTR].PtrTo())
	itab.SetTypecheck(1)
	data := ir.NewUnaryExpr(n.Pos(), ir.OIDATA, c)
	data.SetType(types.Types[types.TUINT8].PtrTo()) // Type is generic pointer - we're just passing it through.
	data.SetTypecheck(1)

	var typeWord ir.Node
	if toType.IsEmptyInterface() {
		// Implement interface to empty interface conversion:
		//
		// var res *uint8
		// res = (*uint8)(unsafe.Pointer(itab))
		// if res != nil {
		//    res = res.type
		// }
		typeWord = typecheck.Temp(types.NewPtr(types.Types[types.TUINT8]))
		init.Append(ir.NewAssignStmt(base.Pos, typeWord, typecheck.Conv(typecheck.Conv(itab, types.Types[types.TUNSAFEPTR]), typeWord.Type())))
		nif := ir.NewIfStmt(base.Pos, typecheck.Expr(ir.NewBinaryExpr(base.Pos, ir.ONE, typeWord, typecheck.NodNil())), nil, nil)
		nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, typeWord, itabType(typeWord))}
		init.Append(nif)
	} else {
		// Must be converting I2I (more specific to less specific interface).
		// res = convI2I(toType, itab)
		fn := typecheck.LookupRuntime("convI2I")
		types.CalcSize(fn.Type())
		call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil)
		call.Args = []ir.Node{reflectdata.ConvIfaceTypeWord(base.Pos, n), itab}
		typeWord = walkExpr(typecheck.Expr(call), init)
	}

	// Build the result.
	// e = iface{typeWord, data}
	e := ir.NewBinaryExpr(base.Pos, ir.OEFACE, typeWord, data)
	e.SetType(toType) // assign type manually, typecheck doesn't understand OEFACE.
	e.SetTypecheck(1)
	return e
}

// Returns the data word (the second word) used to represent conv.X in
// an interface.
func dataWord(conv *ir.ConvExpr, init *ir.Nodes) ir.Node {
	pos, n := conv.Pos(), conv.X
	fromType := n.Type()

	// If it's a pointer, it is its own representation.
	if types.IsDirectIface(fromType) {
		return n
	}

	isInteger := fromType.IsInteger()
	isBool := fromType.IsBoolean()
	if sc := fromType.SoleComponent(); sc != nil {
		isInteger = sc.IsInteger()
		isBool = sc.IsBoolean()
	}
	// Try a bunch of cases to avoid an allocation.
	var value ir.Node
	switch {
	case fromType.Size() == 0:
		// n is zero-sized. Use zerobase.
		cheapExpr(n, init) // Evaluate n for side-effects. See issue 19246.
		value = ir.NewLinksymExpr(base.Pos, ir.Syms.Zerobase, types.Types[types.TUINTPTR])
	case isBool || fromType.Size() == 1 && isInteger:
		// n is a bool/byte. Use staticuint64s[n * 8] on little-endian
		// and staticuint64s[n * 8 + 7] on big-endian.
		n = cheapExpr(n, init)
		n = soleComponent(init, n)
		// byteindex widens n so that the multiplication doesn't overflow.
		index := ir.NewBinaryExpr(base.Pos, ir.OLSH, byteindex(n), ir.NewInt(3))
		if ssagen.Arch.LinkArch.ByteOrder == binary.BigEndian {
			index = ir.NewBinaryExpr(base.Pos, ir.OADD, index, ir.NewInt(7))
		}
		// The actual type is [256]uint64, but we use [256*8]uint8 so we can address
		// individual bytes.
		staticuint64s := ir.NewLinksymExpr(base.Pos, ir.Syms.Staticuint64s, types.NewArray(types.Types[types.TUINT8], 256*8))
		xe := ir.NewIndexExpr(base.Pos, staticuint64s, index)
		xe.SetBounded(true)
		value = xe
	case n.Op() == ir.ONAME && n.(*ir.Name).Class == ir.PEXTERN && n.(*ir.Name).Readonly():
		// n is a readonly global; use it directly.
		value = n
	case conv.Esc() == ir.EscNone && fromType.Size() <= 1024:
		// n does not escape. Use a stack temporary initialized to n.
		value = typecheck.Temp(fromType)
		init.Append(typecheck.Stmt(ir.NewAssignStmt(base.Pos, value, n)))
	}
	if value != nil {
		// The interface data word is &value.
		return typecheck.Expr(typecheck.NodAddr(value))
	}

	// Time to do an allocation. We'll call into the runtime for that.
	fnname, argType, needsaddr := dataWordFuncName(fromType)
	fn := typecheck.LookupRuntime(fnname)

	var args []ir.Node
	if needsaddr {
		// Types of large or unknown size are passed by reference.
		// Orderexpr arranged for n to be a temporary for all
		// the conversions it could see. Comparison of an interface
		// with a non-interface, especially in a switch on interface value
		// with non-interface cases, is not visible to order.stmt, so we
		// have to fall back on allocating a temp here.
		if !ir.IsAddressable(n) {
			n = copyExpr(n, fromType, init)
		}
		fn = typecheck.SubstArgTypes(fn, fromType)
		args = []ir.Node{reflectdata.ConvIfaceSrcRType(base.Pos, conv), typecheck.NodAddr(n)}
	} else {
		// Use a specialized conversion routine that takes the type being
		// converted by value, not by pointer.
		var arg ir.Node
		switch {
		case fromType == argType:
			// already in the right type, nothing to do
			arg = n
		case fromType.Kind() == argType.Kind(),
			fromType.IsPtrShaped() && argType.IsPtrShaped():
			// can directly convert (e.g. named type to underlying type, or one pointer to another)
			// TODO: never happens because pointers are directIface?
			arg = ir.NewConvExpr(pos, ir.OCONVNOP, argType, n)
		case fromType.IsInteger() && argType.IsInteger():
			// can directly convert (e.g. int32 to uint32)
			arg = ir.NewConvExpr(pos, ir.OCONV, argType, n)
		default:
			// unsafe cast through memory
			arg = copyExpr(n, fromType, init)
			var addr ir.Node = typecheck.NodAddr(arg)
			addr = ir.NewConvExpr(pos, ir.OCONVNOP, argType.PtrTo(), addr)
			arg = ir.NewStarExpr(pos, addr)
			arg.SetType(argType)
		}
		args = []ir.Node{arg}
	}
	call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil)
	call.Args = args
	return safeExpr(walkExpr(typecheck.Expr(call), init), init)
}

// walkConvIData walks an OCONVIDATA node.
func walkConvIData(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
	n.X = walkExpr(n.X, init)
	return dataWord(n, init)
}

// walkBytesRunesToString walks an OBYTES2STR or ORUNES2STR node.
func walkBytesRunesToString(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
	a := typecheck.NodNil()
	if n.Esc() == ir.EscNone {
		// Create temporary buffer for string on stack.
		a = stackBufAddr(tmpstringbufsize, types.Types[types.TUINT8])
	}
	if n.Op() == ir.ORUNES2STR {
		// slicerunetostring(*[32]byte, []rune) string
		return mkcall("slicerunetostring", n.Type(), init, a, n.X)
	}
	// slicebytetostring(*[32]byte, ptr *byte, n int) string
	n.X = cheapExpr(n.X, init)
	ptr, len := backingArrayPtrLen(n.X)
	return mkcall("slicebytetostring", n.Type(), init, a, ptr, len)
}

// walkBytesToStringTemp walks an OBYTES2STRTMP node.
func walkBytesToStringTemp(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
	n.X = walkExpr(n.X, init)
	if !base.Flag.Cfg.Instrumenting {
		// Let the backend handle OBYTES2STRTMP directly
		// to avoid a function call to slicebytetostringtmp.
		return n
	}
	// slicebytetostringtmp(ptr *byte, n int) string
	n.X = cheapExpr(n.X, init)
	ptr, len := backingArrayPtrLen(n.X)
	return mkcall("slicebytetostringtmp", n.Type(), init, ptr, len)
}

// walkRuneToString walks an ORUNESTR node.
func walkRuneToString(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
	a := typecheck.NodNil()
	if n.Esc() == ir.EscNone {
		a = stackBufAddr(4, types.Types[types.TUINT8])
	}
	// intstring(*[4]byte, rune)
	return mkcall("intstring", n.Type(), init, a, typecheck.Conv(n.X, types.Types[types.TINT64]))
}

// walkStringToBytes walks an OSTR2BYTES node.
func walkStringToBytes(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
	s := n.X
	if ir.IsConst(s, constant.String) {
		sc := ir.StringVal(s)

		// Allocate a [n]byte of the right size.
		t := types.NewArray(types.Types[types.TUINT8], int64(len(sc)))
		var a ir.Node
		if n.Esc() == ir.EscNone && len(sc) <= int(ir.MaxImplicitStackVarSize) {
			a = stackBufAddr(t.NumElem(), t.Elem())
		} else {
			types.CalcSize(t)
			a = ir.NewUnaryExpr(base.Pos, ir.ONEW, nil)
			a.SetType(types.NewPtr(t))
			a.SetTypecheck(1)
			a.MarkNonNil()
		}
		p := typecheck.Temp(t.PtrTo()) // *[n]byte
		init.Append(typecheck.Stmt(ir.NewAssignStmt(base.Pos, p, a)))

		// Copy from the static string data to the [n]byte.
		if len(sc) > 0 {
			sptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, s)
			sptr.SetBounded(true)
			as := ir.NewAssignStmt(base.Pos, ir.NewStarExpr(base.Pos, p), ir.NewStarExpr(base.Pos, typecheck.ConvNop(sptr, t.PtrTo())))
			appendWalkStmt(init, as)
		}

		// Slice the [n]byte to a []byte.
		slice := ir.NewSliceExpr(n.Pos(), ir.OSLICEARR, p, nil, nil, nil)
		slice.SetType(n.Type())
		slice.SetTypecheck(1)
		return walkExpr(slice, init)
	}

	a := typecheck.NodNil()
	if n.Esc() == ir.EscNone {
		// Create temporary buffer for slice on stack.
		a = stackBufAddr(tmpstringbufsize, types.Types[types.TUINT8])
	}
	// stringtoslicebyte(*32[byte], string) []byte
	return mkcall("stringtoslicebyte", n.Type(), init, a, typecheck.Conv(s, types.Types[types.TSTRING]))
}

// walkStringToBytesTemp walks an OSTR2BYTESTMP node.
func walkStringToBytesTemp(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
	// []byte(string) conversion that creates a slice
	// referring to the actual string bytes.
	// This conversion is handled later by the backend and
	// is only for use by internal compiler optimizations
	// that know that the slice won't be mutated.
	// The only such case today is:
	// for i, c := range []byte(string)
	n.X = walkExpr(n.X, init)
	return n
}

// walkStringToRunes walks an OSTR2RUNES node.
func walkStringToRunes(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
	a := typecheck.NodNil()
	if n.Esc() == ir.EscNone {
		// Create temporary buffer for slice on stack.
		a = stackBufAddr(tmpstringbufsize, types.Types[types.TINT32])
	}
	// stringtoslicerune(*[32]rune, string) []rune
	return mkcall("stringtoslicerune", n.Type(), init, a, typecheck.Conv(n.X, types.Types[types.TSTRING]))
}

// dataWordFuncName returns the name of the function used to convert a value of type "from"
// to the data word of an interface.
// argType is the type the argument needs to be coerced to.
// needsaddr reports whether the value should be passed (needaddr==false) or its address (needsaddr==true).
func dataWordFuncName(from *types.Type) (fnname string, argType *types.Type, needsaddr bool) {
	if from.IsInterface() {
		base.Fatalf("can only handle non-interfaces")
	}
	switch {
	case from.Size() == 2 && uint8(from.Alignment()) == 2:
		return "convT16", types.Types[types.TUINT16], false
	case from.Size() == 4 && uint8(from.Alignment()) == 4 && !from.HasPointers():
		return "convT32", types.Types[types.TUINT32], false
	case from.Size() == 8 && uint8(from.Alignment()) == uint8(types.Types[types.TUINT64].Alignment()) && !from.HasPointers():
		return "convT64", types.Types[types.TUINT64], false
	}
	if sc := from.SoleComponent(); sc != nil {
		switch {
		case sc.IsString():
			return "convTstring", types.Types[types.TSTRING], false
		case sc.IsSlice():
			return "convTslice", types.NewSlice(types.Types[types.TUINT8]), false // the element type doesn't matter
		}
	}

	if from.HasPointers() {
		return "convT", types.Types[types.TUNSAFEPTR], true
	}
	return "convTnoptr", types.Types[types.TUNSAFEPTR], true
}

// rtconvfn returns the parameter and result types that will be used by a
// runtime function to convert from type src to type dst. The runtime function
// name can be derived from the names of the returned types.
//
// If no such function is necessary, it returns (Txxx, Txxx).
func rtconvfn(src, dst *types.Type) (param, result types.Kind) {
	if ssagen.Arch.SoftFloat {
		return types.Txxx, types.Txxx
	}

	switch ssagen.Arch.LinkArch.Family {
	case sys.ARM, sys.MIPS:
		if src.IsFloat() {
			switch dst.Kind() {
			case types.TINT64, types.TUINT64:
				return types.TFLOAT64, dst.Kind()
			}
		}
		if dst.IsFloat() {
			switch src.Kind() {
			case types.TINT64, types.TUINT64:
				return src.Kind(), dst.Kind()
			}
		}

	case sys.I386:
		if src.IsFloat() {
			switch dst.Kind() {
			case types.TINT64, types.TUINT64:
				return types.TFLOAT64, dst.Kind()
			case types.TUINT32, types.TUINT, types.TUINTPTR:
				return types.TFLOAT64, types.TUINT32
			}
		}
		if dst.IsFloat() {
			switch src.Kind() {
			case types.TINT64, types.TUINT64:
				return src.Kind(), dst.Kind()
			case types.TUINT32, types.TUINT, types.TUINTPTR:
				return types.TUINT32, types.TFLOAT64
			}
		}
	}
	return types.Txxx, types.Txxx
}

func soleComponent(init *ir.Nodes, n ir.Node) ir.Node {
	if n.Type().SoleComponent() == nil {
		return n
	}
	// Keep in sync with cmd/compile/internal/types/type.go:Type.SoleComponent.
	for {
		switch {
		case n.Type().IsStruct():
			if n.Type().Field(0).Sym.IsBlank() {
				// Treat blank fields as the zero value as the Go language requires.
				n = typecheck.Temp(n.Type().Field(0).Type)
				appendWalkStmt(init, ir.NewAssignStmt(base.Pos, n, nil))
				continue
			}
			n = typecheck.Expr(ir.NewSelectorExpr(n.Pos(), ir.OXDOT, n, n.Type().Field(0).Sym))
		case n.Type().IsArray():
			n = typecheck.Expr(ir.NewIndexExpr(n.Pos(), n, ir.NewInt(0)))
		default:
			return n
		}
	}
}

// byteindex converts n, which is byte-sized, to an int used to index into an array.
// We cannot use conv, because we allow converting bool to int here,
// which is forbidden in user code.
func byteindex(n ir.Node) ir.Node {
	// We cannot convert from bool to int directly.
	// While converting from int8 to int is possible, it would yield
	// the wrong result for negative values.
	// Reinterpreting the value as an unsigned byte solves both cases.
	if !types.Identical(n.Type(), types.Types[types.TUINT8]) {
		n = ir.NewConvExpr(base.Pos, ir.OCONV, nil, n)
		n.SetType(types.Types[types.TUINT8])
		n.SetTypecheck(1)
	}
	n = ir.NewConvExpr(base.Pos, ir.OCONV, nil, n)
	n.SetType(types.Types[types.TINT])
	n.SetTypecheck(1)
	return n
}

func walkCheckPtrArithmetic(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
	// Calling cheapExpr(n, init) below leads to a recursive call to
	// walkExpr, which leads us back here again. Use n.Checkptr to
	// prevent infinite loops.
	if n.CheckPtr() {
		return n
	}
	n.SetCheckPtr(true)
	defer n.SetCheckPtr(false)

	// TODO(mdempsky): Make stricter. We only need to exempt
	// reflect.Value.Pointer and reflect.Value.UnsafeAddr.
	switch n.X.Op() {
	case ir.OCALLMETH:
		base.FatalfAt(n.X.Pos(), "OCALLMETH missed by typecheck")
	case ir.OCALLFUNC, ir.OCALLINTER:
		return n
	}

	if n.X.Op() == ir.ODOTPTR && ir.IsReflectHeaderDataField(n.X) {
		return n
	}

	// Find original unsafe.Pointer operands involved in this
	// arithmetic expression.
	//
	// "It is valid both to add and to subtract offsets from a
	// pointer in this way. It is also valid to use &^ to round
	// pointers, usually for alignment."
	var originals []ir.Node
	var walk func(n ir.Node)
	walk = func(n ir.Node) {
		switch n.Op() {
		case ir.OADD:
			n := n.(*ir.BinaryExpr)
			walk(n.X)
			walk(n.Y)
		case ir.OSUB, ir.OANDNOT:
			n := n.(*ir.BinaryExpr)
			walk(n.X)
		case ir.OCONVNOP:
			n := n.(*ir.ConvExpr)
			if n.X.Type().IsUnsafePtr() {
				n.X = cheapExpr(n.X, init)
				originals = append(originals, typecheck.ConvNop(n.X, types.Types[types.TUNSAFEPTR]))
			}
		}
	}
	walk(n.X)

	cheap := cheapExpr(n, init)

	slice := typecheck.MakeDotArgs(base.Pos, types.NewSlice(types.Types[types.TUNSAFEPTR]), originals)
	slice.SetEsc(ir.EscNone)

	init.Append(mkcall("checkptrArithmetic", nil, init, typecheck.ConvNop(cheap, types.Types[types.TUNSAFEPTR]), slice))
	// TODO(khr): Mark backing store of slice as dead. This will allow us to reuse
	// the backing store for multiple calls to checkptrArithmetic.

	return cheap
}

// walkSliceToArray walks an OSLICE2ARR expression.
func walkSliceToArray(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
	// Replace T(x) with *(*T)(x).
	conv := typecheck.Expr(ir.NewConvExpr(base.Pos, ir.OCONV, types.NewPtr(n.Type()), n.X)).(*ir.ConvExpr)
	deref := typecheck.Expr(ir.NewStarExpr(base.Pos, conv)).(*ir.StarExpr)

	// The OSLICE2ARRPTR conversion handles checking the slice length,
	// so the dereference can't fail.
	//
	// However, this is more than just an optimization: if T is a
	// zero-length array, then x (and thus (*T)(x)) can be nil, but T(x)
	// should *not* panic. So suppressing the nil check here is
	// necessary for correctness in that case.
	deref.SetBounded(true)

	return walkExpr(deref, init)
}