diff options
Diffstat (limited to 'src/go/constant/value.go')
-rw-r--r-- | src/go/constant/value.go | 1410 |
1 files changed, 1410 insertions, 0 deletions
diff --git a/src/go/constant/value.go b/src/go/constant/value.go new file mode 100644 index 0000000..ae300c7 --- /dev/null +++ b/src/go/constant/value.go @@ -0,0 +1,1410 @@ +// Copyright 2013 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package constant implements Values representing untyped +// Go constants and their corresponding operations. +// +// A special Unknown value may be used when a value +// is unknown due to an error. Operations on unknown +// values produce unknown values unless specified +// otherwise. +package constant + +import ( + "fmt" + "go/token" + "math" + "math/big" + "math/bits" + "strconv" + "strings" + "sync" + "unicode/utf8" +) + +//go:generate stringer -type Kind + +// Kind specifies the kind of value represented by a Value. +type Kind int + +const ( + // unknown values + Unknown Kind = iota + + // non-numeric values + Bool + String + + // numeric values + Int + Float + Complex +) + +// A Value represents the value of a Go constant. +type Value interface { + // Kind returns the value kind. + Kind() Kind + + // String returns a short, quoted (human-readable) form of the value. + // For numeric values, the result may be an approximation; + // for String values the result may be a shortened string. + // Use ExactString for a string representing a value exactly. + String() string + + // ExactString returns an exact, quoted (human-readable) form of the value. + // If the Value is of Kind String, use StringVal to obtain the unquoted string. + ExactString() string + + // Prevent external implementations. + implementsValue() +} + +// ---------------------------------------------------------------------------- +// Implementations + +// Maximum supported mantissa precision. +// The spec requires at least 256 bits; typical implementations use 512 bits. +const prec = 512 + +// TODO(gri) Consider storing "error" information in an unknownVal so clients +// can provide better error messages. For instance, if a number is +// too large (incl. infinity), that could be recorded in unknownVal. +// See also #20583 and #42695 for use cases. + +// Representation of values: +// +// Values of Int and Float Kind have two different representations each: int64Val +// and intVal, and ratVal and floatVal. When possible, the "smaller", respectively +// more precise (for Floats) representation is chosen. However, once a Float value +// is represented as a floatVal, any subsequent results remain floatVals (unless +// explicitly converted); i.e., no attempt is made to convert a floatVal back into +// a ratVal. The reasoning is that all representations but floatVal are mathematically +// exact, but once that precision is lost (by moving to floatVal), moving back to +// a different representation implies a precision that's not actually there. + +type ( + unknownVal struct{} + boolVal bool + stringVal struct { + // Lazy value: either a string (l,r==nil) or an addition (l,r!=nil). + mu sync.Mutex + s string + l, r *stringVal + } + int64Val int64 // Int values representable as an int64 + intVal struct{ val *big.Int } // Int values not representable as an int64 + ratVal struct{ val *big.Rat } // Float values representable as a fraction + floatVal struct{ val *big.Float } // Float values not representable as a fraction + complexVal struct{ re, im Value } +) + +func (unknownVal) Kind() Kind { return Unknown } +func (boolVal) Kind() Kind { return Bool } +func (*stringVal) Kind() Kind { return String } +func (int64Val) Kind() Kind { return Int } +func (intVal) Kind() Kind { return Int } +func (ratVal) Kind() Kind { return Float } +func (floatVal) Kind() Kind { return Float } +func (complexVal) Kind() Kind { return Complex } + +func (unknownVal) String() string { return "unknown" } +func (x boolVal) String() string { return strconv.FormatBool(bool(x)) } + +// String returns a possibly shortened quoted form of the String value. +func (x *stringVal) String() string { + const maxLen = 72 // a reasonable length + s := strconv.Quote(x.string()) + if utf8.RuneCountInString(s) > maxLen { + // The string without the enclosing quotes is greater than maxLen-2 runes + // long. Remove the last 3 runes (including the closing '"') by keeping + // only the first maxLen-3 runes; then add "...". + i := 0 + for n := 0; n < maxLen-3; n++ { + _, size := utf8.DecodeRuneInString(s[i:]) + i += size + } + s = s[:i] + "..." + } + return s +} + +// string constructs and returns the actual string literal value. +// If x represents an addition, then it rewrites x to be a single +// string, to speed future calls. This lazy construction avoids +// building different string values for all subpieces of a large +// concatenation. See golang.org/issue/23348. +func (x *stringVal) string() string { + x.mu.Lock() + if x.l != nil { + x.s = strings.Join(reverse(x.appendReverse(nil)), "") + x.l = nil + x.r = nil + } + s := x.s + x.mu.Unlock() + + return s +} + +// reverse reverses x in place and returns it. +func reverse(x []string) []string { + n := len(x) + for i := 0; i+i < n; i++ { + x[i], x[n-1-i] = x[n-1-i], x[i] + } + return x +} + +// appendReverse appends to list all of x's subpieces, but in reverse, +// and returns the result. Appending the reversal allows processing +// the right side in a recursive call and the left side in a loop. +// Because a chain like a + b + c + d + e is actually represented +// as ((((a + b) + c) + d) + e), the left-side loop avoids deep recursion. +// x must be locked. +func (x *stringVal) appendReverse(list []string) []string { + y := x + for y.r != nil { + y.r.mu.Lock() + list = y.r.appendReverse(list) + y.r.mu.Unlock() + + l := y.l + if y != x { + y.mu.Unlock() + } + l.mu.Lock() + y = l + } + s := y.s + if y != x { + y.mu.Unlock() + } + return append(list, s) +} + +func (x int64Val) String() string { return strconv.FormatInt(int64(x), 10) } +func (x intVal) String() string { return x.val.String() } +func (x ratVal) String() string { return rtof(x).String() } + +// String returns a decimal approximation of the Float value. +func (x floatVal) String() string { + f := x.val + + // Don't try to convert infinities (will not terminate). + if f.IsInf() { + return f.String() + } + + // Use exact fmt formatting if in float64 range (common case): + // proceed if f doesn't underflow to 0 or overflow to inf. + if x, _ := f.Float64(); f.Sign() == 0 == (x == 0) && !math.IsInf(x, 0) { + s := fmt.Sprintf("%.6g", x) + if !f.IsInt() && strings.IndexByte(s, '.') < 0 { + // f is not an integer, but its string representation + // doesn't reflect that. Use more digits. See issue 56220. + s = fmt.Sprintf("%g", x) + } + return s + } + + // Out of float64 range. Do approximate manual to decimal + // conversion to avoid precise but possibly slow Float + // formatting. + // f = mant * 2**exp + var mant big.Float + exp := f.MantExp(&mant) // 0.5 <= |mant| < 1.0 + + // approximate float64 mantissa m and decimal exponent d + // f ~ m * 10**d + m, _ := mant.Float64() // 0.5 <= |m| < 1.0 + d := float64(exp) * (math.Ln2 / math.Ln10) // log_10(2) + + // adjust m for truncated (integer) decimal exponent e + e := int64(d) + m *= math.Pow(10, d-float64(e)) + + // ensure 1 <= |m| < 10 + switch am := math.Abs(m); { + case am < 1-0.5e-6: + // The %.6g format below rounds m to 5 digits after the + // decimal point. Make sure that m*10 < 10 even after + // rounding up: m*10 + 0.5e-5 < 10 => m < 1 - 0.5e6. + m *= 10 + e-- + case am >= 10: + m /= 10 + e++ + } + + return fmt.Sprintf("%.6ge%+d", m, e) +} + +func (x complexVal) String() string { return fmt.Sprintf("(%s + %si)", x.re, x.im) } + +func (x unknownVal) ExactString() string { return x.String() } +func (x boolVal) ExactString() string { return x.String() } +func (x *stringVal) ExactString() string { return strconv.Quote(x.string()) } +func (x int64Val) ExactString() string { return x.String() } +func (x intVal) ExactString() string { return x.String() } + +func (x ratVal) ExactString() string { + r := x.val + if r.IsInt() { + return r.Num().String() + } + return r.String() +} + +func (x floatVal) ExactString() string { return x.val.Text('p', 0) } + +func (x complexVal) ExactString() string { + return fmt.Sprintf("(%s + %si)", x.re.ExactString(), x.im.ExactString()) +} + +func (unknownVal) implementsValue() {} +func (boolVal) implementsValue() {} +func (*stringVal) implementsValue() {} +func (int64Val) implementsValue() {} +func (ratVal) implementsValue() {} +func (intVal) implementsValue() {} +func (floatVal) implementsValue() {} +func (complexVal) implementsValue() {} + +func newInt() *big.Int { return new(big.Int) } +func newRat() *big.Rat { return new(big.Rat) } +func newFloat() *big.Float { return new(big.Float).SetPrec(prec) } + +func i64toi(x int64Val) intVal { return intVal{newInt().SetInt64(int64(x))} } +func i64tor(x int64Val) ratVal { return ratVal{newRat().SetInt64(int64(x))} } +func i64tof(x int64Val) floatVal { return floatVal{newFloat().SetInt64(int64(x))} } +func itor(x intVal) ratVal { return ratVal{newRat().SetInt(x.val)} } +func itof(x intVal) floatVal { return floatVal{newFloat().SetInt(x.val)} } +func rtof(x ratVal) floatVal { return floatVal{newFloat().SetRat(x.val)} } +func vtoc(x Value) complexVal { return complexVal{x, int64Val(0)} } + +func makeInt(x *big.Int) Value { + if x.IsInt64() { + return int64Val(x.Int64()) + } + return intVal{x} +} + +func makeRat(x *big.Rat) Value { + a := x.Num() + b := x.Denom() + if smallInt(a) && smallInt(b) { + // ok to remain fraction + return ratVal{x} + } + // components too large => switch to float + return floatVal{newFloat().SetRat(x)} +} + +var floatVal0 = floatVal{newFloat()} + +func makeFloat(x *big.Float) Value { + // convert -0 + if x.Sign() == 0 { + return floatVal0 + } + if x.IsInf() { + return unknownVal{} + } + // No attempt is made to "go back" to ratVal, even if possible, + // to avoid providing the illusion of a mathematically exact + // representation. + return floatVal{x} +} + +func makeComplex(re, im Value) Value { + if re.Kind() == Unknown || im.Kind() == Unknown { + return unknownVal{} + } + return complexVal{re, im} +} + +func makeFloatFromLiteral(lit string) Value { + if f, ok := newFloat().SetString(lit); ok { + if smallFloat(f) { + // ok to use rationals + if f.Sign() == 0 { + // Issue 20228: If the float underflowed to zero, parse just "0". + // Otherwise, lit might contain a value with a large negative exponent, + // such as -6e-1886451601. As a float, that will underflow to 0, + // but it'll take forever to parse as a Rat. + lit = "0" + } + if r, ok := newRat().SetString(lit); ok { + return ratVal{r} + } + } + // otherwise use floats + return makeFloat(f) + } + return nil +} + +// Permit fractions with component sizes up to maxExp +// before switching to using floating-point numbers. +const maxExp = 4 << 10 + +// smallInt reports whether x would lead to "reasonably"-sized fraction +// if converted to a *big.Rat. +func smallInt(x *big.Int) bool { + return x.BitLen() < maxExp +} + +// smallFloat64 reports whether x would lead to "reasonably"-sized fraction +// if converted to a *big.Rat. +func smallFloat64(x float64) bool { + if math.IsInf(x, 0) { + return false + } + _, e := math.Frexp(x) + return -maxExp < e && e < maxExp +} + +// smallFloat reports whether x would lead to "reasonably"-sized fraction +// if converted to a *big.Rat. +func smallFloat(x *big.Float) bool { + if x.IsInf() { + return false + } + e := x.MantExp(nil) + return -maxExp < e && e < maxExp +} + +// ---------------------------------------------------------------------------- +// Factories + +// MakeUnknown returns the Unknown value. +func MakeUnknown() Value { return unknownVal{} } + +// MakeBool returns the Bool value for b. +func MakeBool(b bool) Value { return boolVal(b) } + +// MakeString returns the String value for s. +func MakeString(s string) Value { + if s == "" { + return &emptyString // common case + } + return &stringVal{s: s} +} + +var emptyString stringVal + +// MakeInt64 returns the Int value for x. +func MakeInt64(x int64) Value { return int64Val(x) } + +// MakeUint64 returns the Int value for x. +func MakeUint64(x uint64) Value { + if x < 1<<63 { + return int64Val(int64(x)) + } + return intVal{newInt().SetUint64(x)} +} + +// MakeFloat64 returns the Float value for x. +// If x is -0.0, the result is 0.0. +// If x is not finite, the result is an Unknown. +func MakeFloat64(x float64) Value { + if math.IsInf(x, 0) || math.IsNaN(x) { + return unknownVal{} + } + if smallFloat64(x) { + return ratVal{newRat().SetFloat64(x + 0)} // convert -0 to 0 + } + return floatVal{newFloat().SetFloat64(x + 0)} +} + +// MakeFromLiteral returns the corresponding integer, floating-point, +// imaginary, character, or string value for a Go literal string. The +// tok value must be one of token.INT, token.FLOAT, token.IMAG, +// token.CHAR, or token.STRING. The final argument must be zero. +// If the literal string syntax is invalid, the result is an Unknown. +func MakeFromLiteral(lit string, tok token.Token, zero uint) Value { + if zero != 0 { + panic("MakeFromLiteral called with non-zero last argument") + } + + switch tok { + case token.INT: + if x, err := strconv.ParseInt(lit, 0, 64); err == nil { + return int64Val(x) + } + if x, ok := newInt().SetString(lit, 0); ok { + return intVal{x} + } + + case token.FLOAT: + if x := makeFloatFromLiteral(lit); x != nil { + return x + } + + case token.IMAG: + if n := len(lit); n > 0 && lit[n-1] == 'i' { + if im := makeFloatFromLiteral(lit[:n-1]); im != nil { + return makeComplex(int64Val(0), im) + } + } + + case token.CHAR: + if n := len(lit); n >= 2 { + if code, _, _, err := strconv.UnquoteChar(lit[1:n-1], '\''); err == nil { + return MakeInt64(int64(code)) + } + } + + case token.STRING: + if s, err := strconv.Unquote(lit); err == nil { + return MakeString(s) + } + + default: + panic(fmt.Sprintf("%v is not a valid token", tok)) + } + + return unknownVal{} +} + +// ---------------------------------------------------------------------------- +// Accessors +// +// For unknown arguments the result is the zero value for the respective +// accessor type, except for Sign, where the result is 1. + +// BoolVal returns the Go boolean value of x, which must be a Bool or an Unknown. +// If x is Unknown, the result is false. +func BoolVal(x Value) bool { + switch x := x.(type) { + case boolVal: + return bool(x) + case unknownVal: + return false + default: + panic(fmt.Sprintf("%v not a Bool", x)) + } +} + +// StringVal returns the Go string value of x, which must be a String or an Unknown. +// If x is Unknown, the result is "". +func StringVal(x Value) string { + switch x := x.(type) { + case *stringVal: + return x.string() + case unknownVal: + return "" + default: + panic(fmt.Sprintf("%v not a String", x)) + } +} + +// Int64Val returns the Go int64 value of x and whether the result is exact; +// x must be an Int or an Unknown. If the result is not exact, its value is undefined. +// If x is Unknown, the result is (0, false). +func Int64Val(x Value) (int64, bool) { + switch x := x.(type) { + case int64Val: + return int64(x), true + case intVal: + return x.val.Int64(), false // not an int64Val and thus not exact + case unknownVal: + return 0, false + default: + panic(fmt.Sprintf("%v not an Int", x)) + } +} + +// Uint64Val returns the Go uint64 value of x and whether the result is exact; +// x must be an Int or an Unknown. If the result is not exact, its value is undefined. +// If x is Unknown, the result is (0, false). +func Uint64Val(x Value) (uint64, bool) { + switch x := x.(type) { + case int64Val: + return uint64(x), x >= 0 + case intVal: + return x.val.Uint64(), x.val.IsUint64() + case unknownVal: + return 0, false + default: + panic(fmt.Sprintf("%v not an Int", x)) + } +} + +// Float32Val is like Float64Val but for float32 instead of float64. +func Float32Val(x Value) (float32, bool) { + switch x := x.(type) { + case int64Val: + f := float32(x) + return f, int64Val(f) == x + case intVal: + f, acc := newFloat().SetInt(x.val).Float32() + return f, acc == big.Exact + case ratVal: + return x.val.Float32() + case floatVal: + f, acc := x.val.Float32() + return f, acc == big.Exact + case unknownVal: + return 0, false + default: + panic(fmt.Sprintf("%v not a Float", x)) + } +} + +// Float64Val returns the nearest Go float64 value of x and whether the result is exact; +// x must be numeric or an Unknown, but not Complex. For values too small (too close to 0) +// to represent as float64, Float64Val silently underflows to 0. The result sign always +// matches the sign of x, even for 0. +// If x is Unknown, the result is (0, false). +func Float64Val(x Value) (float64, bool) { + switch x := x.(type) { + case int64Val: + f := float64(int64(x)) + return f, int64Val(f) == x + case intVal: + f, acc := newFloat().SetInt(x.val).Float64() + return f, acc == big.Exact + case ratVal: + return x.val.Float64() + case floatVal: + f, acc := x.val.Float64() + return f, acc == big.Exact + case unknownVal: + return 0, false + default: + panic(fmt.Sprintf("%v not a Float", x)) + } +} + +// Val returns the underlying value for a given constant. Since it returns an +// interface, it is up to the caller to type assert the result to the expected +// type. The possible dynamic return types are: +// +// x Kind type of result +// ----------------------------------------- +// Bool bool +// String string +// Int int64 or *big.Int +// Float *big.Float or *big.Rat +// everything else nil +func Val(x Value) any { + switch x := x.(type) { + case boolVal: + return bool(x) + case *stringVal: + return x.string() + case int64Val: + return int64(x) + case intVal: + return x.val + case ratVal: + return x.val + case floatVal: + return x.val + default: + return nil + } +} + +// Make returns the Value for x. +// +// type of x result Kind +// ---------------------------- +// bool Bool +// string String +// int64 Int +// *big.Int Int +// *big.Float Float +// *big.Rat Float +// anything else Unknown +func Make(x any) Value { + switch x := x.(type) { + case bool: + return boolVal(x) + case string: + return &stringVal{s: x} + case int64: + return int64Val(x) + case *big.Int: + return makeInt(x) + case *big.Rat: + return makeRat(x) + case *big.Float: + return makeFloat(x) + default: + return unknownVal{} + } +} + +// BitLen returns the number of bits required to represent +// the absolute value x in binary representation; x must be an Int or an Unknown. +// If x is Unknown, the result is 0. +func BitLen(x Value) int { + switch x := x.(type) { + case int64Val: + u := uint64(x) + if x < 0 { + u = uint64(-x) + } + return 64 - bits.LeadingZeros64(u) + case intVal: + return x.val.BitLen() + case unknownVal: + return 0 + default: + panic(fmt.Sprintf("%v not an Int", x)) + } +} + +// Sign returns -1, 0, or 1 depending on whether x < 0, x == 0, or x > 0; +// x must be numeric or Unknown. For complex values x, the sign is 0 if x == 0, +// otherwise it is != 0. If x is Unknown, the result is 1. +func Sign(x Value) int { + switch x := x.(type) { + case int64Val: + switch { + case x < 0: + return -1 + case x > 0: + return 1 + } + return 0 + case intVal: + return x.val.Sign() + case ratVal: + return x.val.Sign() + case floatVal: + return x.val.Sign() + case complexVal: + return Sign(x.re) | Sign(x.im) + case unknownVal: + return 1 // avoid spurious division by zero errors + default: + panic(fmt.Sprintf("%v not numeric", x)) + } +} + +// ---------------------------------------------------------------------------- +// Support for assembling/disassembling numeric values + +const ( + // Compute the size of a Word in bytes. + _m = ^big.Word(0) + _log = _m>>8&1 + _m>>16&1 + _m>>32&1 + wordSize = 1 << _log +) + +// Bytes returns the bytes for the absolute value of x in little- +// endian binary representation; x must be an Int. +func Bytes(x Value) []byte { + var t intVal + switch x := x.(type) { + case int64Val: + t = i64toi(x) + case intVal: + t = x + default: + panic(fmt.Sprintf("%v not an Int", x)) + } + + words := t.val.Bits() + bytes := make([]byte, len(words)*wordSize) + + i := 0 + for _, w := range words { + for j := 0; j < wordSize; j++ { + bytes[i] = byte(w) + w >>= 8 + i++ + } + } + // remove leading 0's + for i > 0 && bytes[i-1] == 0 { + i-- + } + + return bytes[:i] +} + +// MakeFromBytes returns the Int value given the bytes of its little-endian +// binary representation. An empty byte slice argument represents 0. +func MakeFromBytes(bytes []byte) Value { + words := make([]big.Word, (len(bytes)+(wordSize-1))/wordSize) + + i := 0 + var w big.Word + var s uint + for _, b := range bytes { + w |= big.Word(b) << s + if s += 8; s == wordSize*8 { + words[i] = w + i++ + w = 0 + s = 0 + } + } + // store last word + if i < len(words) { + words[i] = w + i++ + } + // remove leading 0's + for i > 0 && words[i-1] == 0 { + i-- + } + + return makeInt(newInt().SetBits(words[:i])) +} + +// Num returns the numerator of x; x must be Int, Float, or Unknown. +// If x is Unknown, or if it is too large or small to represent as a +// fraction, the result is Unknown. Otherwise the result is an Int +// with the same sign as x. +func Num(x Value) Value { + switch x := x.(type) { + case int64Val, intVal: + return x + case ratVal: + return makeInt(x.val.Num()) + case floatVal: + if smallFloat(x.val) { + r, _ := x.val.Rat(nil) + return makeInt(r.Num()) + } + case unknownVal: + break + default: + panic(fmt.Sprintf("%v not Int or Float", x)) + } + return unknownVal{} +} + +// Denom returns the denominator of x; x must be Int, Float, or Unknown. +// If x is Unknown, or if it is too large or small to represent as a +// fraction, the result is Unknown. Otherwise the result is an Int >= 1. +func Denom(x Value) Value { + switch x := x.(type) { + case int64Val, intVal: + return int64Val(1) + case ratVal: + return makeInt(x.val.Denom()) + case floatVal: + if smallFloat(x.val) { + r, _ := x.val.Rat(nil) + return makeInt(r.Denom()) + } + case unknownVal: + break + default: + panic(fmt.Sprintf("%v not Int or Float", x)) + } + return unknownVal{} +} + +// MakeImag returns the Complex value x*i; +// x must be Int, Float, or Unknown. +// If x is Unknown, the result is Unknown. +func MakeImag(x Value) Value { + switch x.(type) { + case unknownVal: + return x + case int64Val, intVal, ratVal, floatVal: + return makeComplex(int64Val(0), x) + default: + panic(fmt.Sprintf("%v not Int or Float", x)) + } +} + +// Real returns the real part of x, which must be a numeric or unknown value. +// If x is Unknown, the result is Unknown. +func Real(x Value) Value { + switch x := x.(type) { + case unknownVal, int64Val, intVal, ratVal, floatVal: + return x + case complexVal: + return x.re + default: + panic(fmt.Sprintf("%v not numeric", x)) + } +} + +// Imag returns the imaginary part of x, which must be a numeric or unknown value. +// If x is Unknown, the result is Unknown. +func Imag(x Value) Value { + switch x := x.(type) { + case unknownVal: + return x + case int64Val, intVal, ratVal, floatVal: + return int64Val(0) + case complexVal: + return x.im + default: + panic(fmt.Sprintf("%v not numeric", x)) + } +} + +// ---------------------------------------------------------------------------- +// Numeric conversions + +// ToInt converts x to an Int value if x is representable as an Int. +// Otherwise it returns an Unknown. +func ToInt(x Value) Value { + switch x := x.(type) { + case int64Val, intVal: + return x + + case ratVal: + if x.val.IsInt() { + return makeInt(x.val.Num()) + } + + case floatVal: + // avoid creation of huge integers + // (Existing tests require permitting exponents of at least 1024; + // allow any value that would also be permissible as a fraction.) + if smallFloat(x.val) { + i := newInt() + if _, acc := x.val.Int(i); acc == big.Exact { + return makeInt(i) + } + + // If we can get an integer by rounding up or down, + // assume x is not an integer because of rounding + // errors in prior computations. + + const delta = 4 // a small number of bits > 0 + var t big.Float + t.SetPrec(prec - delta) + + // try rounding down a little + t.SetMode(big.ToZero) + t.Set(x.val) + if _, acc := t.Int(i); acc == big.Exact { + return makeInt(i) + } + + // try rounding up a little + t.SetMode(big.AwayFromZero) + t.Set(x.val) + if _, acc := t.Int(i); acc == big.Exact { + return makeInt(i) + } + } + + case complexVal: + if re := ToFloat(x); re.Kind() == Float { + return ToInt(re) + } + } + + return unknownVal{} +} + +// ToFloat converts x to a Float value if x is representable as a Float. +// Otherwise it returns an Unknown. +func ToFloat(x Value) Value { + switch x := x.(type) { + case int64Val: + return i64tor(x) // x is always a small int + case intVal: + if smallInt(x.val) { + return itor(x) + } + return itof(x) + case ratVal, floatVal: + return x + case complexVal: + if Sign(x.im) == 0 { + return ToFloat(x.re) + } + } + return unknownVal{} +} + +// ToComplex converts x to a Complex value if x is representable as a Complex. +// Otherwise it returns an Unknown. +func ToComplex(x Value) Value { + switch x := x.(type) { + case int64Val, intVal, ratVal, floatVal: + return vtoc(x) + case complexVal: + return x + } + return unknownVal{} +} + +// ---------------------------------------------------------------------------- +// Operations + +// is32bit reports whether x can be represented using 32 bits. +func is32bit(x int64) bool { + const s = 32 + return -1<<(s-1) <= x && x <= 1<<(s-1)-1 +} + +// is63bit reports whether x can be represented using 63 bits. +func is63bit(x int64) bool { + const s = 63 + return -1<<(s-1) <= x && x <= 1<<(s-1)-1 +} + +// UnaryOp returns the result of the unary expression op y. +// The operation must be defined for the operand. +// If prec > 0 it specifies the ^ (xor) result size in bits. +// If y is Unknown, the result is Unknown. +func UnaryOp(op token.Token, y Value, prec uint) Value { + switch op { + case token.ADD: + switch y.(type) { + case unknownVal, int64Val, intVal, ratVal, floatVal, complexVal: + return y + } + + case token.SUB: + switch y := y.(type) { + case unknownVal: + return y + case int64Val: + if z := -y; z != y { + return z // no overflow + } + return makeInt(newInt().Neg(big.NewInt(int64(y)))) + case intVal: + return makeInt(newInt().Neg(y.val)) + case ratVal: + return makeRat(newRat().Neg(y.val)) + case floatVal: + return makeFloat(newFloat().Neg(y.val)) + case complexVal: + re := UnaryOp(token.SUB, y.re, 0) + im := UnaryOp(token.SUB, y.im, 0) + return makeComplex(re, im) + } + + case token.XOR: + z := newInt() + switch y := y.(type) { + case unknownVal: + return y + case int64Val: + z.Not(big.NewInt(int64(y))) + case intVal: + z.Not(y.val) + default: + goto Error + } + // For unsigned types, the result will be negative and + // thus "too large": We must limit the result precision + // to the type's precision. + if prec > 0 { + z.AndNot(z, newInt().Lsh(big.NewInt(-1), prec)) // z &^= (-1)<<prec + } + return makeInt(z) + + case token.NOT: + switch y := y.(type) { + case unknownVal: + return y + case boolVal: + return !y + } + } + +Error: + panic(fmt.Sprintf("invalid unary operation %s%v", op, y)) +} + +func ord(x Value) int { + switch x.(type) { + default: + // force invalid value into "x position" in match + // (don't panic here so that callers can provide a better error message) + return -1 + case unknownVal: + return 0 + case boolVal, *stringVal: + return 1 + case int64Val: + return 2 + case intVal: + return 3 + case ratVal: + return 4 + case floatVal: + return 5 + case complexVal: + return 6 + } +} + +// match returns the matching representation (same type) with the +// smallest complexity for two values x and y. If one of them is +// numeric, both of them must be numeric. If one of them is Unknown +// or invalid (say, nil) both results are that value. +func match(x, y Value) (_, _ Value) { + switch ox, oy := ord(x), ord(y); { + case ox < oy: + x, y = match0(x, y) + case ox > oy: + y, x = match0(y, x) + } + return x, y +} + +// match0 must only be called by match. +// Invariant: ord(x) < ord(y) +func match0(x, y Value) (_, _ Value) { + // Prefer to return the original x and y arguments when possible, + // to avoid unnecessary heap allocations. + + switch y.(type) { + case intVal: + switch x1 := x.(type) { + case int64Val: + return i64toi(x1), y + } + case ratVal: + switch x1 := x.(type) { + case int64Val: + return i64tor(x1), y + case intVal: + return itor(x1), y + } + case floatVal: + switch x1 := x.(type) { + case int64Val: + return i64tof(x1), y + case intVal: + return itof(x1), y + case ratVal: + return rtof(x1), y + } + case complexVal: + return vtoc(x), y + } + + // force unknown and invalid values into "x position" in callers of match + // (don't panic here so that callers can provide a better error message) + return x, x +} + +// BinaryOp returns the result of the binary expression x op y. +// The operation must be defined for the operands. If one of the +// operands is Unknown, the result is Unknown. +// BinaryOp doesn't handle comparisons or shifts; use Compare +// or Shift instead. +// +// To force integer division of Int operands, use op == token.QUO_ASSIGN +// instead of token.QUO; the result is guaranteed to be Int in this case. +// Division by zero leads to a run-time panic. +func BinaryOp(x_ Value, op token.Token, y_ Value) Value { + x, y := match(x_, y_) + + switch x := x.(type) { + case unknownVal: + return x + + case boolVal: + y := y.(boolVal) + switch op { + case token.LAND: + return x && y + case token.LOR: + return x || y + } + + case int64Val: + a := int64(x) + b := int64(y.(int64Val)) + var c int64 + switch op { + case token.ADD: + if !is63bit(a) || !is63bit(b) { + return makeInt(newInt().Add(big.NewInt(a), big.NewInt(b))) + } + c = a + b + case token.SUB: + if !is63bit(a) || !is63bit(b) { + return makeInt(newInt().Sub(big.NewInt(a), big.NewInt(b))) + } + c = a - b + case token.MUL: + if !is32bit(a) || !is32bit(b) { + return makeInt(newInt().Mul(big.NewInt(a), big.NewInt(b))) + } + c = a * b + case token.QUO: + return makeRat(big.NewRat(a, b)) + case token.QUO_ASSIGN: // force integer division + c = a / b + case token.REM: + c = a % b + case token.AND: + c = a & b + case token.OR: + c = a | b + case token.XOR: + c = a ^ b + case token.AND_NOT: + c = a &^ b + default: + goto Error + } + return int64Val(c) + + case intVal: + a := x.val + b := y.(intVal).val + c := newInt() + switch op { + case token.ADD: + c.Add(a, b) + case token.SUB: + c.Sub(a, b) + case token.MUL: + c.Mul(a, b) + case token.QUO: + return makeRat(newRat().SetFrac(a, b)) + case token.QUO_ASSIGN: // force integer division + c.Quo(a, b) + case token.REM: + c.Rem(a, b) + case token.AND: + c.And(a, b) + case token.OR: + c.Or(a, b) + case token.XOR: + c.Xor(a, b) + case token.AND_NOT: + c.AndNot(a, b) + default: + goto Error + } + return makeInt(c) + + case ratVal: + a := x.val + b := y.(ratVal).val + c := newRat() + switch op { + case token.ADD: + c.Add(a, b) + case token.SUB: + c.Sub(a, b) + case token.MUL: + c.Mul(a, b) + case token.QUO: + c.Quo(a, b) + default: + goto Error + } + return makeRat(c) + + case floatVal: + a := x.val + b := y.(floatVal).val + c := newFloat() + switch op { + case token.ADD: + c.Add(a, b) + case token.SUB: + c.Sub(a, b) + case token.MUL: + c.Mul(a, b) + case token.QUO: + c.Quo(a, b) + default: + goto Error + } + return makeFloat(c) + + case complexVal: + y := y.(complexVal) + a, b := x.re, x.im + c, d := y.re, y.im + var re, im Value + switch op { + case token.ADD: + // (a+c) + i(b+d) + re = add(a, c) + im = add(b, d) + case token.SUB: + // (a-c) + i(b-d) + re = sub(a, c) + im = sub(b, d) + case token.MUL: + // (ac-bd) + i(bc+ad) + ac := mul(a, c) + bd := mul(b, d) + bc := mul(b, c) + ad := mul(a, d) + re = sub(ac, bd) + im = add(bc, ad) + case token.QUO: + // (ac+bd)/s + i(bc-ad)/s, with s = cc + dd + ac := mul(a, c) + bd := mul(b, d) + bc := mul(b, c) + ad := mul(a, d) + cc := mul(c, c) + dd := mul(d, d) + s := add(cc, dd) + re = add(ac, bd) + re = quo(re, s) + im = sub(bc, ad) + im = quo(im, s) + default: + goto Error + } + return makeComplex(re, im) + + case *stringVal: + if op == token.ADD { + return &stringVal{l: x, r: y.(*stringVal)} + } + } + +Error: + panic(fmt.Sprintf("invalid binary operation %v %s %v", x_, op, y_)) +} + +func add(x, y Value) Value { return BinaryOp(x, token.ADD, y) } +func sub(x, y Value) Value { return BinaryOp(x, token.SUB, y) } +func mul(x, y Value) Value { return BinaryOp(x, token.MUL, y) } +func quo(x, y Value) Value { return BinaryOp(x, token.QUO, y) } + +// Shift returns the result of the shift expression x op s +// with op == token.SHL or token.SHR (<< or >>). x must be +// an Int or an Unknown. If x is Unknown, the result is x. +func Shift(x Value, op token.Token, s uint) Value { + switch x := x.(type) { + case unknownVal: + return x + + case int64Val: + if s == 0 { + return x + } + switch op { + case token.SHL: + z := i64toi(x).val + return makeInt(z.Lsh(z, s)) + case token.SHR: + return x >> s + } + + case intVal: + if s == 0 { + return x + } + z := newInt() + switch op { + case token.SHL: + return makeInt(z.Lsh(x.val, s)) + case token.SHR: + return makeInt(z.Rsh(x.val, s)) + } + } + + panic(fmt.Sprintf("invalid shift %v %s %d", x, op, s)) +} + +func cmpZero(x int, op token.Token) bool { + switch op { + case token.EQL: + return x == 0 + case token.NEQ: + return x != 0 + case token.LSS: + return x < 0 + case token.LEQ: + return x <= 0 + case token.GTR: + return x > 0 + case token.GEQ: + return x >= 0 + } + panic(fmt.Sprintf("invalid comparison %v %s 0", x, op)) +} + +// Compare returns the result of the comparison x op y. +// The comparison must be defined for the operands. +// If one of the operands is Unknown, the result is +// false. +func Compare(x_ Value, op token.Token, y_ Value) bool { + x, y := match(x_, y_) + + switch x := x.(type) { + case unknownVal: + return false + + case boolVal: + y := y.(boolVal) + switch op { + case token.EQL: + return x == y + case token.NEQ: + return x != y + } + + case int64Val: + y := y.(int64Val) + switch op { + case token.EQL: + return x == y + case token.NEQ: + return x != y + case token.LSS: + return x < y + case token.LEQ: + return x <= y + case token.GTR: + return x > y + case token.GEQ: + return x >= y + } + + case intVal: + return cmpZero(x.val.Cmp(y.(intVal).val), op) + + case ratVal: + return cmpZero(x.val.Cmp(y.(ratVal).val), op) + + case floatVal: + return cmpZero(x.val.Cmp(y.(floatVal).val), op) + + case complexVal: + y := y.(complexVal) + re := Compare(x.re, token.EQL, y.re) + im := Compare(x.im, token.EQL, y.im) + switch op { + case token.EQL: + return re && im + case token.NEQ: + return !re || !im + } + + case *stringVal: + xs := x.string() + ys := y.(*stringVal).string() + switch op { + case token.EQL: + return xs == ys + case token.NEQ: + return xs != ys + case token.LSS: + return xs < ys + case token.LEQ: + return xs <= ys + case token.GTR: + return xs > ys + case token.GEQ: + return xs >= ys + } + } + + panic(fmt.Sprintf("invalid comparison %v %s %v", x_, op, y_)) +} |