summaryrefslogtreecommitdiffstats
path: root/src/go/constant/value.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/go/constant/value.go')
-rw-r--r--src/go/constant/value.go1410
1 files changed, 1410 insertions, 0 deletions
diff --git a/src/go/constant/value.go b/src/go/constant/value.go
new file mode 100644
index 0000000..ae300c7
--- /dev/null
+++ b/src/go/constant/value.go
@@ -0,0 +1,1410 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package constant implements Values representing untyped
+// Go constants and their corresponding operations.
+//
+// A special Unknown value may be used when a value
+// is unknown due to an error. Operations on unknown
+// values produce unknown values unless specified
+// otherwise.
+package constant
+
+import (
+ "fmt"
+ "go/token"
+ "math"
+ "math/big"
+ "math/bits"
+ "strconv"
+ "strings"
+ "sync"
+ "unicode/utf8"
+)
+
+//go:generate stringer -type Kind
+
+// Kind specifies the kind of value represented by a Value.
+type Kind int
+
+const (
+ // unknown values
+ Unknown Kind = iota
+
+ // non-numeric values
+ Bool
+ String
+
+ // numeric values
+ Int
+ Float
+ Complex
+)
+
+// A Value represents the value of a Go constant.
+type Value interface {
+ // Kind returns the value kind.
+ Kind() Kind
+
+ // String returns a short, quoted (human-readable) form of the value.
+ // For numeric values, the result may be an approximation;
+ // for String values the result may be a shortened string.
+ // Use ExactString for a string representing a value exactly.
+ String() string
+
+ // ExactString returns an exact, quoted (human-readable) form of the value.
+ // If the Value is of Kind String, use StringVal to obtain the unquoted string.
+ ExactString() string
+
+ // Prevent external implementations.
+ implementsValue()
+}
+
+// ----------------------------------------------------------------------------
+// Implementations
+
+// Maximum supported mantissa precision.
+// The spec requires at least 256 bits; typical implementations use 512 bits.
+const prec = 512
+
+// TODO(gri) Consider storing "error" information in an unknownVal so clients
+// can provide better error messages. For instance, if a number is
+// too large (incl. infinity), that could be recorded in unknownVal.
+// See also #20583 and #42695 for use cases.
+
+// Representation of values:
+//
+// Values of Int and Float Kind have two different representations each: int64Val
+// and intVal, and ratVal and floatVal. When possible, the "smaller", respectively
+// more precise (for Floats) representation is chosen. However, once a Float value
+// is represented as a floatVal, any subsequent results remain floatVals (unless
+// explicitly converted); i.e., no attempt is made to convert a floatVal back into
+// a ratVal. The reasoning is that all representations but floatVal are mathematically
+// exact, but once that precision is lost (by moving to floatVal), moving back to
+// a different representation implies a precision that's not actually there.
+
+type (
+ unknownVal struct{}
+ boolVal bool
+ stringVal struct {
+ // Lazy value: either a string (l,r==nil) or an addition (l,r!=nil).
+ mu sync.Mutex
+ s string
+ l, r *stringVal
+ }
+ int64Val int64 // Int values representable as an int64
+ intVal struct{ val *big.Int } // Int values not representable as an int64
+ ratVal struct{ val *big.Rat } // Float values representable as a fraction
+ floatVal struct{ val *big.Float } // Float values not representable as a fraction
+ complexVal struct{ re, im Value }
+)
+
+func (unknownVal) Kind() Kind { return Unknown }
+func (boolVal) Kind() Kind { return Bool }
+func (*stringVal) Kind() Kind { return String }
+func (int64Val) Kind() Kind { return Int }
+func (intVal) Kind() Kind { return Int }
+func (ratVal) Kind() Kind { return Float }
+func (floatVal) Kind() Kind { return Float }
+func (complexVal) Kind() Kind { return Complex }
+
+func (unknownVal) String() string { return "unknown" }
+func (x boolVal) String() string { return strconv.FormatBool(bool(x)) }
+
+// String returns a possibly shortened quoted form of the String value.
+func (x *stringVal) String() string {
+ const maxLen = 72 // a reasonable length
+ s := strconv.Quote(x.string())
+ if utf8.RuneCountInString(s) > maxLen {
+ // The string without the enclosing quotes is greater than maxLen-2 runes
+ // long. Remove the last 3 runes (including the closing '"') by keeping
+ // only the first maxLen-3 runes; then add "...".
+ i := 0
+ for n := 0; n < maxLen-3; n++ {
+ _, size := utf8.DecodeRuneInString(s[i:])
+ i += size
+ }
+ s = s[:i] + "..."
+ }
+ return s
+}
+
+// string constructs and returns the actual string literal value.
+// If x represents an addition, then it rewrites x to be a single
+// string, to speed future calls. This lazy construction avoids
+// building different string values for all subpieces of a large
+// concatenation. See golang.org/issue/23348.
+func (x *stringVal) string() string {
+ x.mu.Lock()
+ if x.l != nil {
+ x.s = strings.Join(reverse(x.appendReverse(nil)), "")
+ x.l = nil
+ x.r = nil
+ }
+ s := x.s
+ x.mu.Unlock()
+
+ return s
+}
+
+// reverse reverses x in place and returns it.
+func reverse(x []string) []string {
+ n := len(x)
+ for i := 0; i+i < n; i++ {
+ x[i], x[n-1-i] = x[n-1-i], x[i]
+ }
+ return x
+}
+
+// appendReverse appends to list all of x's subpieces, but in reverse,
+// and returns the result. Appending the reversal allows processing
+// the right side in a recursive call and the left side in a loop.
+// Because a chain like a + b + c + d + e is actually represented
+// as ((((a + b) + c) + d) + e), the left-side loop avoids deep recursion.
+// x must be locked.
+func (x *stringVal) appendReverse(list []string) []string {
+ y := x
+ for y.r != nil {
+ y.r.mu.Lock()
+ list = y.r.appendReverse(list)
+ y.r.mu.Unlock()
+
+ l := y.l
+ if y != x {
+ y.mu.Unlock()
+ }
+ l.mu.Lock()
+ y = l
+ }
+ s := y.s
+ if y != x {
+ y.mu.Unlock()
+ }
+ return append(list, s)
+}
+
+func (x int64Val) String() string { return strconv.FormatInt(int64(x), 10) }
+func (x intVal) String() string { return x.val.String() }
+func (x ratVal) String() string { return rtof(x).String() }
+
+// String returns a decimal approximation of the Float value.
+func (x floatVal) String() string {
+ f := x.val
+
+ // Don't try to convert infinities (will not terminate).
+ if f.IsInf() {
+ return f.String()
+ }
+
+ // Use exact fmt formatting if in float64 range (common case):
+ // proceed if f doesn't underflow to 0 or overflow to inf.
+ if x, _ := f.Float64(); f.Sign() == 0 == (x == 0) && !math.IsInf(x, 0) {
+ s := fmt.Sprintf("%.6g", x)
+ if !f.IsInt() && strings.IndexByte(s, '.') < 0 {
+ // f is not an integer, but its string representation
+ // doesn't reflect that. Use more digits. See issue 56220.
+ s = fmt.Sprintf("%g", x)
+ }
+ return s
+ }
+
+ // Out of float64 range. Do approximate manual to decimal
+ // conversion to avoid precise but possibly slow Float
+ // formatting.
+ // f = mant * 2**exp
+ var mant big.Float
+ exp := f.MantExp(&mant) // 0.5 <= |mant| < 1.0
+
+ // approximate float64 mantissa m and decimal exponent d
+ // f ~ m * 10**d
+ m, _ := mant.Float64() // 0.5 <= |m| < 1.0
+ d := float64(exp) * (math.Ln2 / math.Ln10) // log_10(2)
+
+ // adjust m for truncated (integer) decimal exponent e
+ e := int64(d)
+ m *= math.Pow(10, d-float64(e))
+
+ // ensure 1 <= |m| < 10
+ switch am := math.Abs(m); {
+ case am < 1-0.5e-6:
+ // The %.6g format below rounds m to 5 digits after the
+ // decimal point. Make sure that m*10 < 10 even after
+ // rounding up: m*10 + 0.5e-5 < 10 => m < 1 - 0.5e6.
+ m *= 10
+ e--
+ case am >= 10:
+ m /= 10
+ e++
+ }
+
+ return fmt.Sprintf("%.6ge%+d", m, e)
+}
+
+func (x complexVal) String() string { return fmt.Sprintf("(%s + %si)", x.re, x.im) }
+
+func (x unknownVal) ExactString() string { return x.String() }
+func (x boolVal) ExactString() string { return x.String() }
+func (x *stringVal) ExactString() string { return strconv.Quote(x.string()) }
+func (x int64Val) ExactString() string { return x.String() }
+func (x intVal) ExactString() string { return x.String() }
+
+func (x ratVal) ExactString() string {
+ r := x.val
+ if r.IsInt() {
+ return r.Num().String()
+ }
+ return r.String()
+}
+
+func (x floatVal) ExactString() string { return x.val.Text('p', 0) }
+
+func (x complexVal) ExactString() string {
+ return fmt.Sprintf("(%s + %si)", x.re.ExactString(), x.im.ExactString())
+}
+
+func (unknownVal) implementsValue() {}
+func (boolVal) implementsValue() {}
+func (*stringVal) implementsValue() {}
+func (int64Val) implementsValue() {}
+func (ratVal) implementsValue() {}
+func (intVal) implementsValue() {}
+func (floatVal) implementsValue() {}
+func (complexVal) implementsValue() {}
+
+func newInt() *big.Int { return new(big.Int) }
+func newRat() *big.Rat { return new(big.Rat) }
+func newFloat() *big.Float { return new(big.Float).SetPrec(prec) }
+
+func i64toi(x int64Val) intVal { return intVal{newInt().SetInt64(int64(x))} }
+func i64tor(x int64Val) ratVal { return ratVal{newRat().SetInt64(int64(x))} }
+func i64tof(x int64Val) floatVal { return floatVal{newFloat().SetInt64(int64(x))} }
+func itor(x intVal) ratVal { return ratVal{newRat().SetInt(x.val)} }
+func itof(x intVal) floatVal { return floatVal{newFloat().SetInt(x.val)} }
+func rtof(x ratVal) floatVal { return floatVal{newFloat().SetRat(x.val)} }
+func vtoc(x Value) complexVal { return complexVal{x, int64Val(0)} }
+
+func makeInt(x *big.Int) Value {
+ if x.IsInt64() {
+ return int64Val(x.Int64())
+ }
+ return intVal{x}
+}
+
+func makeRat(x *big.Rat) Value {
+ a := x.Num()
+ b := x.Denom()
+ if smallInt(a) && smallInt(b) {
+ // ok to remain fraction
+ return ratVal{x}
+ }
+ // components too large => switch to float
+ return floatVal{newFloat().SetRat(x)}
+}
+
+var floatVal0 = floatVal{newFloat()}
+
+func makeFloat(x *big.Float) Value {
+ // convert -0
+ if x.Sign() == 0 {
+ return floatVal0
+ }
+ if x.IsInf() {
+ return unknownVal{}
+ }
+ // No attempt is made to "go back" to ratVal, even if possible,
+ // to avoid providing the illusion of a mathematically exact
+ // representation.
+ return floatVal{x}
+}
+
+func makeComplex(re, im Value) Value {
+ if re.Kind() == Unknown || im.Kind() == Unknown {
+ return unknownVal{}
+ }
+ return complexVal{re, im}
+}
+
+func makeFloatFromLiteral(lit string) Value {
+ if f, ok := newFloat().SetString(lit); ok {
+ if smallFloat(f) {
+ // ok to use rationals
+ if f.Sign() == 0 {
+ // Issue 20228: If the float underflowed to zero, parse just "0".
+ // Otherwise, lit might contain a value with a large negative exponent,
+ // such as -6e-1886451601. As a float, that will underflow to 0,
+ // but it'll take forever to parse as a Rat.
+ lit = "0"
+ }
+ if r, ok := newRat().SetString(lit); ok {
+ return ratVal{r}
+ }
+ }
+ // otherwise use floats
+ return makeFloat(f)
+ }
+ return nil
+}
+
+// Permit fractions with component sizes up to maxExp
+// before switching to using floating-point numbers.
+const maxExp = 4 << 10
+
+// smallInt reports whether x would lead to "reasonably"-sized fraction
+// if converted to a *big.Rat.
+func smallInt(x *big.Int) bool {
+ return x.BitLen() < maxExp
+}
+
+// smallFloat64 reports whether x would lead to "reasonably"-sized fraction
+// if converted to a *big.Rat.
+func smallFloat64(x float64) bool {
+ if math.IsInf(x, 0) {
+ return false
+ }
+ _, e := math.Frexp(x)
+ return -maxExp < e && e < maxExp
+}
+
+// smallFloat reports whether x would lead to "reasonably"-sized fraction
+// if converted to a *big.Rat.
+func smallFloat(x *big.Float) bool {
+ if x.IsInf() {
+ return false
+ }
+ e := x.MantExp(nil)
+ return -maxExp < e && e < maxExp
+}
+
+// ----------------------------------------------------------------------------
+// Factories
+
+// MakeUnknown returns the Unknown value.
+func MakeUnknown() Value { return unknownVal{} }
+
+// MakeBool returns the Bool value for b.
+func MakeBool(b bool) Value { return boolVal(b) }
+
+// MakeString returns the String value for s.
+func MakeString(s string) Value {
+ if s == "" {
+ return &emptyString // common case
+ }
+ return &stringVal{s: s}
+}
+
+var emptyString stringVal
+
+// MakeInt64 returns the Int value for x.
+func MakeInt64(x int64) Value { return int64Val(x) }
+
+// MakeUint64 returns the Int value for x.
+func MakeUint64(x uint64) Value {
+ if x < 1<<63 {
+ return int64Val(int64(x))
+ }
+ return intVal{newInt().SetUint64(x)}
+}
+
+// MakeFloat64 returns the Float value for x.
+// If x is -0.0, the result is 0.0.
+// If x is not finite, the result is an Unknown.
+func MakeFloat64(x float64) Value {
+ if math.IsInf(x, 0) || math.IsNaN(x) {
+ return unknownVal{}
+ }
+ if smallFloat64(x) {
+ return ratVal{newRat().SetFloat64(x + 0)} // convert -0 to 0
+ }
+ return floatVal{newFloat().SetFloat64(x + 0)}
+}
+
+// MakeFromLiteral returns the corresponding integer, floating-point,
+// imaginary, character, or string value for a Go literal string. The
+// tok value must be one of token.INT, token.FLOAT, token.IMAG,
+// token.CHAR, or token.STRING. The final argument must be zero.
+// If the literal string syntax is invalid, the result is an Unknown.
+func MakeFromLiteral(lit string, tok token.Token, zero uint) Value {
+ if zero != 0 {
+ panic("MakeFromLiteral called with non-zero last argument")
+ }
+
+ switch tok {
+ case token.INT:
+ if x, err := strconv.ParseInt(lit, 0, 64); err == nil {
+ return int64Val(x)
+ }
+ if x, ok := newInt().SetString(lit, 0); ok {
+ return intVal{x}
+ }
+
+ case token.FLOAT:
+ if x := makeFloatFromLiteral(lit); x != nil {
+ return x
+ }
+
+ case token.IMAG:
+ if n := len(lit); n > 0 && lit[n-1] == 'i' {
+ if im := makeFloatFromLiteral(lit[:n-1]); im != nil {
+ return makeComplex(int64Val(0), im)
+ }
+ }
+
+ case token.CHAR:
+ if n := len(lit); n >= 2 {
+ if code, _, _, err := strconv.UnquoteChar(lit[1:n-1], '\''); err == nil {
+ return MakeInt64(int64(code))
+ }
+ }
+
+ case token.STRING:
+ if s, err := strconv.Unquote(lit); err == nil {
+ return MakeString(s)
+ }
+
+ default:
+ panic(fmt.Sprintf("%v is not a valid token", tok))
+ }
+
+ return unknownVal{}
+}
+
+// ----------------------------------------------------------------------------
+// Accessors
+//
+// For unknown arguments the result is the zero value for the respective
+// accessor type, except for Sign, where the result is 1.
+
+// BoolVal returns the Go boolean value of x, which must be a Bool or an Unknown.
+// If x is Unknown, the result is false.
+func BoolVal(x Value) bool {
+ switch x := x.(type) {
+ case boolVal:
+ return bool(x)
+ case unknownVal:
+ return false
+ default:
+ panic(fmt.Sprintf("%v not a Bool", x))
+ }
+}
+
+// StringVal returns the Go string value of x, which must be a String or an Unknown.
+// If x is Unknown, the result is "".
+func StringVal(x Value) string {
+ switch x := x.(type) {
+ case *stringVal:
+ return x.string()
+ case unknownVal:
+ return ""
+ default:
+ panic(fmt.Sprintf("%v not a String", x))
+ }
+}
+
+// Int64Val returns the Go int64 value of x and whether the result is exact;
+// x must be an Int or an Unknown. If the result is not exact, its value is undefined.
+// If x is Unknown, the result is (0, false).
+func Int64Val(x Value) (int64, bool) {
+ switch x := x.(type) {
+ case int64Val:
+ return int64(x), true
+ case intVal:
+ return x.val.Int64(), false // not an int64Val and thus not exact
+ case unknownVal:
+ return 0, false
+ default:
+ panic(fmt.Sprintf("%v not an Int", x))
+ }
+}
+
+// Uint64Val returns the Go uint64 value of x and whether the result is exact;
+// x must be an Int or an Unknown. If the result is not exact, its value is undefined.
+// If x is Unknown, the result is (0, false).
+func Uint64Val(x Value) (uint64, bool) {
+ switch x := x.(type) {
+ case int64Val:
+ return uint64(x), x >= 0
+ case intVal:
+ return x.val.Uint64(), x.val.IsUint64()
+ case unknownVal:
+ return 0, false
+ default:
+ panic(fmt.Sprintf("%v not an Int", x))
+ }
+}
+
+// Float32Val is like Float64Val but for float32 instead of float64.
+func Float32Val(x Value) (float32, bool) {
+ switch x := x.(type) {
+ case int64Val:
+ f := float32(x)
+ return f, int64Val(f) == x
+ case intVal:
+ f, acc := newFloat().SetInt(x.val).Float32()
+ return f, acc == big.Exact
+ case ratVal:
+ return x.val.Float32()
+ case floatVal:
+ f, acc := x.val.Float32()
+ return f, acc == big.Exact
+ case unknownVal:
+ return 0, false
+ default:
+ panic(fmt.Sprintf("%v not a Float", x))
+ }
+}
+
+// Float64Val returns the nearest Go float64 value of x and whether the result is exact;
+// x must be numeric or an Unknown, but not Complex. For values too small (too close to 0)
+// to represent as float64, Float64Val silently underflows to 0. The result sign always
+// matches the sign of x, even for 0.
+// If x is Unknown, the result is (0, false).
+func Float64Val(x Value) (float64, bool) {
+ switch x := x.(type) {
+ case int64Val:
+ f := float64(int64(x))
+ return f, int64Val(f) == x
+ case intVal:
+ f, acc := newFloat().SetInt(x.val).Float64()
+ return f, acc == big.Exact
+ case ratVal:
+ return x.val.Float64()
+ case floatVal:
+ f, acc := x.val.Float64()
+ return f, acc == big.Exact
+ case unknownVal:
+ return 0, false
+ default:
+ panic(fmt.Sprintf("%v not a Float", x))
+ }
+}
+
+// Val returns the underlying value for a given constant. Since it returns an
+// interface, it is up to the caller to type assert the result to the expected
+// type. The possible dynamic return types are:
+//
+// x Kind type of result
+// -----------------------------------------
+// Bool bool
+// String string
+// Int int64 or *big.Int
+// Float *big.Float or *big.Rat
+// everything else nil
+func Val(x Value) any {
+ switch x := x.(type) {
+ case boolVal:
+ return bool(x)
+ case *stringVal:
+ return x.string()
+ case int64Val:
+ return int64(x)
+ case intVal:
+ return x.val
+ case ratVal:
+ return x.val
+ case floatVal:
+ return x.val
+ default:
+ return nil
+ }
+}
+
+// Make returns the Value for x.
+//
+// type of x result Kind
+// ----------------------------
+// bool Bool
+// string String
+// int64 Int
+// *big.Int Int
+// *big.Float Float
+// *big.Rat Float
+// anything else Unknown
+func Make(x any) Value {
+ switch x := x.(type) {
+ case bool:
+ return boolVal(x)
+ case string:
+ return &stringVal{s: x}
+ case int64:
+ return int64Val(x)
+ case *big.Int:
+ return makeInt(x)
+ case *big.Rat:
+ return makeRat(x)
+ case *big.Float:
+ return makeFloat(x)
+ default:
+ return unknownVal{}
+ }
+}
+
+// BitLen returns the number of bits required to represent
+// the absolute value x in binary representation; x must be an Int or an Unknown.
+// If x is Unknown, the result is 0.
+func BitLen(x Value) int {
+ switch x := x.(type) {
+ case int64Val:
+ u := uint64(x)
+ if x < 0 {
+ u = uint64(-x)
+ }
+ return 64 - bits.LeadingZeros64(u)
+ case intVal:
+ return x.val.BitLen()
+ case unknownVal:
+ return 0
+ default:
+ panic(fmt.Sprintf("%v not an Int", x))
+ }
+}
+
+// Sign returns -1, 0, or 1 depending on whether x < 0, x == 0, or x > 0;
+// x must be numeric or Unknown. For complex values x, the sign is 0 if x == 0,
+// otherwise it is != 0. If x is Unknown, the result is 1.
+func Sign(x Value) int {
+ switch x := x.(type) {
+ case int64Val:
+ switch {
+ case x < 0:
+ return -1
+ case x > 0:
+ return 1
+ }
+ return 0
+ case intVal:
+ return x.val.Sign()
+ case ratVal:
+ return x.val.Sign()
+ case floatVal:
+ return x.val.Sign()
+ case complexVal:
+ return Sign(x.re) | Sign(x.im)
+ case unknownVal:
+ return 1 // avoid spurious division by zero errors
+ default:
+ panic(fmt.Sprintf("%v not numeric", x))
+ }
+}
+
+// ----------------------------------------------------------------------------
+// Support for assembling/disassembling numeric values
+
+const (
+ // Compute the size of a Word in bytes.
+ _m = ^big.Word(0)
+ _log = _m>>8&1 + _m>>16&1 + _m>>32&1
+ wordSize = 1 << _log
+)
+
+// Bytes returns the bytes for the absolute value of x in little-
+// endian binary representation; x must be an Int.
+func Bytes(x Value) []byte {
+ var t intVal
+ switch x := x.(type) {
+ case int64Val:
+ t = i64toi(x)
+ case intVal:
+ t = x
+ default:
+ panic(fmt.Sprintf("%v not an Int", x))
+ }
+
+ words := t.val.Bits()
+ bytes := make([]byte, len(words)*wordSize)
+
+ i := 0
+ for _, w := range words {
+ for j := 0; j < wordSize; j++ {
+ bytes[i] = byte(w)
+ w >>= 8
+ i++
+ }
+ }
+ // remove leading 0's
+ for i > 0 && bytes[i-1] == 0 {
+ i--
+ }
+
+ return bytes[:i]
+}
+
+// MakeFromBytes returns the Int value given the bytes of its little-endian
+// binary representation. An empty byte slice argument represents 0.
+func MakeFromBytes(bytes []byte) Value {
+ words := make([]big.Word, (len(bytes)+(wordSize-1))/wordSize)
+
+ i := 0
+ var w big.Word
+ var s uint
+ for _, b := range bytes {
+ w |= big.Word(b) << s
+ if s += 8; s == wordSize*8 {
+ words[i] = w
+ i++
+ w = 0
+ s = 0
+ }
+ }
+ // store last word
+ if i < len(words) {
+ words[i] = w
+ i++
+ }
+ // remove leading 0's
+ for i > 0 && words[i-1] == 0 {
+ i--
+ }
+
+ return makeInt(newInt().SetBits(words[:i]))
+}
+
+// Num returns the numerator of x; x must be Int, Float, or Unknown.
+// If x is Unknown, or if it is too large or small to represent as a
+// fraction, the result is Unknown. Otherwise the result is an Int
+// with the same sign as x.
+func Num(x Value) Value {
+ switch x := x.(type) {
+ case int64Val, intVal:
+ return x
+ case ratVal:
+ return makeInt(x.val.Num())
+ case floatVal:
+ if smallFloat(x.val) {
+ r, _ := x.val.Rat(nil)
+ return makeInt(r.Num())
+ }
+ case unknownVal:
+ break
+ default:
+ panic(fmt.Sprintf("%v not Int or Float", x))
+ }
+ return unknownVal{}
+}
+
+// Denom returns the denominator of x; x must be Int, Float, or Unknown.
+// If x is Unknown, or if it is too large or small to represent as a
+// fraction, the result is Unknown. Otherwise the result is an Int >= 1.
+func Denom(x Value) Value {
+ switch x := x.(type) {
+ case int64Val, intVal:
+ return int64Val(1)
+ case ratVal:
+ return makeInt(x.val.Denom())
+ case floatVal:
+ if smallFloat(x.val) {
+ r, _ := x.val.Rat(nil)
+ return makeInt(r.Denom())
+ }
+ case unknownVal:
+ break
+ default:
+ panic(fmt.Sprintf("%v not Int or Float", x))
+ }
+ return unknownVal{}
+}
+
+// MakeImag returns the Complex value x*i;
+// x must be Int, Float, or Unknown.
+// If x is Unknown, the result is Unknown.
+func MakeImag(x Value) Value {
+ switch x.(type) {
+ case unknownVal:
+ return x
+ case int64Val, intVal, ratVal, floatVal:
+ return makeComplex(int64Val(0), x)
+ default:
+ panic(fmt.Sprintf("%v not Int or Float", x))
+ }
+}
+
+// Real returns the real part of x, which must be a numeric or unknown value.
+// If x is Unknown, the result is Unknown.
+func Real(x Value) Value {
+ switch x := x.(type) {
+ case unknownVal, int64Val, intVal, ratVal, floatVal:
+ return x
+ case complexVal:
+ return x.re
+ default:
+ panic(fmt.Sprintf("%v not numeric", x))
+ }
+}
+
+// Imag returns the imaginary part of x, which must be a numeric or unknown value.
+// If x is Unknown, the result is Unknown.
+func Imag(x Value) Value {
+ switch x := x.(type) {
+ case unknownVal:
+ return x
+ case int64Val, intVal, ratVal, floatVal:
+ return int64Val(0)
+ case complexVal:
+ return x.im
+ default:
+ panic(fmt.Sprintf("%v not numeric", x))
+ }
+}
+
+// ----------------------------------------------------------------------------
+// Numeric conversions
+
+// ToInt converts x to an Int value if x is representable as an Int.
+// Otherwise it returns an Unknown.
+func ToInt(x Value) Value {
+ switch x := x.(type) {
+ case int64Val, intVal:
+ return x
+
+ case ratVal:
+ if x.val.IsInt() {
+ return makeInt(x.val.Num())
+ }
+
+ case floatVal:
+ // avoid creation of huge integers
+ // (Existing tests require permitting exponents of at least 1024;
+ // allow any value that would also be permissible as a fraction.)
+ if smallFloat(x.val) {
+ i := newInt()
+ if _, acc := x.val.Int(i); acc == big.Exact {
+ return makeInt(i)
+ }
+
+ // If we can get an integer by rounding up or down,
+ // assume x is not an integer because of rounding
+ // errors in prior computations.
+
+ const delta = 4 // a small number of bits > 0
+ var t big.Float
+ t.SetPrec(prec - delta)
+
+ // try rounding down a little
+ t.SetMode(big.ToZero)
+ t.Set(x.val)
+ if _, acc := t.Int(i); acc == big.Exact {
+ return makeInt(i)
+ }
+
+ // try rounding up a little
+ t.SetMode(big.AwayFromZero)
+ t.Set(x.val)
+ if _, acc := t.Int(i); acc == big.Exact {
+ return makeInt(i)
+ }
+ }
+
+ case complexVal:
+ if re := ToFloat(x); re.Kind() == Float {
+ return ToInt(re)
+ }
+ }
+
+ return unknownVal{}
+}
+
+// ToFloat converts x to a Float value if x is representable as a Float.
+// Otherwise it returns an Unknown.
+func ToFloat(x Value) Value {
+ switch x := x.(type) {
+ case int64Val:
+ return i64tor(x) // x is always a small int
+ case intVal:
+ if smallInt(x.val) {
+ return itor(x)
+ }
+ return itof(x)
+ case ratVal, floatVal:
+ return x
+ case complexVal:
+ if Sign(x.im) == 0 {
+ return ToFloat(x.re)
+ }
+ }
+ return unknownVal{}
+}
+
+// ToComplex converts x to a Complex value if x is representable as a Complex.
+// Otherwise it returns an Unknown.
+func ToComplex(x Value) Value {
+ switch x := x.(type) {
+ case int64Val, intVal, ratVal, floatVal:
+ return vtoc(x)
+ case complexVal:
+ return x
+ }
+ return unknownVal{}
+}
+
+// ----------------------------------------------------------------------------
+// Operations
+
+// is32bit reports whether x can be represented using 32 bits.
+func is32bit(x int64) bool {
+ const s = 32
+ return -1<<(s-1) <= x && x <= 1<<(s-1)-1
+}
+
+// is63bit reports whether x can be represented using 63 bits.
+func is63bit(x int64) bool {
+ const s = 63
+ return -1<<(s-1) <= x && x <= 1<<(s-1)-1
+}
+
+// UnaryOp returns the result of the unary expression op y.
+// The operation must be defined for the operand.
+// If prec > 0 it specifies the ^ (xor) result size in bits.
+// If y is Unknown, the result is Unknown.
+func UnaryOp(op token.Token, y Value, prec uint) Value {
+ switch op {
+ case token.ADD:
+ switch y.(type) {
+ case unknownVal, int64Val, intVal, ratVal, floatVal, complexVal:
+ return y
+ }
+
+ case token.SUB:
+ switch y := y.(type) {
+ case unknownVal:
+ return y
+ case int64Val:
+ if z := -y; z != y {
+ return z // no overflow
+ }
+ return makeInt(newInt().Neg(big.NewInt(int64(y))))
+ case intVal:
+ return makeInt(newInt().Neg(y.val))
+ case ratVal:
+ return makeRat(newRat().Neg(y.val))
+ case floatVal:
+ return makeFloat(newFloat().Neg(y.val))
+ case complexVal:
+ re := UnaryOp(token.SUB, y.re, 0)
+ im := UnaryOp(token.SUB, y.im, 0)
+ return makeComplex(re, im)
+ }
+
+ case token.XOR:
+ z := newInt()
+ switch y := y.(type) {
+ case unknownVal:
+ return y
+ case int64Val:
+ z.Not(big.NewInt(int64(y)))
+ case intVal:
+ z.Not(y.val)
+ default:
+ goto Error
+ }
+ // For unsigned types, the result will be negative and
+ // thus "too large": We must limit the result precision
+ // to the type's precision.
+ if prec > 0 {
+ z.AndNot(z, newInt().Lsh(big.NewInt(-1), prec)) // z &^= (-1)<<prec
+ }
+ return makeInt(z)
+
+ case token.NOT:
+ switch y := y.(type) {
+ case unknownVal:
+ return y
+ case boolVal:
+ return !y
+ }
+ }
+
+Error:
+ panic(fmt.Sprintf("invalid unary operation %s%v", op, y))
+}
+
+func ord(x Value) int {
+ switch x.(type) {
+ default:
+ // force invalid value into "x position" in match
+ // (don't panic here so that callers can provide a better error message)
+ return -1
+ case unknownVal:
+ return 0
+ case boolVal, *stringVal:
+ return 1
+ case int64Val:
+ return 2
+ case intVal:
+ return 3
+ case ratVal:
+ return 4
+ case floatVal:
+ return 5
+ case complexVal:
+ return 6
+ }
+}
+
+// match returns the matching representation (same type) with the
+// smallest complexity for two values x and y. If one of them is
+// numeric, both of them must be numeric. If one of them is Unknown
+// or invalid (say, nil) both results are that value.
+func match(x, y Value) (_, _ Value) {
+ switch ox, oy := ord(x), ord(y); {
+ case ox < oy:
+ x, y = match0(x, y)
+ case ox > oy:
+ y, x = match0(y, x)
+ }
+ return x, y
+}
+
+// match0 must only be called by match.
+// Invariant: ord(x) < ord(y)
+func match0(x, y Value) (_, _ Value) {
+ // Prefer to return the original x and y arguments when possible,
+ // to avoid unnecessary heap allocations.
+
+ switch y.(type) {
+ case intVal:
+ switch x1 := x.(type) {
+ case int64Val:
+ return i64toi(x1), y
+ }
+ case ratVal:
+ switch x1 := x.(type) {
+ case int64Val:
+ return i64tor(x1), y
+ case intVal:
+ return itor(x1), y
+ }
+ case floatVal:
+ switch x1 := x.(type) {
+ case int64Val:
+ return i64tof(x1), y
+ case intVal:
+ return itof(x1), y
+ case ratVal:
+ return rtof(x1), y
+ }
+ case complexVal:
+ return vtoc(x), y
+ }
+
+ // force unknown and invalid values into "x position" in callers of match
+ // (don't panic here so that callers can provide a better error message)
+ return x, x
+}
+
+// BinaryOp returns the result of the binary expression x op y.
+// The operation must be defined for the operands. If one of the
+// operands is Unknown, the result is Unknown.
+// BinaryOp doesn't handle comparisons or shifts; use Compare
+// or Shift instead.
+//
+// To force integer division of Int operands, use op == token.QUO_ASSIGN
+// instead of token.QUO; the result is guaranteed to be Int in this case.
+// Division by zero leads to a run-time panic.
+func BinaryOp(x_ Value, op token.Token, y_ Value) Value {
+ x, y := match(x_, y_)
+
+ switch x := x.(type) {
+ case unknownVal:
+ return x
+
+ case boolVal:
+ y := y.(boolVal)
+ switch op {
+ case token.LAND:
+ return x && y
+ case token.LOR:
+ return x || y
+ }
+
+ case int64Val:
+ a := int64(x)
+ b := int64(y.(int64Val))
+ var c int64
+ switch op {
+ case token.ADD:
+ if !is63bit(a) || !is63bit(b) {
+ return makeInt(newInt().Add(big.NewInt(a), big.NewInt(b)))
+ }
+ c = a + b
+ case token.SUB:
+ if !is63bit(a) || !is63bit(b) {
+ return makeInt(newInt().Sub(big.NewInt(a), big.NewInt(b)))
+ }
+ c = a - b
+ case token.MUL:
+ if !is32bit(a) || !is32bit(b) {
+ return makeInt(newInt().Mul(big.NewInt(a), big.NewInt(b)))
+ }
+ c = a * b
+ case token.QUO:
+ return makeRat(big.NewRat(a, b))
+ case token.QUO_ASSIGN: // force integer division
+ c = a / b
+ case token.REM:
+ c = a % b
+ case token.AND:
+ c = a & b
+ case token.OR:
+ c = a | b
+ case token.XOR:
+ c = a ^ b
+ case token.AND_NOT:
+ c = a &^ b
+ default:
+ goto Error
+ }
+ return int64Val(c)
+
+ case intVal:
+ a := x.val
+ b := y.(intVal).val
+ c := newInt()
+ switch op {
+ case token.ADD:
+ c.Add(a, b)
+ case token.SUB:
+ c.Sub(a, b)
+ case token.MUL:
+ c.Mul(a, b)
+ case token.QUO:
+ return makeRat(newRat().SetFrac(a, b))
+ case token.QUO_ASSIGN: // force integer division
+ c.Quo(a, b)
+ case token.REM:
+ c.Rem(a, b)
+ case token.AND:
+ c.And(a, b)
+ case token.OR:
+ c.Or(a, b)
+ case token.XOR:
+ c.Xor(a, b)
+ case token.AND_NOT:
+ c.AndNot(a, b)
+ default:
+ goto Error
+ }
+ return makeInt(c)
+
+ case ratVal:
+ a := x.val
+ b := y.(ratVal).val
+ c := newRat()
+ switch op {
+ case token.ADD:
+ c.Add(a, b)
+ case token.SUB:
+ c.Sub(a, b)
+ case token.MUL:
+ c.Mul(a, b)
+ case token.QUO:
+ c.Quo(a, b)
+ default:
+ goto Error
+ }
+ return makeRat(c)
+
+ case floatVal:
+ a := x.val
+ b := y.(floatVal).val
+ c := newFloat()
+ switch op {
+ case token.ADD:
+ c.Add(a, b)
+ case token.SUB:
+ c.Sub(a, b)
+ case token.MUL:
+ c.Mul(a, b)
+ case token.QUO:
+ c.Quo(a, b)
+ default:
+ goto Error
+ }
+ return makeFloat(c)
+
+ case complexVal:
+ y := y.(complexVal)
+ a, b := x.re, x.im
+ c, d := y.re, y.im
+ var re, im Value
+ switch op {
+ case token.ADD:
+ // (a+c) + i(b+d)
+ re = add(a, c)
+ im = add(b, d)
+ case token.SUB:
+ // (a-c) + i(b-d)
+ re = sub(a, c)
+ im = sub(b, d)
+ case token.MUL:
+ // (ac-bd) + i(bc+ad)
+ ac := mul(a, c)
+ bd := mul(b, d)
+ bc := mul(b, c)
+ ad := mul(a, d)
+ re = sub(ac, bd)
+ im = add(bc, ad)
+ case token.QUO:
+ // (ac+bd)/s + i(bc-ad)/s, with s = cc + dd
+ ac := mul(a, c)
+ bd := mul(b, d)
+ bc := mul(b, c)
+ ad := mul(a, d)
+ cc := mul(c, c)
+ dd := mul(d, d)
+ s := add(cc, dd)
+ re = add(ac, bd)
+ re = quo(re, s)
+ im = sub(bc, ad)
+ im = quo(im, s)
+ default:
+ goto Error
+ }
+ return makeComplex(re, im)
+
+ case *stringVal:
+ if op == token.ADD {
+ return &stringVal{l: x, r: y.(*stringVal)}
+ }
+ }
+
+Error:
+ panic(fmt.Sprintf("invalid binary operation %v %s %v", x_, op, y_))
+}
+
+func add(x, y Value) Value { return BinaryOp(x, token.ADD, y) }
+func sub(x, y Value) Value { return BinaryOp(x, token.SUB, y) }
+func mul(x, y Value) Value { return BinaryOp(x, token.MUL, y) }
+func quo(x, y Value) Value { return BinaryOp(x, token.QUO, y) }
+
+// Shift returns the result of the shift expression x op s
+// with op == token.SHL or token.SHR (<< or >>). x must be
+// an Int or an Unknown. If x is Unknown, the result is x.
+func Shift(x Value, op token.Token, s uint) Value {
+ switch x := x.(type) {
+ case unknownVal:
+ return x
+
+ case int64Val:
+ if s == 0 {
+ return x
+ }
+ switch op {
+ case token.SHL:
+ z := i64toi(x).val
+ return makeInt(z.Lsh(z, s))
+ case token.SHR:
+ return x >> s
+ }
+
+ case intVal:
+ if s == 0 {
+ return x
+ }
+ z := newInt()
+ switch op {
+ case token.SHL:
+ return makeInt(z.Lsh(x.val, s))
+ case token.SHR:
+ return makeInt(z.Rsh(x.val, s))
+ }
+ }
+
+ panic(fmt.Sprintf("invalid shift %v %s %d", x, op, s))
+}
+
+func cmpZero(x int, op token.Token) bool {
+ switch op {
+ case token.EQL:
+ return x == 0
+ case token.NEQ:
+ return x != 0
+ case token.LSS:
+ return x < 0
+ case token.LEQ:
+ return x <= 0
+ case token.GTR:
+ return x > 0
+ case token.GEQ:
+ return x >= 0
+ }
+ panic(fmt.Sprintf("invalid comparison %v %s 0", x, op))
+}
+
+// Compare returns the result of the comparison x op y.
+// The comparison must be defined for the operands.
+// If one of the operands is Unknown, the result is
+// false.
+func Compare(x_ Value, op token.Token, y_ Value) bool {
+ x, y := match(x_, y_)
+
+ switch x := x.(type) {
+ case unknownVal:
+ return false
+
+ case boolVal:
+ y := y.(boolVal)
+ switch op {
+ case token.EQL:
+ return x == y
+ case token.NEQ:
+ return x != y
+ }
+
+ case int64Val:
+ y := y.(int64Val)
+ switch op {
+ case token.EQL:
+ return x == y
+ case token.NEQ:
+ return x != y
+ case token.LSS:
+ return x < y
+ case token.LEQ:
+ return x <= y
+ case token.GTR:
+ return x > y
+ case token.GEQ:
+ return x >= y
+ }
+
+ case intVal:
+ return cmpZero(x.val.Cmp(y.(intVal).val), op)
+
+ case ratVal:
+ return cmpZero(x.val.Cmp(y.(ratVal).val), op)
+
+ case floatVal:
+ return cmpZero(x.val.Cmp(y.(floatVal).val), op)
+
+ case complexVal:
+ y := y.(complexVal)
+ re := Compare(x.re, token.EQL, y.re)
+ im := Compare(x.im, token.EQL, y.im)
+ switch op {
+ case token.EQL:
+ return re && im
+ case token.NEQ:
+ return !re || !im
+ }
+
+ case *stringVal:
+ xs := x.string()
+ ys := y.(*stringVal).string()
+ switch op {
+ case token.EQL:
+ return xs == ys
+ case token.NEQ:
+ return xs != ys
+ case token.LSS:
+ return xs < ys
+ case token.LEQ:
+ return xs <= ys
+ case token.GTR:
+ return xs > ys
+ case token.GEQ:
+ return xs >= ys
+ }
+ }
+
+ panic(fmt.Sprintf("invalid comparison %v %s %v", x_, op, y_))
+}