1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
|
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package constant implements Values representing untyped
// Go constants and their corresponding operations.
//
// A special Unknown value may be used when a value
// is unknown due to an error. Operations on unknown
// values produce unknown values unless specified
// otherwise.
package constant
import (
"fmt"
"go/token"
"math"
"math/big"
"math/bits"
"strconv"
"strings"
"sync"
"unicode/utf8"
)
//go:generate stringer -type Kind
// Kind specifies the kind of value represented by a Value.
type Kind int
const (
// unknown values
Unknown Kind = iota
// non-numeric values
Bool
String
// numeric values
Int
Float
Complex
)
// A Value represents the value of a Go constant.
type Value interface {
// Kind returns the value kind.
Kind() Kind
// String returns a short, quoted (human-readable) form of the value.
// For numeric values, the result may be an approximation;
// for String values the result may be a shortened string.
// Use ExactString for a string representing a value exactly.
String() string
// ExactString returns an exact, quoted (human-readable) form of the value.
// If the Value is of Kind String, use StringVal to obtain the unquoted string.
ExactString() string
// Prevent external implementations.
implementsValue()
}
// ----------------------------------------------------------------------------
// Implementations
// Maximum supported mantissa precision.
// The spec requires at least 256 bits; typical implementations use 512 bits.
const prec = 512
// TODO(gri) Consider storing "error" information in an unknownVal so clients
// can provide better error messages. For instance, if a number is
// too large (incl. infinity), that could be recorded in unknownVal.
// See also #20583 and #42695 for use cases.
// Representation of values:
//
// Values of Int and Float Kind have two different representations each: int64Val
// and intVal, and ratVal and floatVal. When possible, the "smaller", respectively
// more precise (for Floats) representation is chosen. However, once a Float value
// is represented as a floatVal, any subsequent results remain floatVals (unless
// explicitly converted); i.e., no attempt is made to convert a floatVal back into
// a ratVal. The reasoning is that all representations but floatVal are mathematically
// exact, but once that precision is lost (by moving to floatVal), moving back to
// a different representation implies a precision that's not actually there.
type (
unknownVal struct{}
boolVal bool
stringVal struct {
// Lazy value: either a string (l,r==nil) or an addition (l,r!=nil).
mu sync.Mutex
s string
l, r *stringVal
}
int64Val int64 // Int values representable as an int64
intVal struct{ val *big.Int } // Int values not representable as an int64
ratVal struct{ val *big.Rat } // Float values representable as a fraction
floatVal struct{ val *big.Float } // Float values not representable as a fraction
complexVal struct{ re, im Value }
)
func (unknownVal) Kind() Kind { return Unknown }
func (boolVal) Kind() Kind { return Bool }
func (*stringVal) Kind() Kind { return String }
func (int64Val) Kind() Kind { return Int }
func (intVal) Kind() Kind { return Int }
func (ratVal) Kind() Kind { return Float }
func (floatVal) Kind() Kind { return Float }
func (complexVal) Kind() Kind { return Complex }
func (unknownVal) String() string { return "unknown" }
func (x boolVal) String() string { return strconv.FormatBool(bool(x)) }
// String returns a possibly shortened quoted form of the String value.
func (x *stringVal) String() string {
const maxLen = 72 // a reasonable length
s := strconv.Quote(x.string())
if utf8.RuneCountInString(s) > maxLen {
// The string without the enclosing quotes is greater than maxLen-2 runes
// long. Remove the last 3 runes (including the closing '"') by keeping
// only the first maxLen-3 runes; then add "...".
i := 0
for n := 0; n < maxLen-3; n++ {
_, size := utf8.DecodeRuneInString(s[i:])
i += size
}
s = s[:i] + "..."
}
return s
}
// string constructs and returns the actual string literal value.
// If x represents an addition, then it rewrites x to be a single
// string, to speed future calls. This lazy construction avoids
// building different string values for all subpieces of a large
// concatenation. See golang.org/issue/23348.
func (x *stringVal) string() string {
x.mu.Lock()
if x.l != nil {
x.s = strings.Join(reverse(x.appendReverse(nil)), "")
x.l = nil
x.r = nil
}
s := x.s
x.mu.Unlock()
return s
}
// reverse reverses x in place and returns it.
func reverse(x []string) []string {
n := len(x)
for i := 0; i+i < n; i++ {
x[i], x[n-1-i] = x[n-1-i], x[i]
}
return x
}
// appendReverse appends to list all of x's subpieces, but in reverse,
// and returns the result. Appending the reversal allows processing
// the right side in a recursive call and the left side in a loop.
// Because a chain like a + b + c + d + e is actually represented
// as ((((a + b) + c) + d) + e), the left-side loop avoids deep recursion.
// x must be locked.
func (x *stringVal) appendReverse(list []string) []string {
y := x
for y.r != nil {
y.r.mu.Lock()
list = y.r.appendReverse(list)
y.r.mu.Unlock()
l := y.l
if y != x {
y.mu.Unlock()
}
l.mu.Lock()
y = l
}
s := y.s
if y != x {
y.mu.Unlock()
}
return append(list, s)
}
func (x int64Val) String() string { return strconv.FormatInt(int64(x), 10) }
func (x intVal) String() string { return x.val.String() }
func (x ratVal) String() string { return rtof(x).String() }
// String returns a decimal approximation of the Float value.
func (x floatVal) String() string {
f := x.val
// Don't try to convert infinities (will not terminate).
if f.IsInf() {
return f.String()
}
// Use exact fmt formatting if in float64 range (common case):
// proceed if f doesn't underflow to 0 or overflow to inf.
if x, _ := f.Float64(); f.Sign() == 0 == (x == 0) && !math.IsInf(x, 0) {
s := fmt.Sprintf("%.6g", x)
if !f.IsInt() && strings.IndexByte(s, '.') < 0 {
// f is not an integer, but its string representation
// doesn't reflect that. Use more digits. See issue 56220.
s = fmt.Sprintf("%g", x)
}
return s
}
// Out of float64 range. Do approximate manual to decimal
// conversion to avoid precise but possibly slow Float
// formatting.
// f = mant * 2**exp
var mant big.Float
exp := f.MantExp(&mant) // 0.5 <= |mant| < 1.0
// approximate float64 mantissa m and decimal exponent d
// f ~ m * 10**d
m, _ := mant.Float64() // 0.5 <= |m| < 1.0
d := float64(exp) * (math.Ln2 / math.Ln10) // log_10(2)
// adjust m for truncated (integer) decimal exponent e
e := int64(d)
m *= math.Pow(10, d-float64(e))
// ensure 1 <= |m| < 10
switch am := math.Abs(m); {
case am < 1-0.5e-6:
// The %.6g format below rounds m to 5 digits after the
// decimal point. Make sure that m*10 < 10 even after
// rounding up: m*10 + 0.5e-5 < 10 => m < 1 - 0.5e6.
m *= 10
e--
case am >= 10:
m /= 10
e++
}
return fmt.Sprintf("%.6ge%+d", m, e)
}
func (x complexVal) String() string { return fmt.Sprintf("(%s + %si)", x.re, x.im) }
func (x unknownVal) ExactString() string { return x.String() }
func (x boolVal) ExactString() string { return x.String() }
func (x *stringVal) ExactString() string { return strconv.Quote(x.string()) }
func (x int64Val) ExactString() string { return x.String() }
func (x intVal) ExactString() string { return x.String() }
func (x ratVal) ExactString() string {
r := x.val
if r.IsInt() {
return r.Num().String()
}
return r.String()
}
func (x floatVal) ExactString() string { return x.val.Text('p', 0) }
func (x complexVal) ExactString() string {
return fmt.Sprintf("(%s + %si)", x.re.ExactString(), x.im.ExactString())
}
func (unknownVal) implementsValue() {}
func (boolVal) implementsValue() {}
func (*stringVal) implementsValue() {}
func (int64Val) implementsValue() {}
func (ratVal) implementsValue() {}
func (intVal) implementsValue() {}
func (floatVal) implementsValue() {}
func (complexVal) implementsValue() {}
func newInt() *big.Int { return new(big.Int) }
func newRat() *big.Rat { return new(big.Rat) }
func newFloat() *big.Float { return new(big.Float).SetPrec(prec) }
func i64toi(x int64Val) intVal { return intVal{newInt().SetInt64(int64(x))} }
func i64tor(x int64Val) ratVal { return ratVal{newRat().SetInt64(int64(x))} }
func i64tof(x int64Val) floatVal { return floatVal{newFloat().SetInt64(int64(x))} }
func itor(x intVal) ratVal { return ratVal{newRat().SetInt(x.val)} }
func itof(x intVal) floatVal { return floatVal{newFloat().SetInt(x.val)} }
func rtof(x ratVal) floatVal { return floatVal{newFloat().SetRat(x.val)} }
func vtoc(x Value) complexVal { return complexVal{x, int64Val(0)} }
func makeInt(x *big.Int) Value {
if x.IsInt64() {
return int64Val(x.Int64())
}
return intVal{x}
}
func makeRat(x *big.Rat) Value {
a := x.Num()
b := x.Denom()
if smallInt(a) && smallInt(b) {
// ok to remain fraction
return ratVal{x}
}
// components too large => switch to float
return floatVal{newFloat().SetRat(x)}
}
var floatVal0 = floatVal{newFloat()}
func makeFloat(x *big.Float) Value {
// convert -0
if x.Sign() == 0 {
return floatVal0
}
if x.IsInf() {
return unknownVal{}
}
// No attempt is made to "go back" to ratVal, even if possible,
// to avoid providing the illusion of a mathematically exact
// representation.
return floatVal{x}
}
func makeComplex(re, im Value) Value {
if re.Kind() == Unknown || im.Kind() == Unknown {
return unknownVal{}
}
return complexVal{re, im}
}
func makeFloatFromLiteral(lit string) Value {
if f, ok := newFloat().SetString(lit); ok {
if smallFloat(f) {
// ok to use rationals
if f.Sign() == 0 {
// Issue 20228: If the float underflowed to zero, parse just "0".
// Otherwise, lit might contain a value with a large negative exponent,
// such as -6e-1886451601. As a float, that will underflow to 0,
// but it'll take forever to parse as a Rat.
lit = "0"
}
if r, ok := newRat().SetString(lit); ok {
return ratVal{r}
}
}
// otherwise use floats
return makeFloat(f)
}
return nil
}
// Permit fractions with component sizes up to maxExp
// before switching to using floating-point numbers.
const maxExp = 4 << 10
// smallInt reports whether x would lead to "reasonably"-sized fraction
// if converted to a *big.Rat.
func smallInt(x *big.Int) bool {
return x.BitLen() < maxExp
}
// smallFloat64 reports whether x would lead to "reasonably"-sized fraction
// if converted to a *big.Rat.
func smallFloat64(x float64) bool {
if math.IsInf(x, 0) {
return false
}
_, e := math.Frexp(x)
return -maxExp < e && e < maxExp
}
// smallFloat reports whether x would lead to "reasonably"-sized fraction
// if converted to a *big.Rat.
func smallFloat(x *big.Float) bool {
if x.IsInf() {
return false
}
e := x.MantExp(nil)
return -maxExp < e && e < maxExp
}
// ----------------------------------------------------------------------------
// Factories
// MakeUnknown returns the Unknown value.
func MakeUnknown() Value { return unknownVal{} }
// MakeBool returns the Bool value for b.
func MakeBool(b bool) Value { return boolVal(b) }
// MakeString returns the String value for s.
func MakeString(s string) Value {
if s == "" {
return &emptyString // common case
}
return &stringVal{s: s}
}
var emptyString stringVal
// MakeInt64 returns the Int value for x.
func MakeInt64(x int64) Value { return int64Val(x) }
// MakeUint64 returns the Int value for x.
func MakeUint64(x uint64) Value {
if x < 1<<63 {
return int64Val(int64(x))
}
return intVal{newInt().SetUint64(x)}
}
// MakeFloat64 returns the Float value for x.
// If x is -0.0, the result is 0.0.
// If x is not finite, the result is an Unknown.
func MakeFloat64(x float64) Value {
if math.IsInf(x, 0) || math.IsNaN(x) {
return unknownVal{}
}
if smallFloat64(x) {
return ratVal{newRat().SetFloat64(x + 0)} // convert -0 to 0
}
return floatVal{newFloat().SetFloat64(x + 0)}
}
// MakeFromLiteral returns the corresponding integer, floating-point,
// imaginary, character, or string value for a Go literal string. The
// tok value must be one of token.INT, token.FLOAT, token.IMAG,
// token.CHAR, or token.STRING. The final argument must be zero.
// If the literal string syntax is invalid, the result is an Unknown.
func MakeFromLiteral(lit string, tok token.Token, zero uint) Value {
if zero != 0 {
panic("MakeFromLiteral called with non-zero last argument")
}
switch tok {
case token.INT:
if x, err := strconv.ParseInt(lit, 0, 64); err == nil {
return int64Val(x)
}
if x, ok := newInt().SetString(lit, 0); ok {
return intVal{x}
}
case token.FLOAT:
if x := makeFloatFromLiteral(lit); x != nil {
return x
}
case token.IMAG:
if n := len(lit); n > 0 && lit[n-1] == 'i' {
if im := makeFloatFromLiteral(lit[:n-1]); im != nil {
return makeComplex(int64Val(0), im)
}
}
case token.CHAR:
if n := len(lit); n >= 2 {
if code, _, _, err := strconv.UnquoteChar(lit[1:n-1], '\''); err == nil {
return MakeInt64(int64(code))
}
}
case token.STRING:
if s, err := strconv.Unquote(lit); err == nil {
return MakeString(s)
}
default:
panic(fmt.Sprintf("%v is not a valid token", tok))
}
return unknownVal{}
}
// ----------------------------------------------------------------------------
// Accessors
//
// For unknown arguments the result is the zero value for the respective
// accessor type, except for Sign, where the result is 1.
// BoolVal returns the Go boolean value of x, which must be a Bool or an Unknown.
// If x is Unknown, the result is false.
func BoolVal(x Value) bool {
switch x := x.(type) {
case boolVal:
return bool(x)
case unknownVal:
return false
default:
panic(fmt.Sprintf("%v not a Bool", x))
}
}
// StringVal returns the Go string value of x, which must be a String or an Unknown.
// If x is Unknown, the result is "".
func StringVal(x Value) string {
switch x := x.(type) {
case *stringVal:
return x.string()
case unknownVal:
return ""
default:
panic(fmt.Sprintf("%v not a String", x))
}
}
// Int64Val returns the Go int64 value of x and whether the result is exact;
// x must be an Int or an Unknown. If the result is not exact, its value is undefined.
// If x is Unknown, the result is (0, false).
func Int64Val(x Value) (int64, bool) {
switch x := x.(type) {
case int64Val:
return int64(x), true
case intVal:
return x.val.Int64(), false // not an int64Val and thus not exact
case unknownVal:
return 0, false
default:
panic(fmt.Sprintf("%v not an Int", x))
}
}
// Uint64Val returns the Go uint64 value of x and whether the result is exact;
// x must be an Int or an Unknown. If the result is not exact, its value is undefined.
// If x is Unknown, the result is (0, false).
func Uint64Val(x Value) (uint64, bool) {
switch x := x.(type) {
case int64Val:
return uint64(x), x >= 0
case intVal:
return x.val.Uint64(), x.val.IsUint64()
case unknownVal:
return 0, false
default:
panic(fmt.Sprintf("%v not an Int", x))
}
}
// Float32Val is like Float64Val but for float32 instead of float64.
func Float32Val(x Value) (float32, bool) {
switch x := x.(type) {
case int64Val:
f := float32(x)
return f, int64Val(f) == x
case intVal:
f, acc := newFloat().SetInt(x.val).Float32()
return f, acc == big.Exact
case ratVal:
return x.val.Float32()
case floatVal:
f, acc := x.val.Float32()
return f, acc == big.Exact
case unknownVal:
return 0, false
default:
panic(fmt.Sprintf("%v not a Float", x))
}
}
// Float64Val returns the nearest Go float64 value of x and whether the result is exact;
// x must be numeric or an Unknown, but not Complex. For values too small (too close to 0)
// to represent as float64, Float64Val silently underflows to 0. The result sign always
// matches the sign of x, even for 0.
// If x is Unknown, the result is (0, false).
func Float64Val(x Value) (float64, bool) {
switch x := x.(type) {
case int64Val:
f := float64(int64(x))
return f, int64Val(f) == x
case intVal:
f, acc := newFloat().SetInt(x.val).Float64()
return f, acc == big.Exact
case ratVal:
return x.val.Float64()
case floatVal:
f, acc := x.val.Float64()
return f, acc == big.Exact
case unknownVal:
return 0, false
default:
panic(fmt.Sprintf("%v not a Float", x))
}
}
// Val returns the underlying value for a given constant. Since it returns an
// interface, it is up to the caller to type assert the result to the expected
// type. The possible dynamic return types are:
//
// x Kind type of result
// -----------------------------------------
// Bool bool
// String string
// Int int64 or *big.Int
// Float *big.Float or *big.Rat
// everything else nil
func Val(x Value) any {
switch x := x.(type) {
case boolVal:
return bool(x)
case *stringVal:
return x.string()
case int64Val:
return int64(x)
case intVal:
return x.val
case ratVal:
return x.val
case floatVal:
return x.val
default:
return nil
}
}
// Make returns the Value for x.
//
// type of x result Kind
// ----------------------------
// bool Bool
// string String
// int64 Int
// *big.Int Int
// *big.Float Float
// *big.Rat Float
// anything else Unknown
func Make(x any) Value {
switch x := x.(type) {
case bool:
return boolVal(x)
case string:
return &stringVal{s: x}
case int64:
return int64Val(x)
case *big.Int:
return makeInt(x)
case *big.Rat:
return makeRat(x)
case *big.Float:
return makeFloat(x)
default:
return unknownVal{}
}
}
// BitLen returns the number of bits required to represent
// the absolute value x in binary representation; x must be an Int or an Unknown.
// If x is Unknown, the result is 0.
func BitLen(x Value) int {
switch x := x.(type) {
case int64Val:
u := uint64(x)
if x < 0 {
u = uint64(-x)
}
return 64 - bits.LeadingZeros64(u)
case intVal:
return x.val.BitLen()
case unknownVal:
return 0
default:
panic(fmt.Sprintf("%v not an Int", x))
}
}
// Sign returns -1, 0, or 1 depending on whether x < 0, x == 0, or x > 0;
// x must be numeric or Unknown. For complex values x, the sign is 0 if x == 0,
// otherwise it is != 0. If x is Unknown, the result is 1.
func Sign(x Value) int {
switch x := x.(type) {
case int64Val:
switch {
case x < 0:
return -1
case x > 0:
return 1
}
return 0
case intVal:
return x.val.Sign()
case ratVal:
return x.val.Sign()
case floatVal:
return x.val.Sign()
case complexVal:
return Sign(x.re) | Sign(x.im)
case unknownVal:
return 1 // avoid spurious division by zero errors
default:
panic(fmt.Sprintf("%v not numeric", x))
}
}
// ----------------------------------------------------------------------------
// Support for assembling/disassembling numeric values
const (
// Compute the size of a Word in bytes.
_m = ^big.Word(0)
_log = _m>>8&1 + _m>>16&1 + _m>>32&1
wordSize = 1 << _log
)
// Bytes returns the bytes for the absolute value of x in little-
// endian binary representation; x must be an Int.
func Bytes(x Value) []byte {
var t intVal
switch x := x.(type) {
case int64Val:
t = i64toi(x)
case intVal:
t = x
default:
panic(fmt.Sprintf("%v not an Int", x))
}
words := t.val.Bits()
bytes := make([]byte, len(words)*wordSize)
i := 0
for _, w := range words {
for j := 0; j < wordSize; j++ {
bytes[i] = byte(w)
w >>= 8
i++
}
}
// remove leading 0's
for i > 0 && bytes[i-1] == 0 {
i--
}
return bytes[:i]
}
// MakeFromBytes returns the Int value given the bytes of its little-endian
// binary representation. An empty byte slice argument represents 0.
func MakeFromBytes(bytes []byte) Value {
words := make([]big.Word, (len(bytes)+(wordSize-1))/wordSize)
i := 0
var w big.Word
var s uint
for _, b := range bytes {
w |= big.Word(b) << s
if s += 8; s == wordSize*8 {
words[i] = w
i++
w = 0
s = 0
}
}
// store last word
if i < len(words) {
words[i] = w
i++
}
// remove leading 0's
for i > 0 && words[i-1] == 0 {
i--
}
return makeInt(newInt().SetBits(words[:i]))
}
// Num returns the numerator of x; x must be Int, Float, or Unknown.
// If x is Unknown, or if it is too large or small to represent as a
// fraction, the result is Unknown. Otherwise the result is an Int
// with the same sign as x.
func Num(x Value) Value {
switch x := x.(type) {
case int64Val, intVal:
return x
case ratVal:
return makeInt(x.val.Num())
case floatVal:
if smallFloat(x.val) {
r, _ := x.val.Rat(nil)
return makeInt(r.Num())
}
case unknownVal:
break
default:
panic(fmt.Sprintf("%v not Int or Float", x))
}
return unknownVal{}
}
// Denom returns the denominator of x; x must be Int, Float, or Unknown.
// If x is Unknown, or if it is too large or small to represent as a
// fraction, the result is Unknown. Otherwise the result is an Int >= 1.
func Denom(x Value) Value {
switch x := x.(type) {
case int64Val, intVal:
return int64Val(1)
case ratVal:
return makeInt(x.val.Denom())
case floatVal:
if smallFloat(x.val) {
r, _ := x.val.Rat(nil)
return makeInt(r.Denom())
}
case unknownVal:
break
default:
panic(fmt.Sprintf("%v not Int or Float", x))
}
return unknownVal{}
}
// MakeImag returns the Complex value x*i;
// x must be Int, Float, or Unknown.
// If x is Unknown, the result is Unknown.
func MakeImag(x Value) Value {
switch x.(type) {
case unknownVal:
return x
case int64Val, intVal, ratVal, floatVal:
return makeComplex(int64Val(0), x)
default:
panic(fmt.Sprintf("%v not Int or Float", x))
}
}
// Real returns the real part of x, which must be a numeric or unknown value.
// If x is Unknown, the result is Unknown.
func Real(x Value) Value {
switch x := x.(type) {
case unknownVal, int64Val, intVal, ratVal, floatVal:
return x
case complexVal:
return x.re
default:
panic(fmt.Sprintf("%v not numeric", x))
}
}
// Imag returns the imaginary part of x, which must be a numeric or unknown value.
// If x is Unknown, the result is Unknown.
func Imag(x Value) Value {
switch x := x.(type) {
case unknownVal:
return x
case int64Val, intVal, ratVal, floatVal:
return int64Val(0)
case complexVal:
return x.im
default:
panic(fmt.Sprintf("%v not numeric", x))
}
}
// ----------------------------------------------------------------------------
// Numeric conversions
// ToInt converts x to an Int value if x is representable as an Int.
// Otherwise it returns an Unknown.
func ToInt(x Value) Value {
switch x := x.(type) {
case int64Val, intVal:
return x
case ratVal:
if x.val.IsInt() {
return makeInt(x.val.Num())
}
case floatVal:
// avoid creation of huge integers
// (Existing tests require permitting exponents of at least 1024;
// allow any value that would also be permissible as a fraction.)
if smallFloat(x.val) {
i := newInt()
if _, acc := x.val.Int(i); acc == big.Exact {
return makeInt(i)
}
// If we can get an integer by rounding up or down,
// assume x is not an integer because of rounding
// errors in prior computations.
const delta = 4 // a small number of bits > 0
var t big.Float
t.SetPrec(prec - delta)
// try rounding down a little
t.SetMode(big.ToZero)
t.Set(x.val)
if _, acc := t.Int(i); acc == big.Exact {
return makeInt(i)
}
// try rounding up a little
t.SetMode(big.AwayFromZero)
t.Set(x.val)
if _, acc := t.Int(i); acc == big.Exact {
return makeInt(i)
}
}
case complexVal:
if re := ToFloat(x); re.Kind() == Float {
return ToInt(re)
}
}
return unknownVal{}
}
// ToFloat converts x to a Float value if x is representable as a Float.
// Otherwise it returns an Unknown.
func ToFloat(x Value) Value {
switch x := x.(type) {
case int64Val:
return i64tor(x) // x is always a small int
case intVal:
if smallInt(x.val) {
return itor(x)
}
return itof(x)
case ratVal, floatVal:
return x
case complexVal:
if Sign(x.im) == 0 {
return ToFloat(x.re)
}
}
return unknownVal{}
}
// ToComplex converts x to a Complex value if x is representable as a Complex.
// Otherwise it returns an Unknown.
func ToComplex(x Value) Value {
switch x := x.(type) {
case int64Val, intVal, ratVal, floatVal:
return vtoc(x)
case complexVal:
return x
}
return unknownVal{}
}
// ----------------------------------------------------------------------------
// Operations
// is32bit reports whether x can be represented using 32 bits.
func is32bit(x int64) bool {
const s = 32
return -1<<(s-1) <= x && x <= 1<<(s-1)-1
}
// is63bit reports whether x can be represented using 63 bits.
func is63bit(x int64) bool {
const s = 63
return -1<<(s-1) <= x && x <= 1<<(s-1)-1
}
// UnaryOp returns the result of the unary expression op y.
// The operation must be defined for the operand.
// If prec > 0 it specifies the ^ (xor) result size in bits.
// If y is Unknown, the result is Unknown.
func UnaryOp(op token.Token, y Value, prec uint) Value {
switch op {
case token.ADD:
switch y.(type) {
case unknownVal, int64Val, intVal, ratVal, floatVal, complexVal:
return y
}
case token.SUB:
switch y := y.(type) {
case unknownVal:
return y
case int64Val:
if z := -y; z != y {
return z // no overflow
}
return makeInt(newInt().Neg(big.NewInt(int64(y))))
case intVal:
return makeInt(newInt().Neg(y.val))
case ratVal:
return makeRat(newRat().Neg(y.val))
case floatVal:
return makeFloat(newFloat().Neg(y.val))
case complexVal:
re := UnaryOp(token.SUB, y.re, 0)
im := UnaryOp(token.SUB, y.im, 0)
return makeComplex(re, im)
}
case token.XOR:
z := newInt()
switch y := y.(type) {
case unknownVal:
return y
case int64Val:
z.Not(big.NewInt(int64(y)))
case intVal:
z.Not(y.val)
default:
goto Error
}
// For unsigned types, the result will be negative and
// thus "too large": We must limit the result precision
// to the type's precision.
if prec > 0 {
z.AndNot(z, newInt().Lsh(big.NewInt(-1), prec)) // z &^= (-1)<<prec
}
return makeInt(z)
case token.NOT:
switch y := y.(type) {
case unknownVal:
return y
case boolVal:
return !y
}
}
Error:
panic(fmt.Sprintf("invalid unary operation %s%v", op, y))
}
func ord(x Value) int {
switch x.(type) {
default:
// force invalid value into "x position" in match
// (don't panic here so that callers can provide a better error message)
return -1
case unknownVal:
return 0
case boolVal, *stringVal:
return 1
case int64Val:
return 2
case intVal:
return 3
case ratVal:
return 4
case floatVal:
return 5
case complexVal:
return 6
}
}
// match returns the matching representation (same type) with the
// smallest complexity for two values x and y. If one of them is
// numeric, both of them must be numeric. If one of them is Unknown
// or invalid (say, nil) both results are that value.
func match(x, y Value) (_, _ Value) {
switch ox, oy := ord(x), ord(y); {
case ox < oy:
x, y = match0(x, y)
case ox > oy:
y, x = match0(y, x)
}
return x, y
}
// match0 must only be called by match.
// Invariant: ord(x) < ord(y)
func match0(x, y Value) (_, _ Value) {
// Prefer to return the original x and y arguments when possible,
// to avoid unnecessary heap allocations.
switch y.(type) {
case intVal:
switch x1 := x.(type) {
case int64Val:
return i64toi(x1), y
}
case ratVal:
switch x1 := x.(type) {
case int64Val:
return i64tor(x1), y
case intVal:
return itor(x1), y
}
case floatVal:
switch x1 := x.(type) {
case int64Val:
return i64tof(x1), y
case intVal:
return itof(x1), y
case ratVal:
return rtof(x1), y
}
case complexVal:
return vtoc(x), y
}
// force unknown and invalid values into "x position" in callers of match
// (don't panic here so that callers can provide a better error message)
return x, x
}
// BinaryOp returns the result of the binary expression x op y.
// The operation must be defined for the operands. If one of the
// operands is Unknown, the result is Unknown.
// BinaryOp doesn't handle comparisons or shifts; use Compare
// or Shift instead.
//
// To force integer division of Int operands, use op == token.QUO_ASSIGN
// instead of token.QUO; the result is guaranteed to be Int in this case.
// Division by zero leads to a run-time panic.
func BinaryOp(x_ Value, op token.Token, y_ Value) Value {
x, y := match(x_, y_)
switch x := x.(type) {
case unknownVal:
return x
case boolVal:
y := y.(boolVal)
switch op {
case token.LAND:
return x && y
case token.LOR:
return x || y
}
case int64Val:
a := int64(x)
b := int64(y.(int64Val))
var c int64
switch op {
case token.ADD:
if !is63bit(a) || !is63bit(b) {
return makeInt(newInt().Add(big.NewInt(a), big.NewInt(b)))
}
c = a + b
case token.SUB:
if !is63bit(a) || !is63bit(b) {
return makeInt(newInt().Sub(big.NewInt(a), big.NewInt(b)))
}
c = a - b
case token.MUL:
if !is32bit(a) || !is32bit(b) {
return makeInt(newInt().Mul(big.NewInt(a), big.NewInt(b)))
}
c = a * b
case token.QUO:
return makeRat(big.NewRat(a, b))
case token.QUO_ASSIGN: // force integer division
c = a / b
case token.REM:
c = a % b
case token.AND:
c = a & b
case token.OR:
c = a | b
case token.XOR:
c = a ^ b
case token.AND_NOT:
c = a &^ b
default:
goto Error
}
return int64Val(c)
case intVal:
a := x.val
b := y.(intVal).val
c := newInt()
switch op {
case token.ADD:
c.Add(a, b)
case token.SUB:
c.Sub(a, b)
case token.MUL:
c.Mul(a, b)
case token.QUO:
return makeRat(newRat().SetFrac(a, b))
case token.QUO_ASSIGN: // force integer division
c.Quo(a, b)
case token.REM:
c.Rem(a, b)
case token.AND:
c.And(a, b)
case token.OR:
c.Or(a, b)
case token.XOR:
c.Xor(a, b)
case token.AND_NOT:
c.AndNot(a, b)
default:
goto Error
}
return makeInt(c)
case ratVal:
a := x.val
b := y.(ratVal).val
c := newRat()
switch op {
case token.ADD:
c.Add(a, b)
case token.SUB:
c.Sub(a, b)
case token.MUL:
c.Mul(a, b)
case token.QUO:
c.Quo(a, b)
default:
goto Error
}
return makeRat(c)
case floatVal:
a := x.val
b := y.(floatVal).val
c := newFloat()
switch op {
case token.ADD:
c.Add(a, b)
case token.SUB:
c.Sub(a, b)
case token.MUL:
c.Mul(a, b)
case token.QUO:
c.Quo(a, b)
default:
goto Error
}
return makeFloat(c)
case complexVal:
y := y.(complexVal)
a, b := x.re, x.im
c, d := y.re, y.im
var re, im Value
switch op {
case token.ADD:
// (a+c) + i(b+d)
re = add(a, c)
im = add(b, d)
case token.SUB:
// (a-c) + i(b-d)
re = sub(a, c)
im = sub(b, d)
case token.MUL:
// (ac-bd) + i(bc+ad)
ac := mul(a, c)
bd := mul(b, d)
bc := mul(b, c)
ad := mul(a, d)
re = sub(ac, bd)
im = add(bc, ad)
case token.QUO:
// (ac+bd)/s + i(bc-ad)/s, with s = cc + dd
ac := mul(a, c)
bd := mul(b, d)
bc := mul(b, c)
ad := mul(a, d)
cc := mul(c, c)
dd := mul(d, d)
s := add(cc, dd)
re = add(ac, bd)
re = quo(re, s)
im = sub(bc, ad)
im = quo(im, s)
default:
goto Error
}
return makeComplex(re, im)
case *stringVal:
if op == token.ADD {
return &stringVal{l: x, r: y.(*stringVal)}
}
}
Error:
panic(fmt.Sprintf("invalid binary operation %v %s %v", x_, op, y_))
}
func add(x, y Value) Value { return BinaryOp(x, token.ADD, y) }
func sub(x, y Value) Value { return BinaryOp(x, token.SUB, y) }
func mul(x, y Value) Value { return BinaryOp(x, token.MUL, y) }
func quo(x, y Value) Value { return BinaryOp(x, token.QUO, y) }
// Shift returns the result of the shift expression x op s
// with op == token.SHL or token.SHR (<< or >>). x must be
// an Int or an Unknown. If x is Unknown, the result is x.
func Shift(x Value, op token.Token, s uint) Value {
switch x := x.(type) {
case unknownVal:
return x
case int64Val:
if s == 0 {
return x
}
switch op {
case token.SHL:
z := i64toi(x).val
return makeInt(z.Lsh(z, s))
case token.SHR:
return x >> s
}
case intVal:
if s == 0 {
return x
}
z := newInt()
switch op {
case token.SHL:
return makeInt(z.Lsh(x.val, s))
case token.SHR:
return makeInt(z.Rsh(x.val, s))
}
}
panic(fmt.Sprintf("invalid shift %v %s %d", x, op, s))
}
func cmpZero(x int, op token.Token) bool {
switch op {
case token.EQL:
return x == 0
case token.NEQ:
return x != 0
case token.LSS:
return x < 0
case token.LEQ:
return x <= 0
case token.GTR:
return x > 0
case token.GEQ:
return x >= 0
}
panic(fmt.Sprintf("invalid comparison %v %s 0", x, op))
}
// Compare returns the result of the comparison x op y.
// The comparison must be defined for the operands.
// If one of the operands is Unknown, the result is
// false.
func Compare(x_ Value, op token.Token, y_ Value) bool {
x, y := match(x_, y_)
switch x := x.(type) {
case unknownVal:
return false
case boolVal:
y := y.(boolVal)
switch op {
case token.EQL:
return x == y
case token.NEQ:
return x != y
}
case int64Val:
y := y.(int64Val)
switch op {
case token.EQL:
return x == y
case token.NEQ:
return x != y
case token.LSS:
return x < y
case token.LEQ:
return x <= y
case token.GTR:
return x > y
case token.GEQ:
return x >= y
}
case intVal:
return cmpZero(x.val.Cmp(y.(intVal).val), op)
case ratVal:
return cmpZero(x.val.Cmp(y.(ratVal).val), op)
case floatVal:
return cmpZero(x.val.Cmp(y.(floatVal).val), op)
case complexVal:
y := y.(complexVal)
re := Compare(x.re, token.EQL, y.re)
im := Compare(x.im, token.EQL, y.im)
switch op {
case token.EQL:
return re && im
case token.NEQ:
return !re || !im
}
case *stringVal:
xs := x.string()
ys := y.(*stringVal).string()
switch op {
case token.EQL:
return xs == ys
case token.NEQ:
return xs != ys
case token.LSS:
return xs < ys
case token.LEQ:
return xs <= ys
case token.GTR:
return xs > ys
case token.GEQ:
return xs >= ys
}
}
panic(fmt.Sprintf("invalid comparison %v %s %v", x_, op, y_))
}
|