diff options
Diffstat (limited to 'src/3rdparty/2geom/tests/planar-graph-test.cpp')
-rw-r--r-- | src/3rdparty/2geom/tests/planar-graph-test.cpp | 457 |
1 files changed, 457 insertions, 0 deletions
diff --git a/src/3rdparty/2geom/tests/planar-graph-test.cpp b/src/3rdparty/2geom/tests/planar-graph-test.cpp new file mode 100644 index 0000000..f19e2eb --- /dev/null +++ b/src/3rdparty/2geom/tests/planar-graph-test.cpp @@ -0,0 +1,457 @@ +/** @file + * @brief Unit tests for PlanarGraph class template + */ +/* + * Authors: + * Rafał Siejakowski <rs@rs-math.net> + * + * Copyright 2022 the Authors + * + * This library is free software; you can redistribute it and/or + * modify it either under the terms of the GNU Lesser General Public + * License version 2.1 as published by the Free Software Foundation + * (the "LGPL") or, at your option, under the terms of the Mozilla + * Public License Version 1.1 (the "MPL"). If you do not alter this + * notice, a recipient may use your version of this file under either + * the MPL or the LGPL. + * + * You should have received a copy of the LGPL along with this library + * in the file COPYING-LGPL-2.1; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * You should have received a copy of the MPL along with this library + * in the file COPYING-MPL-1.1 + * + * The contents of this file are subject to the Mozilla Public License + * Version 1.1 (the "License"); you may not use this file except in + * compliance with the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY + * OF ANY KIND, either express or implied. See the LGPL or the MPL for + * the specific language governing rights and limitations. + */ + +#include <gtest/gtest.h> +#include <iostream> + +#include <2geom/point.h> +#include <2geom/pathvector.h> +#include <2geom/svg-path-parser.h> +#include <2geom/svg-path-writer.h> + +#include "planar-graph.h" +#include "testing.h" + +using namespace Geom; + +#define PV(d) (parse_svg_path(d)) +#define PTH(d) (std::move(PV(d)[0])) +#define REV(d) ((PV(d)[0]).reversed()) + +/** An edge label for the purpose of tests. */ +struct TestLabel +{ + unsigned reversal_count = 0, merge_count = 0, detachment_count = 0; + void onReverse() { reversal_count++; } + void onMergeWith(TestLabel const &) { merge_count++; } + void onDetach() { detachment_count++; } +}; + +using TestGraph = PlanarGraph<TestLabel>; + +static std::vector<TestLabel> extract_labels(TestGraph const &graph) +{ + // Find labels of edges remaining in the graph. + std::vector<TestLabel> result; + for (auto &e : graph.getEdges()) { + if (!e.detached) { + result.push_back(e.label); + } + } + return result; +} + +class PlanarGraphTest : public ::testing::Test +{ +}; + +/** Test edge insertion and vertex clumping to within the tolerance. */ +TEST(PlanarGraphTest, EdgeInsertion) +{ + double const precision = 1e-3; + auto graph = TestGraph(precision); + graph.insertEdge(PTH("M 0, 0 L 1, 0")); + graph.insertEdge(PTH("M 0, 1 L 1, 1")); // } Endpoints near + graph.insertEdge(PTH("M 1, 0 L 1, 1.0009")); // } but not exact. + + auto vertices = graph.getVertices(); + + // Test vertex clumping within the given precision + EXPECT_EQ(vertices.size(), 4); + EXPECT_EQ(graph.numEdges(), 3); + + // Test lexicographic vertex position sorting by X and then Y + EXPECT_EQ(vertices.front().point(), Point(0, 0)); + auto after = std::next(vertices.begin()); + EXPECT_EQ(after->point(), Point(0, 1)); + ++after; + EXPECT_EQ(after->point(), Point(1, 0)); + EXPECT_TRUE(are_near(vertices.back().point(), Point(1, 1), precision)); + + EXPECT_FALSE(graph.isRegularized()); +} + +/** Test PlanarGraph<T>::insertDetached(). */ +TEST(PlanarGraphTest, InsertDetached) +{ + TestGraph graph; + auto detached = graph.insertDetached(PTH("M 0,0 A 1,1 0,0,1 2,0 V -2 H 0 Z")); + + auto const &edges = graph.getEdges(); + EXPECT_EQ(edges.size(), 1); + EXPECT_TRUE(edges.at(detached).detached); + EXPECT_TRUE(edges.at(detached).inserted_as_detached); + + EXPECT_EQ(graph.numVertices(), 0); + EXPECT_EQ(graph.numEdges(false), 0); + EXPECT_TRUE(graph.isRegularized()); +} + +/** Test signed area calculation. */ +TEST(PlanarGraphTest, ClosedPathArea) +{ + // Square with counter-clockwise oriented boundary, when imagining that the y-axis + // points up – expect the area to be +1. + auto square_positive = PTH("M 0,0 H 1 V 1 H 0 Z"); + EXPECT_DOUBLE_EQ(TestGraph::closedPathArea(square_positive), 1.0); + + // Expect negative area for a negatively oriented path. + auto triangle_negative = PTH("M 0,0 V 1 L 1,1 Z"); + EXPECT_DOUBLE_EQ(TestGraph::closedPathArea(triangle_negative), -0.5); +} + +/** Test the detection of direction of deviation of initially tangent paths. */ +TEST(PlanarGraphTest, Deviation) +{ + auto vertical_up = PTH("M 0,0 V 1"); + auto arc_right1 = PTH("M 0,0 A 1,1 0,1,0 2,0"); + auto arc_left1 = PTH("M 0,0 A 1,1 0,1,1 -2,0"); + auto arc_right2 = PTH("M 0,0 A 2,2 0,1,0, 4,0"); + auto arc_left2 = PTH("M 0,0 A 2,2 0,1,1 -4,0"); + // A very "flat" Bézier curve deviating to the right but slower than the large arc + auto bezier_right = PTH("M 0,0 C 0,50 1,20 2,10"); + + EXPECT_TRUE(TestGraph::deviatesLeft(arc_left1, arc_left2)); + EXPECT_TRUE(TestGraph::deviatesLeft(arc_left2, vertical_up)); + EXPECT_TRUE(TestGraph::deviatesLeft(vertical_up, arc_right2)); + EXPECT_TRUE(TestGraph::deviatesLeft(vertical_up, bezier_right)); + EXPECT_TRUE(TestGraph::deviatesLeft(bezier_right, arc_right2)); + EXPECT_TRUE(TestGraph::deviatesLeft(arc_right2, arc_right1)); + EXPECT_TRUE(TestGraph::deviatesLeft(arc_left1, arc_right1)); + EXPECT_TRUE(TestGraph::deviatesLeft(arc_left2, arc_right1)); + + EXPECT_FALSE(TestGraph::deviatesLeft(arc_right1, vertical_up)); + EXPECT_FALSE(TestGraph::deviatesLeft(arc_right1, arc_right2)); + EXPECT_FALSE(TestGraph::deviatesLeft(vertical_up, arc_left2)); + EXPECT_FALSE(TestGraph::deviatesLeft(arc_left2, arc_left1)); + EXPECT_FALSE(TestGraph::deviatesLeft(arc_right1, arc_left1)); + EXPECT_FALSE(TestGraph::deviatesLeft(arc_right1, arc_left2)); +} + +/** Test sorting of incidences at a vertex by the outgoing heading. */ +TEST(PlanarGraphTest, BasicAzimuthalSort) +{ + TestGraph graph; + + // Imagine the Y-axis pointing up (as in mathematics)! + bool const clockwise = true; + unsigned const num_rays = 9; + unsigned edges[num_rays]; + + // Insert the edges randomly but store them in what we know to be the + // clockwise order of outgoing azimuths from the vertex at the origin. + edges[7] = graph.insertEdge(PTH("M -0.2, -1 L 0, 0")); + edges[1] = graph.insertEdge(PTH("M -1, 0.2 L 0, 0")); + edges[4] = graph.insertEdge(PTH("M 0, 0 L 1, 0.2")); + edges[6] = graph.insertEdge(PTH("M 0.1, -1 L 0, 0")); + edges[2] = graph.insertEdge(PTH("M 0, 0 L -0.3, 1")); + edges[0] = graph.insertEdge(PTH("M -1, 0 H 0")); + edges[5] = graph.insertEdge(PTH("M 0, 0 L 1, -0.2")); + edges[3] = graph.insertEdge(PTH("M 0.2, 1 L 0, 0")); + edges[8] = graph.insertEdge(PTH("M -1, -0.1 L 0, 0")); + + // We expect the incidence to edges[0] to be the last one + // in the sort order so it should appear first when going clockwise. + auto [origin, incidence] = graph.getIncidence(edges[0], TestGraph::Incidence::END); + ASSERT_TRUE(origin); + ASSERT_TRUE(incidence); + + // Expect ±pi as the azimuth + EXPECT_DOUBLE_EQ(std::abs(incidence->azimuth), M_PI); + + // Test sort order + for (unsigned i = 0; i < num_rays; i++) { + EXPECT_EQ(incidence->index, edges[i]); + incidence = (TestGraph::Incidence *)&graph.nextIncidence(*origin, *incidence, clockwise); + } +} + +/** Test retrieval of a path inserted as an edge in both orientations. */ +TEST(PlanarGraphTest, PathRetrieval) +{ + TestGraph graph; + + Path const path = PTH("M 0,0 L 1,1 C 2,2 4,2 5,1"); + Path const htap = path.reversed(); + + auto edge = graph.insertEdge(path); + + ASSERT_EQ(graph.numEdges(), 1); + + auto [start_point, start_incidence] = graph.getIncidence(edge, TestGraph::Incidence::START); + ASSERT_TRUE(start_point); + ASSERT_TRUE(start_incidence); + EXPECT_EQ(graph.getOutgoingPath(start_incidence), path); + EXPECT_EQ(graph.getIncomingPath(start_incidence), htap); + + auto [end_point, end_incidence] = graph.getIncidence(edge, TestGraph::Incidence::END); + ASSERT_TRUE(end_point); + ASSERT_TRUE(end_incidence); + EXPECT_EQ(graph.getIncomingPath(end_incidence), path); + EXPECT_EQ(graph.getOutgoingPath(end_incidence), htap); +} + +/** Make sure the edge labels are correctly stored. */ +TEST(PlanarGraphTest, LabelRetrieval) +{ + TestGraph graph; + TestLabel label; + + label.reversal_count = 420; + label.merge_count = 69; + label.detachment_count = 111; + + auto edge = graph.insertEdge(PTH("M 0,0 L 1,1"), std::move(label)); + + auto retrieved = graph.getEdge(edge).label; + EXPECT_EQ(retrieved.reversal_count, 420); + EXPECT_EQ(retrieved.merge_count, 69); + EXPECT_EQ(retrieved.detachment_count, 111); +} + +/** Regularization of duplicate edges. */ +TEST(PlanarGraphTest, MergeDuplicate) +{ + char const *const d = "M 2, 3 H 0 C 1,4 1,5 0,6 H 10 L 8, 0"; + char const *const near_d = "M 2.0009,3 H 0 C 1,4 1,5 0,6 H 10.0009 L 8, 0.0005"; + + // Test removal of perfect overlap: + TestGraph graph; + graph.insertEdge(PTH(d)); + graph.insertEdge(PTH(d)); // exact duplicate + graph.regularize(); + + EXPECT_TRUE(graph.isRegularized()); + + auto remaining = extract_labels(graph); + + // Expect there to be only 1 edge after regularization. + ASSERT_EQ(remaining.size(), 1); + + EXPECT_EQ(remaining[0].merge_count, 1); // expect one merge, + EXPECT_EQ(remaining[0].reversal_count, 0); // no reversals, + EXPECT_EQ(remaining[0].detachment_count, 0); // no detachments. + + // Test removal of imperfect overlaps within numerical precision + TestGraph fuzzy{1e-3}; + fuzzy.insertEdge(PTH(d)); + fuzzy.insertEdge(PTH(near_d)); + fuzzy.regularize(); + + EXPECT_TRUE(fuzzy.isRegularized()); + + auto fuzmaining = extract_labels(fuzzy); + ASSERT_EQ(fuzmaining.size(), 1); + + EXPECT_EQ(fuzmaining[0].merge_count, 1); // expect one merge, + EXPECT_EQ(fuzmaining[0].reversal_count, 0); // no reversals, + EXPECT_EQ(fuzmaining[0].detachment_count, 0); // no detachments. + + // Test overlap of edges with oppositie orientations. + TestGraph twoway; + twoway.insertEdge(PTH(d)); + twoway.insertEdge(REV(d)); + twoway.regularize(); + + EXPECT_TRUE(twoway.isRegularized()); + + auto left = extract_labels(twoway); + ASSERT_EQ(left.size(), 1); + + EXPECT_EQ(left[0].merge_count, 1); // expect one merge, + EXPECT_TRUE(left[0].reversal_count == 0 || left[0].reversal_count == 1); // 0 or 1 reversals + EXPECT_EQ(left[0].detachment_count, 0); // no detachments. +} + +/** Regularization of a shorter edge overlapping a longer one. */ +TEST(PlanarGraphTest, MergePartial) +{ + TestGraph graph; + auto longer = graph.insertEdge(PTH("M 0, 0 L 10, 10")); + auto shorter = graph.insertEdge(PTH("M 0, 0 L 6, 6")); + + EXPECT_EQ(graph.numVertices(), 3); + + graph.regularize(); + + EXPECT_EQ(graph.numVertices(), 3); + EXPECT_TRUE(graph.isRegularized()); + + auto labels = extract_labels(graph); + ASSERT_EQ(labels.size(), 2); + + EXPECT_EQ(labels[longer].merge_count, 0); + EXPECT_EQ(labels[longer].reversal_count, 0); + EXPECT_EQ(labels[longer].detachment_count, 0); + + EXPECT_EQ(labels[shorter].merge_count, 1); + EXPECT_EQ(labels[shorter].reversal_count, 0); + EXPECT_EQ(labels[shorter].detachment_count, 0); + + // Now the same thing but with edges of opposite orientations. + TestGraph graphopp; + longer = graphopp.insertEdge(PTH("M 0, 0 L 10, 0")); + shorter = graphopp.insertEdge(PTH("M 10, 0 L 5, 0")); + + EXPECT_EQ(graphopp.numVertices(), 3); + + graphopp.regularize(); + + EXPECT_EQ(graphopp.numVertices(), 3); + EXPECT_TRUE(graphopp.isRegularized()); + + labels = extract_labels(graphopp); + ASSERT_EQ(labels.size(), 2); + + EXPECT_EQ(labels[longer].merge_count, 0); + EXPECT_EQ(labels[longer].reversal_count, 0); + EXPECT_EQ(labels[longer].detachment_count, 0); + + EXPECT_EQ(labels[shorter].merge_count, 1); + EXPECT_EQ(labels[shorter].reversal_count, 0); + EXPECT_EQ(labels[shorter].detachment_count, 0); +} + +/** Regularization of a Y-split. */ +TEST(PlanarGraphTest, MergeY) +{ + TestGraph graph; + auto left = graph.insertEdge(PTH("M 1 0 V 1 L 0, 2")); + auto right = graph.insertEdge(PTH("M 1,0 V 1 L 2, 2")); + + EXPECT_EQ(graph.numVertices(), 3); + graph.regularize(); + EXPECT_EQ(graph.numVertices(), 4); + + auto edges = graph.getEdges(); + EXPECT_EQ(edges.size(), 3); + + EXPECT_TRUE(are_near(edges[right].start->point(), Point(1, 1))); +} + +/** Test reversal of a wrongly oriented teardrop */ +TEST(PlanarGraphTest, Teardrop) +{ + TestGraph graph; + auto loop = graph.insertEdge(PTH("M 1,0 A 1,1, 0,0,1 0,1 L 2,2 V 1 H 1 V 0")); + // Insert a few unrelated edges + auto before = graph.insertEdge(PTH("M 1,0 H 10")); + auto after = graph.insertEdge(PTH("M 1,0 H -10")); + + EXPECT_EQ(graph.numVertices(), 3); + + graph.regularize(); + + EXPECT_EQ(graph.numVertices(), 3); + auto [start_vertex, start_incidence] = graph.getIncidence(loop, TestGraph::Incidence::START); + auto [end_vertex, end_incidence] = graph.getIncidence(loop, TestGraph::Incidence::END); + + EXPECT_EQ(start_vertex, end_vertex); + ASSERT_NE(start_vertex, nullptr); + + // Check that the incidences have been swapped + EXPECT_EQ(start_vertex->cyclicNextIncidence(end_incidence), start_incidence); + EXPECT_EQ(start_vertex->cyclicPrevIncidence(start_incidence), end_incidence); + auto [b, before_incidence] = graph.getIncidence(before, TestGraph::Incidence::START); + EXPECT_EQ(start_vertex->cyclicNextIncidence(before_incidence), end_incidence); + auto [a, after_incidence] = graph.getIncidence(after, TestGraph::Incidence::START); + EXPECT_EQ(start_vertex->cyclicPrevIncidence(after_incidence), start_incidence); +} + +/** Test the regularization of a lasso-shaped path. */ +TEST(PlanarGraphTest, ReglueLasso) +{ + TestGraph graph; + // Insert a lasso-shaped path (a teardrop with initial self-overlap). + auto original_lasso = graph.insertEdge(PTH("M 0,0 V 1 C 0,2 1,3 1,4 " + "A 1,1 0,1,1 -1,4 C -1,3 0,2 0,1 V 0")); + EXPECT_EQ(graph.numVertices(), 1); + + graph.regularize(); + EXPECT_EQ(graph.numVertices(), 2); + EXPECT_EQ(graph.numEdges(false), 2); + EXPECT_TRUE(graph.getEdge(original_lasso).detached); + + auto const &edges = graph.getEdges(); + // Find the edge from origin and ensure it got glued. + auto from_origin = std::find_if(edges.begin(), edges.end(), [](auto const &edge) -> bool { + return !edge.detached && (edge.start->point() == Point(0, 0) || + edge.end->point() == Point(0, 0)); + }); + ASSERT_NE(from_origin, edges.end()); + ASSERT_EQ(from_origin->label.merge_count, 1); +} + +/** Test the removal of a collapsed loop. */ +TEST(PlanarGraphTest, RemoveCollapsed) +{ + TestGraph graph; + // Insert a collapsed loop + auto collapsed = graph.insertEdge(PTH("M 0,0 L 1,1 L 0,0")); + ASSERT_EQ(graph.numEdges(), 1); + graph.regularize(); + ASSERT_EQ(graph.numEdges(false), 0); + ASSERT_TRUE(graph.getEdge(collapsed).detached); + + TestGraph fuzzy(1e-3); + // Insert a nearly collapsed loop + auto nearly = fuzzy.insertEdge(PTH("M 0,0 H 2 V 0.001 L 1,0 H 0")); + ASSERT_EQ(fuzzy.numEdges(), 1); + fuzzy.regularize(); + ASSERT_EQ(fuzzy.numEdges(false), 0); + ASSERT_TRUE(fuzzy.getEdge(nearly).detached); +} + +/** Test regularization of straddling runs. */ +TEST(PlanarGraphTest, RemoveWisp) +{ + TestGraph graph; + // Insert a horizontal segment at the origin towards positive X: + graph.insertEdge(PTH("M 0 0 H 1")); + // Insert a path with a collapsed Bézier curve towards negative X: + graph.insertEdge(PTH("M 0 0 C -1 0 -1 0 0 0")); + graph.regularize(); + + // Ensure that the folded Bézier is removed (and no segfault occurs). + EXPECT_EQ(graph.numEdges(false), 1); +} +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |