1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
|
/** @file
* @brief Unit tests for PlanarGraph class template
*/
/*
* Authors:
* Rafał Siejakowski <rs@rs-math.net>
*
* Copyright 2022 the Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#include <gtest/gtest.h>
#include <iostream>
#include <2geom/point.h>
#include <2geom/pathvector.h>
#include <2geom/svg-path-parser.h>
#include <2geom/svg-path-writer.h>
#include "planar-graph.h"
#include "testing.h"
using namespace Geom;
#define PV(d) (parse_svg_path(d))
#define PTH(d) (std::move(PV(d)[0]))
#define REV(d) ((PV(d)[0]).reversed())
/** An edge label for the purpose of tests. */
struct TestLabel
{
unsigned reversal_count = 0, merge_count = 0, detachment_count = 0;
void onReverse() { reversal_count++; }
void onMergeWith(TestLabel const &) { merge_count++; }
void onDetach() { detachment_count++; }
};
using TestGraph = PlanarGraph<TestLabel>;
static std::vector<TestLabel> extract_labels(TestGraph const &graph)
{
// Find labels of edges remaining in the graph.
std::vector<TestLabel> result;
for (auto &e : graph.getEdges()) {
if (!e.detached) {
result.push_back(e.label);
}
}
return result;
}
class PlanarGraphTest : public ::testing::Test
{
};
/** Test edge insertion and vertex clumping to within the tolerance. */
TEST(PlanarGraphTest, EdgeInsertion)
{
double const precision = 1e-3;
auto graph = TestGraph(precision);
graph.insertEdge(PTH("M 0, 0 L 1, 0"));
graph.insertEdge(PTH("M 0, 1 L 1, 1")); // } Endpoints near
graph.insertEdge(PTH("M 1, 0 L 1, 1.0009")); // } but not exact.
auto vertices = graph.getVertices();
// Test vertex clumping within the given precision
EXPECT_EQ(vertices.size(), 4);
EXPECT_EQ(graph.numEdges(), 3);
// Test lexicographic vertex position sorting by X and then Y
EXPECT_EQ(vertices.front().point(), Point(0, 0));
auto after = std::next(vertices.begin());
EXPECT_EQ(after->point(), Point(0, 1));
++after;
EXPECT_EQ(after->point(), Point(1, 0));
EXPECT_TRUE(are_near(vertices.back().point(), Point(1, 1), precision));
EXPECT_FALSE(graph.isRegularized());
}
/** Test PlanarGraph<T>::insertDetached(). */
TEST(PlanarGraphTest, InsertDetached)
{
TestGraph graph;
auto detached = graph.insertDetached(PTH("M 0,0 A 1,1 0,0,1 2,0 V -2 H 0 Z"));
auto const &edges = graph.getEdges();
EXPECT_EQ(edges.size(), 1);
EXPECT_TRUE(edges.at(detached).detached);
EXPECT_TRUE(edges.at(detached).inserted_as_detached);
EXPECT_EQ(graph.numVertices(), 0);
EXPECT_EQ(graph.numEdges(false), 0);
EXPECT_TRUE(graph.isRegularized());
}
/** Test signed area calculation. */
TEST(PlanarGraphTest, ClosedPathArea)
{
// Square with counter-clockwise oriented boundary, when imagining that the y-axis
// points up – expect the area to be +1.
auto square_positive = PTH("M 0,0 H 1 V 1 H 0 Z");
EXPECT_DOUBLE_EQ(TestGraph::closedPathArea(square_positive), 1.0);
// Expect negative area for a negatively oriented path.
auto triangle_negative = PTH("M 0,0 V 1 L 1,1 Z");
EXPECT_DOUBLE_EQ(TestGraph::closedPathArea(triangle_negative), -0.5);
}
/** Test the detection of direction of deviation of initially tangent paths. */
TEST(PlanarGraphTest, Deviation)
{
auto vertical_up = PTH("M 0,0 V 1");
auto arc_right1 = PTH("M 0,0 A 1,1 0,1,0 2,0");
auto arc_left1 = PTH("M 0,0 A 1,1 0,1,1 -2,0");
auto arc_right2 = PTH("M 0,0 A 2,2 0,1,0, 4,0");
auto arc_left2 = PTH("M 0,0 A 2,2 0,1,1 -4,0");
// A very "flat" Bézier curve deviating to the right but slower than the large arc
auto bezier_right = PTH("M 0,0 C 0,50 1,20 2,10");
EXPECT_TRUE(TestGraph::deviatesLeft(arc_left1, arc_left2));
EXPECT_TRUE(TestGraph::deviatesLeft(arc_left2, vertical_up));
EXPECT_TRUE(TestGraph::deviatesLeft(vertical_up, arc_right2));
EXPECT_TRUE(TestGraph::deviatesLeft(vertical_up, bezier_right));
EXPECT_TRUE(TestGraph::deviatesLeft(bezier_right, arc_right2));
EXPECT_TRUE(TestGraph::deviatesLeft(arc_right2, arc_right1));
EXPECT_TRUE(TestGraph::deviatesLeft(arc_left1, arc_right1));
EXPECT_TRUE(TestGraph::deviatesLeft(arc_left2, arc_right1));
EXPECT_FALSE(TestGraph::deviatesLeft(arc_right1, vertical_up));
EXPECT_FALSE(TestGraph::deviatesLeft(arc_right1, arc_right2));
EXPECT_FALSE(TestGraph::deviatesLeft(vertical_up, arc_left2));
EXPECT_FALSE(TestGraph::deviatesLeft(arc_left2, arc_left1));
EXPECT_FALSE(TestGraph::deviatesLeft(arc_right1, arc_left1));
EXPECT_FALSE(TestGraph::deviatesLeft(arc_right1, arc_left2));
}
/** Test sorting of incidences at a vertex by the outgoing heading. */
TEST(PlanarGraphTest, BasicAzimuthalSort)
{
TestGraph graph;
// Imagine the Y-axis pointing up (as in mathematics)!
bool const clockwise = true;
unsigned const num_rays = 9;
unsigned edges[num_rays];
// Insert the edges randomly but store them in what we know to be the
// clockwise order of outgoing azimuths from the vertex at the origin.
edges[7] = graph.insertEdge(PTH("M -0.2, -1 L 0, 0"));
edges[1] = graph.insertEdge(PTH("M -1, 0.2 L 0, 0"));
edges[4] = graph.insertEdge(PTH("M 0, 0 L 1, 0.2"));
edges[6] = graph.insertEdge(PTH("M 0.1, -1 L 0, 0"));
edges[2] = graph.insertEdge(PTH("M 0, 0 L -0.3, 1"));
edges[0] = graph.insertEdge(PTH("M -1, 0 H 0"));
edges[5] = graph.insertEdge(PTH("M 0, 0 L 1, -0.2"));
edges[3] = graph.insertEdge(PTH("M 0.2, 1 L 0, 0"));
edges[8] = graph.insertEdge(PTH("M -1, -0.1 L 0, 0"));
// We expect the incidence to edges[0] to be the last one
// in the sort order so it should appear first when going clockwise.
auto [origin, incidence] = graph.getIncidence(edges[0], TestGraph::Incidence::END);
ASSERT_TRUE(origin);
ASSERT_TRUE(incidence);
// Expect ±pi as the azimuth
EXPECT_DOUBLE_EQ(std::abs(incidence->azimuth), M_PI);
// Test sort order
for (unsigned i = 0; i < num_rays; i++) {
EXPECT_EQ(incidence->index, edges[i]);
incidence = (TestGraph::Incidence *)&graph.nextIncidence(*origin, *incidence, clockwise);
}
}
/** Test retrieval of a path inserted as an edge in both orientations. */
TEST(PlanarGraphTest, PathRetrieval)
{
TestGraph graph;
Path const path = PTH("M 0,0 L 1,1 C 2,2 4,2 5,1");
Path const htap = path.reversed();
auto edge = graph.insertEdge(path);
ASSERT_EQ(graph.numEdges(), 1);
auto [start_point, start_incidence] = graph.getIncidence(edge, TestGraph::Incidence::START);
ASSERT_TRUE(start_point);
ASSERT_TRUE(start_incidence);
EXPECT_EQ(graph.getOutgoingPath(start_incidence), path);
EXPECT_EQ(graph.getIncomingPath(start_incidence), htap);
auto [end_point, end_incidence] = graph.getIncidence(edge, TestGraph::Incidence::END);
ASSERT_TRUE(end_point);
ASSERT_TRUE(end_incidence);
EXPECT_EQ(graph.getIncomingPath(end_incidence), path);
EXPECT_EQ(graph.getOutgoingPath(end_incidence), htap);
}
/** Make sure the edge labels are correctly stored. */
TEST(PlanarGraphTest, LabelRetrieval)
{
TestGraph graph;
TestLabel label;
label.reversal_count = 420;
label.merge_count = 69;
label.detachment_count = 111;
auto edge = graph.insertEdge(PTH("M 0,0 L 1,1"), std::move(label));
auto retrieved = graph.getEdge(edge).label;
EXPECT_EQ(retrieved.reversal_count, 420);
EXPECT_EQ(retrieved.merge_count, 69);
EXPECT_EQ(retrieved.detachment_count, 111);
}
/** Regularization of duplicate edges. */
TEST(PlanarGraphTest, MergeDuplicate)
{
char const *const d = "M 2, 3 H 0 C 1,4 1,5 0,6 H 10 L 8, 0";
char const *const near_d = "M 2.0009,3 H 0 C 1,4 1,5 0,6 H 10.0009 L 8, 0.0005";
// Test removal of perfect overlap:
TestGraph graph;
graph.insertEdge(PTH(d));
graph.insertEdge(PTH(d)); // exact duplicate
graph.regularize();
EXPECT_TRUE(graph.isRegularized());
auto remaining = extract_labels(graph);
// Expect there to be only 1 edge after regularization.
ASSERT_EQ(remaining.size(), 1);
EXPECT_EQ(remaining[0].merge_count, 1); // expect one merge,
EXPECT_EQ(remaining[0].reversal_count, 0); // no reversals,
EXPECT_EQ(remaining[0].detachment_count, 0); // no detachments.
// Test removal of imperfect overlaps within numerical precision
TestGraph fuzzy{1e-3};
fuzzy.insertEdge(PTH(d));
fuzzy.insertEdge(PTH(near_d));
fuzzy.regularize();
EXPECT_TRUE(fuzzy.isRegularized());
auto fuzmaining = extract_labels(fuzzy);
ASSERT_EQ(fuzmaining.size(), 1);
EXPECT_EQ(fuzmaining[0].merge_count, 1); // expect one merge,
EXPECT_EQ(fuzmaining[0].reversal_count, 0); // no reversals,
EXPECT_EQ(fuzmaining[0].detachment_count, 0); // no detachments.
// Test overlap of edges with oppositie orientations.
TestGraph twoway;
twoway.insertEdge(PTH(d));
twoway.insertEdge(REV(d));
twoway.regularize();
EXPECT_TRUE(twoway.isRegularized());
auto left = extract_labels(twoway);
ASSERT_EQ(left.size(), 1);
EXPECT_EQ(left[0].merge_count, 1); // expect one merge,
EXPECT_TRUE(left[0].reversal_count == 0 || left[0].reversal_count == 1); // 0 or 1 reversals
EXPECT_EQ(left[0].detachment_count, 0); // no detachments.
}
/** Regularization of a shorter edge overlapping a longer one. */
TEST(PlanarGraphTest, MergePartial)
{
TestGraph graph;
auto longer = graph.insertEdge(PTH("M 0, 0 L 10, 10"));
auto shorter = graph.insertEdge(PTH("M 0, 0 L 6, 6"));
EXPECT_EQ(graph.numVertices(), 3);
graph.regularize();
EXPECT_EQ(graph.numVertices(), 3);
EXPECT_TRUE(graph.isRegularized());
auto labels = extract_labels(graph);
ASSERT_EQ(labels.size(), 2);
EXPECT_EQ(labels[longer].merge_count, 0);
EXPECT_EQ(labels[longer].reversal_count, 0);
EXPECT_EQ(labels[longer].detachment_count, 0);
EXPECT_EQ(labels[shorter].merge_count, 1);
EXPECT_EQ(labels[shorter].reversal_count, 0);
EXPECT_EQ(labels[shorter].detachment_count, 0);
// Now the same thing but with edges of opposite orientations.
TestGraph graphopp;
longer = graphopp.insertEdge(PTH("M 0, 0 L 10, 0"));
shorter = graphopp.insertEdge(PTH("M 10, 0 L 5, 0"));
EXPECT_EQ(graphopp.numVertices(), 3);
graphopp.regularize();
EXPECT_EQ(graphopp.numVertices(), 3);
EXPECT_TRUE(graphopp.isRegularized());
labels = extract_labels(graphopp);
ASSERT_EQ(labels.size(), 2);
EXPECT_EQ(labels[longer].merge_count, 0);
EXPECT_EQ(labels[longer].reversal_count, 0);
EXPECT_EQ(labels[longer].detachment_count, 0);
EXPECT_EQ(labels[shorter].merge_count, 1);
EXPECT_EQ(labels[shorter].reversal_count, 0);
EXPECT_EQ(labels[shorter].detachment_count, 0);
}
/** Regularization of a Y-split. */
TEST(PlanarGraphTest, MergeY)
{
TestGraph graph;
auto left = graph.insertEdge(PTH("M 1 0 V 1 L 0, 2"));
auto right = graph.insertEdge(PTH("M 1,0 V 1 L 2, 2"));
EXPECT_EQ(graph.numVertices(), 3);
graph.regularize();
EXPECT_EQ(graph.numVertices(), 4);
auto edges = graph.getEdges();
EXPECT_EQ(edges.size(), 3);
EXPECT_TRUE(are_near(edges[right].start->point(), Point(1, 1)));
}
/** Test reversal of a wrongly oriented teardrop */
TEST(PlanarGraphTest, Teardrop)
{
TestGraph graph;
auto loop = graph.insertEdge(PTH("M 1,0 A 1,1, 0,0,1 0,1 L 2,2 V 1 H 1 V 0"));
// Insert a few unrelated edges
auto before = graph.insertEdge(PTH("M 1,0 H 10"));
auto after = graph.insertEdge(PTH("M 1,0 H -10"));
EXPECT_EQ(graph.numVertices(), 3);
graph.regularize();
EXPECT_EQ(graph.numVertices(), 3);
auto [start_vertex, start_incidence] = graph.getIncidence(loop, TestGraph::Incidence::START);
auto [end_vertex, end_incidence] = graph.getIncidence(loop, TestGraph::Incidence::END);
EXPECT_EQ(start_vertex, end_vertex);
ASSERT_NE(start_vertex, nullptr);
// Check that the incidences have been swapped
EXPECT_EQ(start_vertex->cyclicNextIncidence(end_incidence), start_incidence);
EXPECT_EQ(start_vertex->cyclicPrevIncidence(start_incidence), end_incidence);
auto [b, before_incidence] = graph.getIncidence(before, TestGraph::Incidence::START);
EXPECT_EQ(start_vertex->cyclicNextIncidence(before_incidence), end_incidence);
auto [a, after_incidence] = graph.getIncidence(after, TestGraph::Incidence::START);
EXPECT_EQ(start_vertex->cyclicPrevIncidence(after_incidence), start_incidence);
}
/** Test the regularization of a lasso-shaped path. */
TEST(PlanarGraphTest, ReglueLasso)
{
TestGraph graph;
// Insert a lasso-shaped path (a teardrop with initial self-overlap).
auto original_lasso = graph.insertEdge(PTH("M 0,0 V 1 C 0,2 1,3 1,4 "
"A 1,1 0,1,1 -1,4 C -1,3 0,2 0,1 V 0"));
EXPECT_EQ(graph.numVertices(), 1);
graph.regularize();
EXPECT_EQ(graph.numVertices(), 2);
EXPECT_EQ(graph.numEdges(false), 2);
EXPECT_TRUE(graph.getEdge(original_lasso).detached);
auto const &edges = graph.getEdges();
// Find the edge from origin and ensure it got glued.
auto from_origin = std::find_if(edges.begin(), edges.end(), [](auto const &edge) -> bool {
return !edge.detached && (edge.start->point() == Point(0, 0) ||
edge.end->point() == Point(0, 0));
});
ASSERT_NE(from_origin, edges.end());
ASSERT_EQ(from_origin->label.merge_count, 1);
}
/** Test the removal of a collapsed loop. */
TEST(PlanarGraphTest, RemoveCollapsed)
{
TestGraph graph;
// Insert a collapsed loop
auto collapsed = graph.insertEdge(PTH("M 0,0 L 1,1 L 0,0"));
ASSERT_EQ(graph.numEdges(), 1);
graph.regularize();
ASSERT_EQ(graph.numEdges(false), 0);
ASSERT_TRUE(graph.getEdge(collapsed).detached);
TestGraph fuzzy(1e-3);
// Insert a nearly collapsed loop
auto nearly = fuzzy.insertEdge(PTH("M 0,0 H 2 V 0.001 L 1,0 H 0"));
ASSERT_EQ(fuzzy.numEdges(), 1);
fuzzy.regularize();
ASSERT_EQ(fuzzy.numEdges(false), 0);
ASSERT_TRUE(fuzzy.getEdge(nearly).detached);
}
/** Test regularization of straddling runs. */
TEST(PlanarGraphTest, RemoveWisp)
{
TestGraph graph;
// Insert a horizontal segment at the origin towards positive X:
graph.insertEdge(PTH("M 0 0 H 1"));
// Insert a path with a collapsed Bézier curve towards negative X:
graph.insertEdge(PTH("M 0 0 C -1 0 -1 0 0 0"));
graph.regularize();
// Ensure that the folded Bézier is removed (and no segfault occurs).
EXPECT_EQ(graph.numEdges(false), 1);
}
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|