summaryrefslogtreecommitdiffstats
path: root/src/trace/quantize.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/trace/quantize.cpp')
-rw-r--r--src/trace/quantize.cpp555
1 files changed, 555 insertions, 0 deletions
diff --git a/src/trace/quantize.cpp b/src/trace/quantize.cpp
new file mode 100644
index 0000000..a79ec01
--- /dev/null
+++ b/src/trace/quantize.cpp
@@ -0,0 +1,555 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Quantization for Inkscape
+ *
+ * Authors:
+ * Stéphane Gimenez <dev@gim.name>
+ *
+ * Copyright (C) 2006 Authors
+ *
+ * Released under GNU GPL v2+, read the file 'COPYING' for more information.
+ */
+#include <memory>
+#include <cassert>
+#include <cstdio>
+#include <glib.h>
+
+#include "pool.h"
+#include "imagemap.h"
+#include "quantize.h"
+
+namespace Inkscape {
+namespace Trace {
+
+namespace {
+
+/**
+ * an octree node datastructure
+ */
+struct Ocnode
+{
+ Ocnode *parent; // parent node
+ Ocnode **ref; // node's reference
+ Ocnode *child[8]; // children
+ int nchild; // number of children
+ int width; // width level of this node
+ RGB rgb; // rgb's prefix of that node
+ unsigned long weight; // number of pixels this node accounts for
+ unsigned long rs, gs, bs; // sum of pixels colors this node accounts for
+ int nleaf; // number of leaves under this node
+ unsigned long mi; // minimum impact
+};
+
+/*
+-- algorithm principle:
+
+- inspired by the octree method, we associate a tree to a given color map
+
+- nodes in those trees have this shape:
+
+ parent
+ |
+ color_prefix(stored in rgb):width
+ colors_sum(stored in rs,gs,bs)/weight
+ / | \
+ child1 child2 child3
+
+- (grayscale) trees associated to pixels with colors 87 = 0b1010111 and
+ 69 = 0b1000101 are:
+
+ . . <-- roots of the trees
+ | |
+ 1010111:0 and 1000101:0 <-- color prefixes, written in binary form
+ 87/1 69/1 <-- color sums, written in decimal form
+
+- the result of merging the two trees is:
+
+ .
+ |
+ 10:5 <----- longest common prefix and binary width
+ 156/2 <---. of the covered color range.
+ / \ |
+ 1000101:0 1010111:0 '- sum of colors and quantity of pixels
+ 69/1 87/1 this node accounts for
+
+ one should consider three cases when two trees are to be merged:
+ - one tree range is included in the range of the other one, and the first
+ tree has to be inserted as a child (or merged with the corresponding
+ child) of the other.
+ - their ranges are the same, and their children have to be merged under
+ a single root.
+ - ranges have no intersection, and a fork node has to be created (like in
+ the given example).
+
+- a tree for an image is built dividing the image in 2 parts and merging
+ the trees obtained recursively for the two parts. a tree for a one pixel
+ part is a leaf like one of those which were given above.
+
+- last, this tree is reduced a specified number of leaves, deleting first
+ leaves with minimal impact i.e. [ weight * 2^(2*parentwidth) ] value :
+ a fair approximation of the impact a leaf removal would have on the final
+ result : it's the corresponding covered area times the square of the
+ introduced color distance.
+
+ deletion of a node A below a node with only two children is done as
+ follows :
+
+ - when the sibling is a leaf, the sibling is deleted as well, both nodes
+ are then represented by their parent.
+
+ | |
+ . ==> .
+ / \
+ A .
+
+ - otherwise the deletion of A deletes also its parent, which plays no
+ role anymore:
+
+ | |
+ . ==> \
+ / \ |
+ A . .
+ / \ / \
+
+ in that way, every leaf removal operation really decreases the remaining
+ total number of leaves by one.
+
+- very last, color indexes are attributed to leaves; associated colors are
+ averages, computed from weight and color components sums.
+
+-- improvements to the usual octree method:
+
+- since this algorithm shall often be used to perform quantization using a
+ very low (2-16) set of colors and not with a usual 256 value, we choose
+ more carefully which nodes are to be deleted.
+
+- depth of leaves is not fixed to an arbitrary number (which should be 8
+ when color components are in 0-255), so there is no need to go down to a
+ depth of 8 for each pixel (at full precision), unless it is really
+ required.
+
+- tree merging also fastens the overall tree building, and intermediate
+ processing could be done.
+
+- a huge optimization against the stupid removal algorithm (i.e. find a best
+ match over the whole tree, remove it and do it again) was implemented:
+ nodes are marked with the minimal impact of the removal of a leaf below
+ it. we proceed to the removal recursively. we stop when current removal
+ level is above the current node minimal, otherwise reached leaves are
+ removed, and every change over minimal impacts is propagated back to the
+ whole tree when the recursion ends.
+
+-- specific optimizations
+
+- pool allocation is used to allocate nodes (increased performance on large
+ images).
+
+*/
+
+RGB operator>>(RGB rgb, int s)
+{
+ RGB res;
+ res.r = rgb.r >> s;
+ res.g = rgb.g >> s;
+ res.b = rgb.b >> s;
+ return res;
+}
+
+bool operator==(RGB rgb1, RGB rgb2)
+{
+ return rgb1.r == rgb2.r && rgb1.g == rgb2.g && rgb1.b == rgb2.b;
+}
+
+int childIndex(RGB rgb)
+{
+ return ((rgb.r & 1) << 2) | ((rgb.g & 1) << 1) | (rgb.b & 1);
+}
+
+/**
+ * allocate a new node
+ */
+Ocnode *ocnodeNew(Pool<Ocnode> &pool)
+{
+ Ocnode *node = pool.draw();
+ node->ref = nullptr;
+ node->parent = nullptr;
+ node->nchild = 0;
+ for (auto &i : node->child) {
+ i = nullptr;
+ }
+ node->mi = 0;
+ return node;
+}
+
+void ocnodeFree(Pool<Ocnode> &pool, Ocnode *node)
+{
+ pool.drop(node);
+}
+
+/**
+ * free a full octree
+ */
+void octreeDelete(Pool<Ocnode> &pool, Ocnode *node)
+{
+ if (!node) return;
+ for (auto &i : node->child) {
+ octreeDelete(pool, i);
+ }
+ ocnodeFree(pool, node);
+}
+
+/**
+ * pretty-print an octree, debugging purposes
+ */
+#if 0
+void ocnodePrint(Ocnode *node, int indent)
+{
+ if (!node) return;
+ printf("width:%d weight:%lu rgb:%6x nleaf:%d mi:%lu\n",
+ node->width,
+ node->weight,
+ (unsigned int)(
+ ((node->rs / node->weight) << 16) +
+ ((node->gs / node->weight) << 8) +
+ (node->bs / node->weight)),
+ node->nleaf,
+ node->mi
+ );
+ for (int i = 0; i < 8; i++) if (node->child[i])
+ {
+ for (int k = 0; k < indent; k++) printf(" ");//indentation
+ printf("[%d:%p] ", i, node->child[i]);
+ ocnodePrint(node->child[i], indent+2);
+ }
+}
+
+void octreePrint(Ocnode *node)
+{
+ printf("<<octree>>\n");
+ if (node) printf("[r:%p] ", node); ocnodePrint(node, 2);
+}
+#endif
+
+/**
+ * builds a single <rgb> color leaf at location <ref>
+ */
+void ocnodeLeaf(Pool<Ocnode> &pool, Ocnode **ref, RGB rgb)
+{
+ assert(ref);
+ Ocnode *node = ocnodeNew(pool);
+ node->width = 0;
+ node->rgb = rgb;
+ node->rs = rgb.r; node->gs = rgb.g; node->bs = rgb.b;
+ node->weight = 1;
+ node->nleaf = 1;
+ node->mi = 0;
+ node->ref = ref;
+ *ref = node;
+}
+
+/**
+ * merge nodes <node1> and <node2> at location <ref> with parent <parent>
+ */
+int octreeMerge(Pool<Ocnode> &pool, Ocnode *parent, Ocnode **ref, Ocnode *node1, Ocnode *node2)
+{
+ assert(ref);
+ if (!node1 && !node2) return 0;
+ assert(node1 != node2);
+ if (parent && !*ref) parent->nchild++;
+ if (!node1) {
+ *ref = node2; node2->ref = ref; node2->parent = parent;
+ return node2->nleaf;
+ }
+ if (!node2) {
+ *ref = node1; node1->ref = ref; node1->parent = parent;
+ return node1->nleaf;
+ }
+ int dwitdth = node1->width - node2->width;
+ if (dwitdth > 0 && node1->rgb == node2->rgb >> dwitdth) {
+ // place node2 below node1
+ *ref = node1; node1->ref = ref; node1->parent = parent;
+ int i = childIndex(node2->rgb >> (dwitdth - 1));
+ node1->rs += node2->rs; node1->gs += node2->gs; node1->bs += node2->bs;
+ node1->weight += node2->weight;
+ node1->mi = 0;
+ if (node1->child[i]) node1->nleaf -= node1->child[i]->nleaf;
+ node1->nleaf += octreeMerge(pool, node1, &node1->child[i], node1->child[i], node2);
+ return node1->nleaf;
+ } else if (dwitdth < 0 && node2->rgb == node1->rgb >> (-dwitdth)) {
+ // place node1 below node2
+ *ref = node2; node2->ref = ref; node2->parent = parent;
+ int i = childIndex(node1->rgb >> (-dwitdth - 1));
+ node2->rs += node1->rs; node2->gs += node1->gs; node2->bs += node1->bs;
+ node2->weight += node1->weight;
+ node2->mi = 0;
+ if (node2->child[i]) node2->nleaf -= node2->child[i]->nleaf;
+ node2->nleaf += octreeMerge(pool, node2, &node2->child[i], node2->child[i], node1);
+ return node2->nleaf;
+ } else {
+ // nodes have either no intersection or the same root
+ Ocnode *newnode;
+ newnode = ocnodeNew(pool);
+ newnode->rs = node1->rs + node2->rs;
+ newnode->gs = node1->gs + node2->gs;
+ newnode->bs = node1->bs + node2->bs;
+ newnode->weight = node1->weight + node2->weight;
+ *ref = newnode; newnode->ref = ref; newnode->parent = parent;
+ if (dwitdth == 0 && node1->rgb == node2->rgb) {
+ // merge the nodes in <newnode>
+ newnode->width = node1->width; // == node2->width
+ newnode->rgb = node1->rgb; // == node2->rgb
+ newnode->nchild = 0;
+ newnode->nleaf = 0;
+ if (node1->nchild == 0 && node2->nchild == 0) {
+ newnode->nleaf = 1;
+ } else {
+ for (int i = 0; i < 8; i++) {
+ if (node1->child[i] || node2->child[i]) {
+ newnode->nleaf += octreeMerge(pool, newnode, &newnode->child[i], node1->child[i], node2->child[i]);
+ }
+ }
+ }
+ ocnodeFree(pool, node1); ocnodeFree(pool, node2);
+ return newnode->nleaf;
+ } else {
+ // use <newnode> as a fork node with children <node1> and <node2>
+ int newwidth = std::max(node1->width, node2->width);
+ RGB rgb1 = node1->rgb >> (newwidth - node1->width);
+ RGB rgb2 = node2->rgb >> (newwidth - node2->width);
+ // according to the previous tests <rgb1> != <rgb2> before the loop
+ while (!(rgb1 == rgb2)) {
+ rgb1 = rgb1 >> 1;
+ rgb2 = rgb2 >> 1;
+ newwidth++;
+ }
+ newnode->width = newwidth;
+ newnode->rgb = rgb1; // == rgb2
+ newnode->nchild = 2;
+ newnode->nleaf = node1->nleaf + node2->nleaf;
+ int i1 = childIndex(node1->rgb >> (newwidth - node1->width - 1));
+ int i2 = childIndex(node2->rgb >> (newwidth - node2->width - 1));
+ node1->parent = newnode;
+ node1->ref = &newnode->child[i1];
+ newnode->child[i1] = node1;
+ node2->parent = newnode;
+ node2->ref = &newnode->child[i2];
+ newnode->child[i2] = node2;
+ return newnode->nleaf;
+ }
+ }
+}
+
+/**
+ * upatade mi value for leaves
+ */
+void ocnodeMi(Ocnode *node)
+{
+ node->mi = node->parent ? node->weight << (2 * node->parent->width) : 0;
+}
+
+/**
+ * remove leaves whose prune impact value is lower than <lvl>. at most
+ * <count> leaves are removed, and <count> is decreased on each removal.
+ * all parameters including minimal impact values are regenerated.
+ */
+void ocnodeStrip(Pool<Ocnode> &pool, Ocnode **ref, int &count, unsigned long lvl)
+{
+ Ocnode *node = *ref;
+ if (!node) return;
+ assert(ref == node->ref);
+ if (node->nchild == 0) { // leaf node
+ if (!node->mi) ocnodeMi(node); // mi generation may be required
+ if (node->mi > lvl) return; // leaf is above strip level
+ ocnodeFree(pool, node);
+ *ref = nullptr;
+ count--;
+ } else {
+ if (node->mi && node->mi > lvl) return; // node is above strip level
+ node->nchild = 0;
+ node->nleaf = 0;
+ node->mi = 0;
+ Ocnode **lonelychild = nullptr;
+ for (auto & i : node->child) {
+ if (i) {
+ ocnodeStrip(pool, &i, count, lvl);
+ if (i) {
+ lonelychild = &i;
+ node->nchild++;
+ node->nleaf += i->nleaf;
+ if (!node->mi || node->mi > i->mi) {
+ node->mi = i->mi;
+ }
+ }
+ }
+ }
+ // tree adjustments
+ if (node->nchild == 0) {
+ count++;
+ node->nleaf = 1;
+ ocnodeMi(node);
+ } else if (node->nchild == 1) {
+ if ((*lonelychild)->nchild == 0) {
+ // remove the <lonelychild> leaf under a 1 child node
+ node->nchild = 0;
+ node->nleaf = 1;
+ ocnodeMi(node);
+ ocnodeFree(pool, *lonelychild);
+ *lonelychild = nullptr;
+ } else {
+ // make a bridge to <lonelychild> over a 1 child node
+ (*lonelychild)->parent = node->parent;
+ (*lonelychild)->ref = ref;
+ ocnodeFree(pool, node);
+ *ref = *lonelychild;
+ }
+ }
+ }
+}
+
+/**
+ * reduce the leaves of an octree to a given number
+ */
+void octreePrune(Pool<Ocnode> &pool, Ocnode **ref, int ncolor)
+{
+ assert(ref);
+ assert(ncolor > 0);
+ int n = (*ref)->nleaf - ncolor;
+ if (!*ref || n <= 0) return;
+ while (n > 0) {
+ ocnodeStrip(pool, ref, n, (*ref)->mi);
+ }
+}
+
+/**
+ * build an octree associated to the area of a color map <rgbmap>,
+ * included in the specified (x1,y1)--(x2,y2) rectangle.
+ */
+void octreeBuildArea(Pool<Ocnode> &pool, RgbMap const &rgbmap, Ocnode **ref, int x1, int y1, int x2, int y2, int ncolor)
+{
+ int dx = x2 - x1, dy = y2 - y1;
+ int xm = x1 + dx / 2, ym = y1 + dy / 2;
+ Ocnode *ref1 = nullptr;
+ Ocnode *ref2 = nullptr;
+ if (dx == 1 && dy == 1) {
+ ocnodeLeaf(pool, ref, rgbmap.getPixel(x1, y1));
+ } else if (dx > dy) {
+ octreeBuildArea(pool, rgbmap, &ref1, x1, y1, xm, y2, ncolor);
+ octreeBuildArea(pool, rgbmap, &ref2, xm, y1, x2, y2, ncolor);
+ octreeMerge(pool, nullptr, ref, ref1, ref2);
+ } else {
+ octreeBuildArea(pool, rgbmap, &ref1, x1, y1, x2, ym, ncolor);
+ octreeBuildArea(pool, rgbmap, &ref2, x1, ym, x2, y2, ncolor);
+ octreeMerge(pool, nullptr, ref, ref1, ref2);
+ }
+
+ // octreePrune(ref, 2 * ncolor);
+ // affects result quality for almost same performance :/
+}
+
+/**
+ * build an octree associated to the <rgbmap> color map,
+ * pruned to <ncolor> colors.
+ */
+Ocnode *octreeBuild(Pool<Ocnode> &pool, RgbMap const &rgbmap, int ncolor)
+{
+ // create the octree
+ Ocnode *node = nullptr;
+ octreeBuildArea(pool,
+ rgbmap, &node,
+ 0, 0, rgbmap.width, rgbmap.height, ncolor);
+
+ // prune the octree
+ octreePrune(pool, &node, ncolor);
+
+ return node;
+}
+
+/**
+ * compute the color palette associated to an octree.
+ */
+void octreeIndex(Ocnode *node, RGB *rgbpal, int &index)
+{
+ if (!node) return;
+ if (node->nchild == 0) {
+ rgbpal[index].r = node->rs / node->weight;
+ rgbpal[index].g = node->gs / node->weight;
+ rgbpal[index].b = node->bs / node->weight;
+ index++;
+ } else {
+ for (auto &i : node->child) {
+ if (i) {
+ octreeIndex(i, rgbpal, index);
+ }
+ }
+ }
+}
+
+/**
+ * compute the squared distance between two colors
+ */
+int distRGB(RGB rgb1, RGB rgb2)
+{
+ return (rgb1.r - rgb2.r) * (rgb1.r - rgb2.r)
+ + (rgb1.g - rgb2.g) * (rgb1.g - rgb2.g)
+ + (rgb1.b - rgb2.b) * (rgb1.b - rgb2.b);
+}
+
+/**
+ * find the index of closest color in a palette
+ */
+int findRGB(RGB const *rgbs, int ncolor, RGB rgb)
+{
+ int index = -1, dist = 0;
+ for (int k = 0; k < ncolor; k++) {
+ int d = distRGB(rgbs[k], rgb);
+ if (index == -1 || d < dist) { dist = d; index = k; }
+ }
+ return index;
+}
+
+} // namespace
+
+/**
+ * quantize an RGB image to a reduced number of colors.
+ */
+IndexedMap rgbMapQuantize(RgbMap const &rgbmap, int ncolor)
+{
+ assert(ncolor > 0);
+
+ auto imap = IndexedMap(rgbmap.width, rgbmap.height);
+
+ Pool<Ocnode> pool;
+ auto tree = octreeBuild(pool, rgbmap, ncolor);
+
+ auto rgbs = std::make_unique<RGB[]>(ncolor);
+ int index = 0;
+ octreeIndex(tree, rgbs.get(), index);
+
+ octreeDelete(pool, tree);
+
+ // stacking with increasing contrasts
+ std::sort(rgbs.get(), rgbs.get() + ncolor, [] (auto &ra, auto &rb) {
+ return (ra.r + ra.g + ra.b) < (rb.r + rb.g + rb.b);
+ });
+
+ // make the new map
+ // fill in the color lookup table
+ for (int i = 0; i < index; i++) {
+ imap.clut[i] = rgbs[i];
+ }
+ imap.nrColors = index;
+
+ // fill in new map pixels
+ for (int y = 0; y < rgbmap.height; y++) {
+ for (int x = 0; x < rgbmap.width; x++) {
+ auto rgb = rgbmap.getPixel(x, y);
+ int index = findRGB(rgbs.get(), ncolor, rgb);
+ imap.setPixel(x, y, index);
+ }
+ }
+
+ return imap;
+}
+
+} // namespace Trace
+} // namespace Inkscape