1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Quantization for Inkscape
*
* Authors:
* Stéphane Gimenez <dev@gim.name>
*
* Copyright (C) 2006 Authors
*
* Released under GNU GPL v2+, read the file 'COPYING' for more information.
*/
#include <memory>
#include <cassert>
#include <cstdio>
#include <glib.h>
#include "pool.h"
#include "imagemap.h"
#include "quantize.h"
namespace Inkscape {
namespace Trace {
namespace {
/**
* an octree node datastructure
*/
struct Ocnode
{
Ocnode *parent; // parent node
Ocnode **ref; // node's reference
Ocnode *child[8]; // children
int nchild; // number of children
int width; // width level of this node
RGB rgb; // rgb's prefix of that node
unsigned long weight; // number of pixels this node accounts for
unsigned long rs, gs, bs; // sum of pixels colors this node accounts for
int nleaf; // number of leaves under this node
unsigned long mi; // minimum impact
};
/*
-- algorithm principle:
- inspired by the octree method, we associate a tree to a given color map
- nodes in those trees have this shape:
parent
|
color_prefix(stored in rgb):width
colors_sum(stored in rs,gs,bs)/weight
/ | \
child1 child2 child3
- (grayscale) trees associated to pixels with colors 87 = 0b1010111 and
69 = 0b1000101 are:
. . <-- roots of the trees
| |
1010111:0 and 1000101:0 <-- color prefixes, written in binary form
87/1 69/1 <-- color sums, written in decimal form
- the result of merging the two trees is:
.
|
10:5 <----- longest common prefix and binary width
156/2 <---. of the covered color range.
/ \ |
1000101:0 1010111:0 '- sum of colors and quantity of pixels
69/1 87/1 this node accounts for
one should consider three cases when two trees are to be merged:
- one tree range is included in the range of the other one, and the first
tree has to be inserted as a child (or merged with the corresponding
child) of the other.
- their ranges are the same, and their children have to be merged under
a single root.
- ranges have no intersection, and a fork node has to be created (like in
the given example).
- a tree for an image is built dividing the image in 2 parts and merging
the trees obtained recursively for the two parts. a tree for a one pixel
part is a leaf like one of those which were given above.
- last, this tree is reduced a specified number of leaves, deleting first
leaves with minimal impact i.e. [ weight * 2^(2*parentwidth) ] value :
a fair approximation of the impact a leaf removal would have on the final
result : it's the corresponding covered area times the square of the
introduced color distance.
deletion of a node A below a node with only two children is done as
follows :
- when the sibling is a leaf, the sibling is deleted as well, both nodes
are then represented by their parent.
| |
. ==> .
/ \
A .
- otherwise the deletion of A deletes also its parent, which plays no
role anymore:
| |
. ==> \
/ \ |
A . .
/ \ / \
in that way, every leaf removal operation really decreases the remaining
total number of leaves by one.
- very last, color indexes are attributed to leaves; associated colors are
averages, computed from weight and color components sums.
-- improvements to the usual octree method:
- since this algorithm shall often be used to perform quantization using a
very low (2-16) set of colors and not with a usual 256 value, we choose
more carefully which nodes are to be deleted.
- depth of leaves is not fixed to an arbitrary number (which should be 8
when color components are in 0-255), so there is no need to go down to a
depth of 8 for each pixel (at full precision), unless it is really
required.
- tree merging also fastens the overall tree building, and intermediate
processing could be done.
- a huge optimization against the stupid removal algorithm (i.e. find a best
match over the whole tree, remove it and do it again) was implemented:
nodes are marked with the minimal impact of the removal of a leaf below
it. we proceed to the removal recursively. we stop when current removal
level is above the current node minimal, otherwise reached leaves are
removed, and every change over minimal impacts is propagated back to the
whole tree when the recursion ends.
-- specific optimizations
- pool allocation is used to allocate nodes (increased performance on large
images).
*/
RGB operator>>(RGB rgb, int s)
{
RGB res;
res.r = rgb.r >> s;
res.g = rgb.g >> s;
res.b = rgb.b >> s;
return res;
}
bool operator==(RGB rgb1, RGB rgb2)
{
return rgb1.r == rgb2.r && rgb1.g == rgb2.g && rgb1.b == rgb2.b;
}
int childIndex(RGB rgb)
{
return ((rgb.r & 1) << 2) | ((rgb.g & 1) << 1) | (rgb.b & 1);
}
/**
* allocate a new node
*/
Ocnode *ocnodeNew(Pool<Ocnode> &pool)
{
Ocnode *node = pool.draw();
node->ref = nullptr;
node->parent = nullptr;
node->nchild = 0;
for (auto &i : node->child) {
i = nullptr;
}
node->mi = 0;
return node;
}
void ocnodeFree(Pool<Ocnode> &pool, Ocnode *node)
{
pool.drop(node);
}
/**
* free a full octree
*/
void octreeDelete(Pool<Ocnode> &pool, Ocnode *node)
{
if (!node) return;
for (auto &i : node->child) {
octreeDelete(pool, i);
}
ocnodeFree(pool, node);
}
/**
* pretty-print an octree, debugging purposes
*/
#if 0
void ocnodePrint(Ocnode *node, int indent)
{
if (!node) return;
printf("width:%d weight:%lu rgb:%6x nleaf:%d mi:%lu\n",
node->width,
node->weight,
(unsigned int)(
((node->rs / node->weight) << 16) +
((node->gs / node->weight) << 8) +
(node->bs / node->weight)),
node->nleaf,
node->mi
);
for (int i = 0; i < 8; i++) if (node->child[i])
{
for (int k = 0; k < indent; k++) printf(" ");//indentation
printf("[%d:%p] ", i, node->child[i]);
ocnodePrint(node->child[i], indent+2);
}
}
void octreePrint(Ocnode *node)
{
printf("<<octree>>\n");
if (node) printf("[r:%p] ", node); ocnodePrint(node, 2);
}
#endif
/**
* builds a single <rgb> color leaf at location <ref>
*/
void ocnodeLeaf(Pool<Ocnode> &pool, Ocnode **ref, RGB rgb)
{
assert(ref);
Ocnode *node = ocnodeNew(pool);
node->width = 0;
node->rgb = rgb;
node->rs = rgb.r; node->gs = rgb.g; node->bs = rgb.b;
node->weight = 1;
node->nleaf = 1;
node->mi = 0;
node->ref = ref;
*ref = node;
}
/**
* merge nodes <node1> and <node2> at location <ref> with parent <parent>
*/
int octreeMerge(Pool<Ocnode> &pool, Ocnode *parent, Ocnode **ref, Ocnode *node1, Ocnode *node2)
{
assert(ref);
if (!node1 && !node2) return 0;
assert(node1 != node2);
if (parent && !*ref) parent->nchild++;
if (!node1) {
*ref = node2; node2->ref = ref; node2->parent = parent;
return node2->nleaf;
}
if (!node2) {
*ref = node1; node1->ref = ref; node1->parent = parent;
return node1->nleaf;
}
int dwitdth = node1->width - node2->width;
if (dwitdth > 0 && node1->rgb == node2->rgb >> dwitdth) {
// place node2 below node1
*ref = node1; node1->ref = ref; node1->parent = parent;
int i = childIndex(node2->rgb >> (dwitdth - 1));
node1->rs += node2->rs; node1->gs += node2->gs; node1->bs += node2->bs;
node1->weight += node2->weight;
node1->mi = 0;
if (node1->child[i]) node1->nleaf -= node1->child[i]->nleaf;
node1->nleaf += octreeMerge(pool, node1, &node1->child[i], node1->child[i], node2);
return node1->nleaf;
} else if (dwitdth < 0 && node2->rgb == node1->rgb >> (-dwitdth)) {
// place node1 below node2
*ref = node2; node2->ref = ref; node2->parent = parent;
int i = childIndex(node1->rgb >> (-dwitdth - 1));
node2->rs += node1->rs; node2->gs += node1->gs; node2->bs += node1->bs;
node2->weight += node1->weight;
node2->mi = 0;
if (node2->child[i]) node2->nleaf -= node2->child[i]->nleaf;
node2->nleaf += octreeMerge(pool, node2, &node2->child[i], node2->child[i], node1);
return node2->nleaf;
} else {
// nodes have either no intersection or the same root
Ocnode *newnode;
newnode = ocnodeNew(pool);
newnode->rs = node1->rs + node2->rs;
newnode->gs = node1->gs + node2->gs;
newnode->bs = node1->bs + node2->bs;
newnode->weight = node1->weight + node2->weight;
*ref = newnode; newnode->ref = ref; newnode->parent = parent;
if (dwitdth == 0 && node1->rgb == node2->rgb) {
// merge the nodes in <newnode>
newnode->width = node1->width; // == node2->width
newnode->rgb = node1->rgb; // == node2->rgb
newnode->nchild = 0;
newnode->nleaf = 0;
if (node1->nchild == 0 && node2->nchild == 0) {
newnode->nleaf = 1;
} else {
for (int i = 0; i < 8; i++) {
if (node1->child[i] || node2->child[i]) {
newnode->nleaf += octreeMerge(pool, newnode, &newnode->child[i], node1->child[i], node2->child[i]);
}
}
}
ocnodeFree(pool, node1); ocnodeFree(pool, node2);
return newnode->nleaf;
} else {
// use <newnode> as a fork node with children <node1> and <node2>
int newwidth = std::max(node1->width, node2->width);
RGB rgb1 = node1->rgb >> (newwidth - node1->width);
RGB rgb2 = node2->rgb >> (newwidth - node2->width);
// according to the previous tests <rgb1> != <rgb2> before the loop
while (!(rgb1 == rgb2)) {
rgb1 = rgb1 >> 1;
rgb2 = rgb2 >> 1;
newwidth++;
}
newnode->width = newwidth;
newnode->rgb = rgb1; // == rgb2
newnode->nchild = 2;
newnode->nleaf = node1->nleaf + node2->nleaf;
int i1 = childIndex(node1->rgb >> (newwidth - node1->width - 1));
int i2 = childIndex(node2->rgb >> (newwidth - node2->width - 1));
node1->parent = newnode;
node1->ref = &newnode->child[i1];
newnode->child[i1] = node1;
node2->parent = newnode;
node2->ref = &newnode->child[i2];
newnode->child[i2] = node2;
return newnode->nleaf;
}
}
}
/**
* upatade mi value for leaves
*/
void ocnodeMi(Ocnode *node)
{
node->mi = node->parent ? node->weight << (2 * node->parent->width) : 0;
}
/**
* remove leaves whose prune impact value is lower than <lvl>. at most
* <count> leaves are removed, and <count> is decreased on each removal.
* all parameters including minimal impact values are regenerated.
*/
void ocnodeStrip(Pool<Ocnode> &pool, Ocnode **ref, int &count, unsigned long lvl)
{
Ocnode *node = *ref;
if (!node) return;
assert(ref == node->ref);
if (node->nchild == 0) { // leaf node
if (!node->mi) ocnodeMi(node); // mi generation may be required
if (node->mi > lvl) return; // leaf is above strip level
ocnodeFree(pool, node);
*ref = nullptr;
count--;
} else {
if (node->mi && node->mi > lvl) return; // node is above strip level
node->nchild = 0;
node->nleaf = 0;
node->mi = 0;
Ocnode **lonelychild = nullptr;
for (auto & i : node->child) {
if (i) {
ocnodeStrip(pool, &i, count, lvl);
if (i) {
lonelychild = &i;
node->nchild++;
node->nleaf += i->nleaf;
if (!node->mi || node->mi > i->mi) {
node->mi = i->mi;
}
}
}
}
// tree adjustments
if (node->nchild == 0) {
count++;
node->nleaf = 1;
ocnodeMi(node);
} else if (node->nchild == 1) {
if ((*lonelychild)->nchild == 0) {
// remove the <lonelychild> leaf under a 1 child node
node->nchild = 0;
node->nleaf = 1;
ocnodeMi(node);
ocnodeFree(pool, *lonelychild);
*lonelychild = nullptr;
} else {
// make a bridge to <lonelychild> over a 1 child node
(*lonelychild)->parent = node->parent;
(*lonelychild)->ref = ref;
ocnodeFree(pool, node);
*ref = *lonelychild;
}
}
}
}
/**
* reduce the leaves of an octree to a given number
*/
void octreePrune(Pool<Ocnode> &pool, Ocnode **ref, int ncolor)
{
assert(ref);
assert(ncolor > 0);
int n = (*ref)->nleaf - ncolor;
if (!*ref || n <= 0) return;
while (n > 0) {
ocnodeStrip(pool, ref, n, (*ref)->mi);
}
}
/**
* build an octree associated to the area of a color map <rgbmap>,
* included in the specified (x1,y1)--(x2,y2) rectangle.
*/
void octreeBuildArea(Pool<Ocnode> &pool, RgbMap const &rgbmap, Ocnode **ref, int x1, int y1, int x2, int y2, int ncolor)
{
int dx = x2 - x1, dy = y2 - y1;
int xm = x1 + dx / 2, ym = y1 + dy / 2;
Ocnode *ref1 = nullptr;
Ocnode *ref2 = nullptr;
if (dx == 1 && dy == 1) {
ocnodeLeaf(pool, ref, rgbmap.getPixel(x1, y1));
} else if (dx > dy) {
octreeBuildArea(pool, rgbmap, &ref1, x1, y1, xm, y2, ncolor);
octreeBuildArea(pool, rgbmap, &ref2, xm, y1, x2, y2, ncolor);
octreeMerge(pool, nullptr, ref, ref1, ref2);
} else {
octreeBuildArea(pool, rgbmap, &ref1, x1, y1, x2, ym, ncolor);
octreeBuildArea(pool, rgbmap, &ref2, x1, ym, x2, y2, ncolor);
octreeMerge(pool, nullptr, ref, ref1, ref2);
}
// octreePrune(ref, 2 * ncolor);
// affects result quality for almost same performance :/
}
/**
* build an octree associated to the <rgbmap> color map,
* pruned to <ncolor> colors.
*/
Ocnode *octreeBuild(Pool<Ocnode> &pool, RgbMap const &rgbmap, int ncolor)
{
// create the octree
Ocnode *node = nullptr;
octreeBuildArea(pool,
rgbmap, &node,
0, 0, rgbmap.width, rgbmap.height, ncolor);
// prune the octree
octreePrune(pool, &node, ncolor);
return node;
}
/**
* compute the color palette associated to an octree.
*/
void octreeIndex(Ocnode *node, RGB *rgbpal, int &index)
{
if (!node) return;
if (node->nchild == 0) {
rgbpal[index].r = node->rs / node->weight;
rgbpal[index].g = node->gs / node->weight;
rgbpal[index].b = node->bs / node->weight;
index++;
} else {
for (auto &i : node->child) {
if (i) {
octreeIndex(i, rgbpal, index);
}
}
}
}
/**
* compute the squared distance between two colors
*/
int distRGB(RGB rgb1, RGB rgb2)
{
return (rgb1.r - rgb2.r) * (rgb1.r - rgb2.r)
+ (rgb1.g - rgb2.g) * (rgb1.g - rgb2.g)
+ (rgb1.b - rgb2.b) * (rgb1.b - rgb2.b);
}
/**
* find the index of closest color in a palette
*/
int findRGB(RGB const *rgbs, int ncolor, RGB rgb)
{
int index = -1, dist = 0;
for (int k = 0; k < ncolor; k++) {
int d = distRGB(rgbs[k], rgb);
if (index == -1 || d < dist) { dist = d; index = k; }
}
return index;
}
} // namespace
/**
* quantize an RGB image to a reduced number of colors.
*/
IndexedMap rgbMapQuantize(RgbMap const &rgbmap, int ncolor)
{
assert(ncolor > 0);
auto imap = IndexedMap(rgbmap.width, rgbmap.height);
Pool<Ocnode> pool;
auto tree = octreeBuild(pool, rgbmap, ncolor);
auto rgbs = std::make_unique<RGB[]>(ncolor);
int index = 0;
octreeIndex(tree, rgbs.get(), index);
octreeDelete(pool, tree);
// stacking with increasing contrasts
std::sort(rgbs.get(), rgbs.get() + ncolor, [] (auto &ra, auto &rb) {
return (ra.r + ra.g + ra.b) < (rb.r + rb.g + rb.b);
});
// make the new map
// fill in the color lookup table
for (int i = 0; i < index; i++) {
imap.clut[i] = rgbs[i];
}
imap.nrColors = index;
// fill in new map pixels
for (int y = 0; y < rgbmap.height; y++) {
for (int x = 0; x < rgbmap.width; x++) {
auto rgb = rgbmap.getPixel(x, y);
int index = findRGB(rgbs.get(), ncolor, rgb);
imap.setPixel(x, y, index);
}
}
return imap;
}
} // namespace Trace
} // namespace Inkscape
|