summaryrefslogtreecommitdiffstats
path: root/src/grep/lib/stackvma.c
blob: a810afe145ce1d860a6a0b0bcb3c8c3e75c10e14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
/* Determine the virtual memory area of a given address.
   Copyright (C) 2002-2021 Free Software Foundation, Inc.
   Copyright (C) 2003-2006  Paolo Bonzini <bonzini@gnu.org>

   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <https://www.gnu.org/licenses/>.  */

/* Written by Bruno Haible and Paolo Bonzini.  */

#include <config.h>

/* On Solaris in 32-bit mode, when gnulib module 'largefile' is in use,
   prevent a compilation error
     "Cannot use procfs in the large file compilation environment"
   On Android, when targeting Android 4.4 or older with a GCC toolchain,
   prevent a compilation error
     "error: call to 'mmap' declared with attribute error: mmap is not
      available with _FILE_OFFSET_BITS=64 when using GCC until android-21.
      Either raise your minSdkVersion, disable _FILE_OFFSET_BITS=64, or
      switch to Clang."
   The files that we access in this compilation unit are less than 2 GB
   large.  */
#if defined __sun || defined __ANDROID__
# undef _FILE_OFFSET_BITS
#endif

/* Specification.  */
#include "stackvma.h"

#include <stdio.h>
#include <stdlib.h>

/* =========================== stackvma-simple.c =========================== */

#if defined __linux__ || defined __ANDROID__ \
    || defined __FreeBSD_kernel__ || defined __FreeBSD__ || defined __DragonFly__ \
    || defined __NetBSD__ \
    || (defined __APPLE__ && defined __MACH__) \
    || defined __sgi || defined __sun \
    || defined __CYGWIN__ || defined __HAIKU__

/* This file contains the proximity test function for the simple cases, where
   the OS has an API for enumerating the mapped ranges of virtual memory.  */

# if STACK_DIRECTION < 0

/* Info about the gap between this VMA and the previous one.
   addr must be < vma->start.  */
static int
simple_is_near_this (uintptr_t addr, struct vma_struct *vma)
{
  return (vma->start - addr <= (vma->start - vma->prev_end) / 2);
}

# endif
# if STACK_DIRECTION > 0

/* Info about the gap between this VMA and the next one.
   addr must be > vma->end - 1.  */
static int
simple_is_near_this (uintptr_t addr, struct vma_struct *vma)
{
  return (addr - vma->end < (vma->next_start - vma->end) / 2);
}

# endif

#endif

/* =========================== stackvma-rofile.c =========================== */
/* Buffered read-only streams.  */

#if defined __linux__ || defined __ANDROID__ \
    || defined __FreeBSD_kernel__ || defined __FreeBSD__ || defined __DragonFly__ \
    || defined __NetBSD__ \
    || defined __CYGWIN__

# include <errno.h> /* errno, EINTR */
# include <fcntl.h> /* open, O_RDONLY */
# include <stddef.h> /* size_t */
# include <unistd.h> /* getpagesize, lseek, read, close */
# include <sys/types.h>
# include <sys/mman.h> /* mmap, munmap */

# if defined __linux__ || defined __ANDROID__
#  include <limits.h> /* PATH_MAX */
# endif

/* Buffered read-only streams.
   We cannot use <stdio.h> here, because fopen() calls malloc(), and a malloc()
   call may have been interrupted.
   Also, we cannot use multiple read() calls, because if the buffer size is
   smaller than the file's contents:
     - On NetBSD, the second read() call would return 0, thus making the file
       appear truncated.
     - On DragonFly BSD, the first read() call would fail with errno = EFBIG.
     - On all platforms, if some other thread is doing memory allocations or
       deallocations between two read() calls, there is a high risk that the
       result of these two read() calls don't fit together, and as a
       consequence we will parse gargage and either omit some VMAs or return
       VMAs with nonsensical addresses.
   So use mmap(), and ignore the resulting VMA.
   The stack-allocated buffer cannot be too large, because this can be called
   when we are in the context of an alternate stack of just SIGSTKSZ bytes.  */

# if defined __linux__ || defined __ANDROID__
  /* On Linux, if the file does not entirely fit into the buffer, the read()
     function stops before the line that would come out truncated.  The
     maximum size of such a line is 73 + PATH_MAX bytes.  To be sure that we
     have read everything, we must verify that at least that many bytes are
     left when read() returned.  */
#  define MIN_LEFTOVER (73 + PATH_MAX)
# else
#  define MIN_LEFTOVER 1
# endif

# if MIN_LEFTOVER < 1024
#  define STACK_ALLOCATED_BUFFER_SIZE 1024
# else
  /* There is no point in using a stack-allocated buffer if it is too small
     anyway.  */
#  define STACK_ALLOCATED_BUFFER_SIZE 1
# endif

struct rofile
  {
    size_t position;
    size_t filled;
    int eof_seen;
    /* These fields deal with allocation of the buffer.  */
    char *buffer;
    char *auxmap;
    size_t auxmap_length;
    uintptr_t auxmap_start;
    uintptr_t auxmap_end;
    char stack_allocated_buffer[STACK_ALLOCATED_BUFFER_SIZE];
  };

/* Open a read-only file stream.  */
static int
rof_open (struct rofile *rof, const char *filename)
{
  int fd;
  uintptr_t pagesize;
  size_t size;

  fd = open (filename, O_RDONLY);
  if (fd < 0)
    return -1;
  rof->position = 0;
  rof->eof_seen = 0;
  /* Try the static buffer first.  */
  pagesize = 0;
  rof->buffer = rof->stack_allocated_buffer;
  size = sizeof (rof->stack_allocated_buffer);
  rof->auxmap = NULL;
  rof->auxmap_start = 0;
  rof->auxmap_end = 0;
  for (;;)
    {
      /* Attempt to read the contents in a single system call.  */
      if (size > MIN_LEFTOVER)
        {
          int n = read (fd, rof->buffer, size);
          if (n < 0 && errno == EINTR)
            goto retry;
# if defined __DragonFly__
          if (!(n < 0 && errno == EFBIG))
# endif
            {
              if (n <= 0)
                /* Empty file.  */
                goto fail1;
              if (n + MIN_LEFTOVER <= size)
                {
                  /* The buffer was sufficiently large.  */
                  rof->filled = n;
# if defined __linux__ || defined __ANDROID__
                  /* On Linux, the read() call may stop even if the buffer was
                     large enough.  We need the equivalent of full_read().  */
                  for (;;)
                    {
                      n = read (fd, rof->buffer + rof->filled, size - rof->filled);
                      if (n < 0 && errno == EINTR)
                        goto retry;
                      if (n < 0)
                        /* Some error.  */
                        goto fail1;
                      if (n + MIN_LEFTOVER > size - rof->filled)
                        /* Allocate a larger buffer.  */
                        break;
                      if (n == 0)
                        {
                          /* Reached the end of file.  */
                          close (fd);
                          return 0;
                        }
                      rof->filled += n;
                    }
# else
                  close (fd);
                  return 0;
# endif
                }
            }
        }
      /* Allocate a larger buffer.  */
      if (pagesize == 0)
        {
          pagesize = getpagesize ();
          size = pagesize;
          while (size <= MIN_LEFTOVER)
            size = 2 * size;
        }
      else
        {
          size = 2 * size;
          if (size == 0)
            /* Wraparound.  */
            goto fail1;
          if (rof->auxmap != NULL)
            munmap (rof->auxmap, rof->auxmap_length);
        }
      rof->auxmap = (void *) mmap ((void *) 0, size, PROT_READ | PROT_WRITE,
                                   MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
      if (rof->auxmap == (void *) -1)
        {
          close (fd);
          return -1;
        }
      rof->auxmap_length = size;
      rof->auxmap_start = (uintptr_t) rof->auxmap;
      rof->auxmap_end = rof->auxmap_start + size;
      rof->buffer = (char *) rof->auxmap;
     retry:
      /* Restart.  */
      if (lseek (fd, 0, SEEK_SET) < 0)
        {
          close (fd);
          fd = open (filename, O_RDONLY);
          if (fd < 0)
            goto fail2;
        }
    }
 fail1:
  close (fd);
 fail2:
  if (rof->auxmap != NULL)
    munmap (rof->auxmap, rof->auxmap_length);
  return -1;
}

/* Return the next byte from a read-only file stream without consuming it,
   or -1 at EOF.  */
static int
rof_peekchar (struct rofile *rof)
{
  if (rof->position == rof->filled)
    {
      rof->eof_seen = 1;
      return -1;
    }
  return (unsigned char) rof->buffer[rof->position];
}

/* Return the next byte from a read-only file stream, or -1 at EOF.  */
static int
rof_getchar (struct rofile *rof)
{
  int c = rof_peekchar (rof);
  if (c >= 0)
    rof->position++;
  return c;
}

/* Parse an unsigned hexadecimal number from a read-only file stream.  */
static int
rof_scanf_lx (struct rofile *rof, uintptr_t *valuep)
{
  uintptr_t value = 0;
  unsigned int numdigits = 0;
  for (;;)
    {
      int c = rof_peekchar (rof);
      if (c >= '0' && c <= '9')
        value = (value << 4) + (c - '0');
      else if (c >= 'A' && c <= 'F')
        value = (value << 4) + (c - 'A' + 10);
      else if (c >= 'a' && c <= 'f')
        value = (value << 4) + (c - 'a' + 10);
      else
        break;
      rof_getchar (rof);
      numdigits++;
    }
  if (numdigits == 0)
    return -1;
  *valuep = value;
  return 0;
}

/* Close a read-only file stream.  */
static void
rof_close (struct rofile *rof)
{
  if (rof->auxmap != NULL)
    munmap (rof->auxmap, rof->auxmap_length);
}

#endif

/* ========================== stackvma-vma-iter.c ========================== */
/* Iterate through the virtual memory areas of the current process,
   by reading from the /proc file system.  */

/* This code is a simplified copy (no handling of protection flags) of the
   code in gnulib's lib/vma-iter.c.  */

#if defined __linux__ || defined __ANDROID__ \
    || defined __FreeBSD_kernel__ || defined __FreeBSD__ || defined __DragonFly__ \
    || defined __NetBSD__ \
    || defined __CYGWIN__

/* Forward declarations.  */
struct callback_locals;
static int callback (struct callback_locals *locals, uintptr_t start, uintptr_t end);

# if defined __linux__ || defined __ANDROID__ || (defined __FreeBSD_kernel__ && !defined __FreeBSD__) || defined __CYGWIN__
/* GNU/kFreeBSD mounts /proc as linprocfs, which looks like a Linux /proc
   file system.  */

static int
vma_iterate_proc (struct callback_locals *locals)
{
  struct rofile rof;

  /* Open the current process' maps file.  It describes one VMA per line.  */
  if (rof_open (&rof, "/proc/self/maps") >= 0)
    {
      uintptr_t auxmap_start = rof.auxmap_start;
      uintptr_t auxmap_end = rof.auxmap_end;

      for (;;)
        {
          uintptr_t start, end;
          int c;

          /* Parse one line.  First start and end.  */
          if (!(rof_scanf_lx (&rof, &start) >= 0
                && rof_getchar (&rof) == '-'
                && rof_scanf_lx (&rof, &end) >= 0))
            break;
          while (c = rof_getchar (&rof), c != -1 && c != '\n')
            ;

          if (start <= auxmap_start && auxmap_end - 1 <= end - 1)
            {
              /* Consider [start,end-1] \ [auxmap_start,auxmap_end-1]
                 = [start,auxmap_start-1] u [auxmap_end,end-1].  */
              if (start < auxmap_start)
                if (callback (locals, start, auxmap_start))
                  break;
              if (auxmap_end - 1 < end - 1)
                if (callback (locals, auxmap_end, end))
                  break;
            }
          else
            {
              if (callback (locals, start, end))
                break;
            }
        }
      rof_close (&rof);
      return 0;
    }

  return -1;
}

# elif defined __FreeBSD__ || defined __DragonFly__ || defined __NetBSD__

static int
vma_iterate_proc (struct callback_locals *locals)
{
  struct rofile rof;

  /* Open the current process' maps file.  It describes one VMA per line.
     On FreeBSD:
       Cf. <https://www.freebsd.org/cgi/cvsweb.cgi/src/sys/fs/procfs/procfs_map.c?annotate=HEAD>
     On NetBSD, there are two such files:
       - /proc/curproc/map in near-FreeBSD syntax,
       - /proc/curproc/maps in Linux syntax.
       Cf. <http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/miscfs/procfs/procfs_map.c?rev=HEAD> */
  if (rof_open (&rof, "/proc/curproc/map") >= 0)
    {
      uintptr_t auxmap_start = rof.auxmap_start;
      uintptr_t auxmap_end = rof.auxmap_end;

      for (;;)
        {
          uintptr_t start, end;
          int c;

          /* Parse one line.  First start.  */
          if (!(rof_getchar (&rof) == '0'
                && rof_getchar (&rof) == 'x'
                && rof_scanf_lx (&rof, &start) >= 0))
            break;
          while (c = rof_peekchar (&rof), c == ' ' || c == '\t')
            rof_getchar (&rof);
          /* Then end.  */
          if (!(rof_getchar (&rof) == '0'
                && rof_getchar (&rof) == 'x'
                && rof_scanf_lx (&rof, &end) >= 0))
            break;
          while (c = rof_getchar (&rof), c != -1 && c != '\n')
            ;

          if (start <= auxmap_start && auxmap_end - 1 <= end - 1)
            {
              /* Consider [start,end-1] \ [auxmap_start,auxmap_end-1]
                 = [start,auxmap_start-1] u [auxmap_end,end-1].  */
              if (start < auxmap_start)
                if (callback (locals, start, auxmap_start))
                  break;
              if (auxmap_end - 1 < end - 1)
                if (callback (locals, auxmap_end, end))
                  break;
            }
          else
            {
              if (callback (locals, start, end))
                break;
            }
        }
      rof_close (&rof);
      return 0;
    }

  return -1;
}

# endif

# if (defined __FreeBSD_kernel__ || defined __FreeBSD__) && defined KERN_PROC_VMMAP /* FreeBSD >= 7.1 */

#  include <sys/user.h> /* struct kinfo_vmentry */
#  include <sys/sysctl.h> /* sysctl */

static int
vma_iterate_bsd (struct callback_locals *locals)
{
  /* Documentation: https://www.freebsd.org/cgi/man.cgi?sysctl(3)  */
  int info_path[] = { CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid () };
  size_t len;
  size_t pagesize;
  size_t memneed;
  void *auxmap;
  unsigned long auxmap_start;
  unsigned long auxmap_end;
  char *mem;
  char *p;
  char *p_end;

  len = 0;
  if (sysctl (info_path, 4, NULL, &len, NULL, 0) < 0)
    return -1;
  /* Allow for small variations over time.  In a multithreaded program
     new VMAs can be allocated at any moment.  */
  len = 2 * len + 200;
  /* Allocate memneed bytes of memory.
     We cannot use alloca here, because not much stack space is guaranteed.
     We also cannot use malloc here, because a malloc() call may call mmap()
     and thus pre-allocate available memory.
     So use mmap(), and ignore the resulting VMA.  */
  pagesize = getpagesize ();
  memneed = len;
  memneed = ((memneed - 1) / pagesize + 1) * pagesize;
  auxmap = (void *) mmap ((void *) 0, memneed, PROT_READ | PROT_WRITE,
                          MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
  if (auxmap == (void *) -1)
    return -1;
  auxmap_start = (unsigned long) auxmap;
  auxmap_end = auxmap_start + memneed;
  mem = (char *) auxmap;
  if (sysctl (info_path, 4, mem, &len, NULL, 0) < 0)
    {
      munmap (auxmap, memneed);
      return -1;
    }
  p = mem;
  p_end = mem + len;
  while (p < p_end)
    {
      struct kinfo_vmentry *kve = (struct kinfo_vmentry *) p;
      unsigned long start = kve->kve_start;
      unsigned long end = kve->kve_end;
      if (start <= auxmap_start && auxmap_end - 1 <= end - 1)
        {
          /* Consider [start,end-1] \ [auxmap_start,auxmap_end-1]
             = [start,auxmap_start-1] u [auxmap_end,end-1].  */
          if (start < auxmap_start)
            if (callback (locals, start, auxmap_start))
              break;
          if (auxmap_end - 1 < end - 1)
            if (callback (locals, auxmap_end, end))
              break;
        }
      else
        {
          if (callback (locals, start, end))
            break;
        }
      p += kve->kve_structsize;
    }
  munmap (auxmap, memneed);
  return 0;
}

# else

#  define vma_iterate_bsd(locals) (-1)

# endif


/* Iterate over the virtual memory areas of the current process.
   If such iteration is supported, the callback is called once for every
   virtual memory area, in ascending order, with the following arguments:
     - LOCALS is the same argument as passed to vma_iterate.
     - START is the address of the first byte in the area, page-aligned.
     - END is the address of the last byte in the area plus 1, page-aligned.
       Note that it may be 0 for the last area in the address space.
   If the callback returns 0, the iteration continues.  If it returns 1,
   the iteration terminates prematurely.
   This function may open file descriptors, but does not call malloc().
   Return 0 if all went well, or -1 in case of error.  */
static int
vma_iterate (struct callback_locals *locals)
{
# if defined __FreeBSD__
  /* On FreeBSD with procfs (but not GNU/kFreeBSD, which uses linprocfs), the
     function vma_iterate_proc does not return the virtual memory areas that
     were created by anonymous mmap.  See
     <https://svnweb.freebsd.org/base/head/sys/fs/procfs/procfs_map.c?view=markup>
     So use vma_iterate_proc only as a fallback.  */
  int retval = vma_iterate_bsd (locals);
  if (retval == 0)
      return 0;

  return vma_iterate_proc (locals);
# else
  /* On the other platforms, try the /proc approach first, and the sysctl()
     as a fallback.  */
  int retval = vma_iterate_proc (locals);
  if (retval == 0)
      return 0;

  return vma_iterate_bsd (locals);
# endif
}

#endif

/* =========================== stackvma-mincore.c =========================== */

/* mincore() is a system call that allows to inquire the status of a
   range of pages of virtual memory.  In particular, it allows to inquire
   whether a page is mapped at all (except on Mac OS X, where mincore
   returns 0 even for unmapped addresses).
   As of 2006, mincore() is supported by:        possible bits:
     - Linux,   since Linux 2.4 and glibc 2.2,   1
     - Solaris, since Solaris 9,                 1
     - MacOS X, since MacOS X 10.3 (at least),   1
     - FreeBSD, since FreeBSD 6.0,               MINCORE_{INCORE,REFERENCED,MODIFIED}
     - NetBSD,  since NetBSD 3.0 (at least),     1
     - OpenBSD, since OpenBSD 2.6 (at least),    1
     - AIX,     since AIX 5.3,                   1
   As of 2019, also on
     - Hurd.
   However, while the API allows to easily determine the bounds of mapped
   virtual memory, it does not make it easy to find the bounds of _unmapped_
   virtual memory ranges.  We try to work around this, but it may still be
   slow.  */

#if defined __linux__ || defined __ANDROID__ \
    || defined __FreeBSD_kernel__ || defined __FreeBSD__ || defined __DragonFly__ \
    || defined __NetBSD__ /* || defined __OpenBSD__ */ \
    /* || (defined __APPLE__ && defined __MACH__) */ \
    || defined _AIX || defined __sun

# include <unistd.h> /* getpagesize, mincore */
# include <sys/types.h>
# include <sys/mman.h> /* mincore */

/* The AIX declaration of mincore() uses 'caddr_t', whereas the other platforms
   use 'void *'. */
# ifdef _AIX
typedef caddr_t MINCORE_ADDR_T;
# else
typedef void* MINCORE_ADDR_T;
# endif

/* The glibc and musl declaration of mincore() uses 'unsigned char *', whereas
   the BSD declaration uses 'char *'.  */
# if __GLIBC__ >= 2 || defined __linux__ || defined __ANDROID__
typedef unsigned char pageinfo_t;
# else
typedef char pageinfo_t;
# endif

/* Cache for getpagesize().  */
static uintptr_t pagesize;

/* Initialize pagesize.  */
static void
init_pagesize (void)
{
  pagesize = getpagesize ();
}

/* Test whether the page starting at ADDR is among the address range.
   ADDR must be a multiple of pagesize.  */
static int
is_mapped (uintptr_t addr)
{
  pageinfo_t vec[1];
  return mincore ((MINCORE_ADDR_T) addr, pagesize, vec) >= 0;
}

/* Assuming that the page starting at ADDR is among the address range,
   return the start of its virtual memory range.
   ADDR must be a multiple of pagesize.  */
static uintptr_t
mapped_range_start (uintptr_t addr)
{
  /* Use a moderately sized VEC here, small enough that it fits on the stack
     (without requiring malloc).  */
  pageinfo_t vec[1024];
  uintptr_t stepsize = sizeof (vec);

  for (;;)
    {
      uintptr_t max_remaining;

      if (addr == 0)
        return addr;

      max_remaining = addr / pagesize;
      if (stepsize > max_remaining)
        stepsize = max_remaining;
      if (mincore ((MINCORE_ADDR_T) (addr - stepsize * pagesize),
                   stepsize * pagesize, vec) < 0)
        /* Time to search in smaller steps.  */
        break;
      /* The entire range exists.  Continue searching in large steps.  */
      addr -= stepsize * pagesize;
    }
  for (;;)
    {
      uintptr_t halfstepsize1;
      uintptr_t halfstepsize2;

      if (stepsize == 1)
        return addr;

      /* Here we know that less than stepsize pages exist starting at addr.  */
      halfstepsize1 = (stepsize + 1) / 2;
      halfstepsize2 = stepsize / 2;
      /* halfstepsize1 + halfstepsize2 = stepsize.  */

      if (mincore ((MINCORE_ADDR_T) (addr - halfstepsize1 * pagesize),
                   halfstepsize1 * pagesize, vec) < 0)
        stepsize = halfstepsize1;
      else
        {
          addr -= halfstepsize1 * pagesize;
          stepsize = halfstepsize2;
        }
    }
}

/* Assuming that the page starting at ADDR is among the address range,
   return the end of its virtual memory range + 1.
   ADDR must be a multiple of pagesize.  */
static uintptr_t
mapped_range_end (uintptr_t addr)
{
  /* Use a moderately sized VEC here, small enough that it fits on the stack
     (without requiring malloc).  */
  pageinfo_t vec[1024];
  uintptr_t stepsize = sizeof (vec);

  addr += pagesize;
  for (;;)
    {
      uintptr_t max_remaining;

      if (addr == 0) /* wrapped around? */
        return addr;

      max_remaining = (- addr) / pagesize;
      if (stepsize > max_remaining)
        stepsize = max_remaining;
      if (mincore ((MINCORE_ADDR_T) addr, stepsize * pagesize, vec) < 0)
        /* Time to search in smaller steps.  */
        break;
      /* The entire range exists.  Continue searching in large steps.  */
      addr += stepsize * pagesize;
    }
  for (;;)
    {
      uintptr_t halfstepsize1;
      uintptr_t halfstepsize2;

      if (stepsize == 1)
        return addr;

      /* Here we know that less than stepsize pages exist starting at addr.  */
      halfstepsize1 = (stepsize + 1) / 2;
      halfstepsize2 = stepsize / 2;
      /* halfstepsize1 + halfstepsize2 = stepsize.  */

      if (mincore ((MINCORE_ADDR_T) addr, halfstepsize1 * pagesize, vec) < 0)
        stepsize = halfstepsize1;
      else
        {
          addr += halfstepsize1 * pagesize;
          stepsize = halfstepsize2;
        }
    }
}

/* Determine whether an address range [ADDR1..ADDR2] is completely unmapped.
   ADDR1 must be <= ADDR2.  */
static int
is_unmapped (uintptr_t addr1, uintptr_t addr2)
{
  uintptr_t count;
  uintptr_t stepsize;

  /* Round addr1 down.  */
  addr1 = (addr1 / pagesize) * pagesize;
  /* Round addr2 up and turn it into an exclusive bound.  */
  addr2 = ((addr2 / pagesize) + 1) * pagesize;

  /* This is slow: mincore() does not provide a way to determine the bounds
     of the gaps directly.  So we have to use mincore() on individual pages
     over and over again.  Only after we've verified that all pages are
     unmapped, we know that the range is completely unmapped.
     If we were to traverse the pages from bottom to top or from top to bottom,
     it would be slow even in the average case.  To speed up the search, we
     exploit the fact that mapped memory ranges are larger than one page on
     average, therefore we have good chances of hitting a mapped area if we
     traverse only every second, or only fourth page, etc.  This doesn't
     decrease the worst-case runtime, only the average runtime.  */
  count = (addr2 - addr1) / pagesize;
  /* We have to test is_mapped (addr1 + i * pagesize) for 0 <= i < count.  */
  for (stepsize = 1; stepsize < count; )
    stepsize = 2 * stepsize;
  for (;;)
    {
      uintptr_t addr_stepsize;
      uintptr_t i;
      uintptr_t addr;

      stepsize = stepsize / 2;
      if (stepsize == 0)
        break;
      addr_stepsize = stepsize * pagesize;
      for (i = stepsize, addr = addr1 + addr_stepsize;
           i < count;
           i += 2 * stepsize, addr += 2 * addr_stepsize)
        /* Here addr = addr1 + i * pagesize.  */
        if (is_mapped (addr))
          return 0;
    }
  return 1;
}

# if STACK_DIRECTION < 0

/* Info about the gap between this VMA and the previous one.
   addr must be < vma->start.  */
static int
mincore_is_near_this (uintptr_t addr, struct vma_struct *vma)
{
  /*   vma->start - addr <= (vma->start - vma->prev_end) / 2
     is mathematically equivalent to
       vma->prev_end <= 2 * addr - vma->start
     <==> is_unmapped (2 * addr - vma->start, vma->start - 1).
     But be careful about overflow: if 2 * addr - vma->start is negative,
     we consider a tiny "guard page" mapping [0, 0] to be present around
     NULL; it intersects the range (2 * addr - vma->start, vma->start - 1),
     therefore return false.  */
  uintptr_t testaddr = addr - (vma->start - addr);
  if (testaddr > addr) /* overflow? */
    return 0;
  /* Here testaddr <= addr < vma->start.  */
  return is_unmapped (testaddr, vma->start - 1);
}

# endif
# if STACK_DIRECTION > 0

/* Info about the gap between this VMA and the next one.
   addr must be > vma->end - 1.  */
static int
mincore_is_near_this (uintptr_t addr, struct vma_struct *vma)
{
  /*   addr - vma->end < (vma->next_start - vma->end) / 2
     is mathematically equivalent to
       vma->next_start > 2 * addr - vma->end
     <==> is_unmapped (vma->end, 2 * addr - vma->end).
     But be careful about overflow: if 2 * addr - vma->end is > ~0UL,
     we consider a tiny "guard page" mapping [0, 0] to be present around
     NULL; it intersects the range (vma->end, 2 * addr - vma->end),
     therefore return false.  */
  uintptr_t testaddr = addr + (addr - vma->end);
  if (testaddr < addr) /* overflow? */
    return 0;
  /* Here vma->end - 1 < addr <= testaddr.  */
  return is_unmapped (vma->end, testaddr);
}

# endif

static int
mincore_get_vma (uintptr_t address, struct vma_struct *vma)
{
  if (pagesize == 0)
    init_pagesize ();
  address = (address / pagesize) * pagesize;
  vma->start = mapped_range_start (address);
  vma->end = mapped_range_end (address);
  vma->is_near_this = mincore_is_near_this;
  return 0;
}

#endif

/* ========================================================================== */

/* ---------------------------- stackvma-linux.c ---------------------------- */

#if defined __linux__ || defined __ANDROID__ /* Linux */

struct callback_locals
{
  uintptr_t address;
  struct vma_struct *vma;
# if STACK_DIRECTION < 0
  uintptr_t prev;
# else
  int stop_at_next_vma;
# endif
  int retval;
};

static int
callback (struct callback_locals *locals, uintptr_t start, uintptr_t end)
{
# if STACK_DIRECTION < 0
  if (locals->address >= start && locals->address <= end - 1)
    {
      locals->vma->start = start;
      locals->vma->end = end;
      locals->vma->prev_end = locals->prev;
      locals->retval = 0;
      return 1;
    }
  locals->prev = end;
# else
  if (locals->stop_at_next_vma)
    {
      locals->vma->next_start = start;
      locals->stop_at_next_vma = 0;
      return 1;
    }
  if (locals->address >= start && locals->address <= end - 1)
    {
      locals->vma->start = start;
      locals->vma->end = end;
      locals->retval = 0;
      locals->stop_at_next_vma = 1;
      return 0;
    }
# endif
  return 0;
}

int
sigsegv_get_vma (uintptr_t address, struct vma_struct *vma)
{
  struct callback_locals locals;
  locals.address = address;
  locals.vma = vma;
# if STACK_DIRECTION < 0
  locals.prev = 0;
# else
  locals.stop_at_next_vma = 0;
# endif
  locals.retval = -1;

  vma_iterate (&locals);
  if (locals.retval == 0)
    {
# if !(STACK_DIRECTION < 0)
      if (locals.stop_at_next_vma)
        vma->next_start = 0;
# endif
      vma->is_near_this = simple_is_near_this;
      return 0;
    }

  return mincore_get_vma (address, vma);
}

/* --------------------------- stackvma-freebsd.c --------------------------- */

#elif defined __FreeBSD_kernel__ || defined __FreeBSD__ || defined __DragonFly__ /* GNU/kFreeBSD, FreeBSD */

struct callback_locals
{
  uintptr_t address;
  struct vma_struct *vma;
  /* The stack appears as multiple adjacents segments, therefore we
     merge adjacent segments.  */
  uintptr_t curr_start, curr_end;
# if STACK_DIRECTION < 0
  uintptr_t prev_end;
# else
  int stop_at_next_vma;
# endif
  int retval;
};

static int
callback (struct callback_locals *locals, uintptr_t start, uintptr_t end)
{
  if (start == locals->curr_end)
    {
      /* Merge adjacent segments.  */
      locals->curr_end = end;
      return 0;
    }
# if STACK_DIRECTION < 0
  if (locals->curr_start < locals->curr_end
      && locals->address >= locals->curr_start
      && locals->address <= locals->curr_end - 1)
    {
      locals->vma->start = locals->curr_start;
      locals->vma->end = locals->curr_end;
      locals->vma->prev_end = locals->prev_end;
      locals->retval = 0;
      return 1;
    }
  locals->prev_end = locals->curr_end;
# else
  if (locals->stop_at_next_vma)
    {
      locals->vma->next_start = locals->curr_start;
      locals->stop_at_next_vma = 0;
      return 1;
    }
  if (locals->curr_start < locals->curr_end
      && locals->address >= locals->curr_start
      && locals->address <= locals->curr_end - 1)
    {
      locals->vma->start = locals->curr_start;
      locals->vma->end = locals->curr_end;
      locals->retval = 0;
      locals->stop_at_next_vma = 1;
      return 0;
    }
# endif
  locals->curr_start = start; locals->curr_end = end;
  return 0;
}

int
sigsegv_get_vma (uintptr_t address, struct vma_struct *vma)
{
  struct callback_locals locals;
  locals.address = address;
  locals.vma = vma;
  locals.curr_start = 0;
  locals.curr_end = 0;
# if STACK_DIRECTION < 0
  locals.prev_end = 0;
# else
  locals.stop_at_next_vma = 0;
# endif
  locals.retval = -1;

  vma_iterate (&locals);
  if (locals.retval < 0)
    {
      if (locals.curr_start < locals.curr_end
          && address >= locals.curr_start && address <= locals.curr_end - 1)
        {
          vma->start = locals.curr_start;
          vma->end = locals.curr_end;
# if STACK_DIRECTION < 0
          vma->prev_end = locals.prev_end;
# else
          vma->next_start = 0;
# endif
          locals.retval = 0;
        }
    }
  if (locals.retval == 0)
    {
# if !(STACK_DIRECTION < 0)
      if (locals.stop_at_next_vma)
        vma->next_start = 0;
# endif
      vma->is_near_this = simple_is_near_this;
      return 0;
    }

  /* FreeBSD 6.[01] doesn't allow to distinguish unmapped pages from
     mapped but swapped-out pages.  See whether it's fixed.  */
  if (!is_mapped (0))
    /* OK, mincore() appears to work as expected.  */
    return mincore_get_vma (address, vma);
  return -1;
}

/* --------------------------- stackvma-netbsd.c --------------------------- */

#elif defined __NetBSD__ /* NetBSD */

struct callback_locals
{
  uintptr_t address;
  struct vma_struct *vma;
  /* The stack appears as multiple adjacents segments, therefore we
     merge adjacent segments.  */
  uintptr_t curr_start, curr_end;
# if STACK_DIRECTION < 0
  uintptr_t prev_end;
# else
  int stop_at_next_vma;
# endif
  int retval;
};

static int
callback (struct callback_locals *locals, uintptr_t start, uintptr_t end)
{
  if (start == locals->curr_end)
    {
      /* Merge adjacent segments.  */
      locals->curr_end = end;
      return 0;
    }
# if STACK_DIRECTION < 0
  if (locals->curr_start < locals->curr_end
      && locals->address >= locals->curr_start
      && locals->address <= locals->curr_end - 1)
    {
      locals->vma->start = locals->curr_start;
      locals->vma->end = locals->curr_end;
      locals->vma->prev_end = locals->prev_end;
      locals->retval = 0;
      return 1;
    }
  locals->prev_end = locals->curr_end;
# else
  if (locals->stop_at_next_vma)
    {
      locals->vma->next_start = locals->curr_start;
      locals->stop_at_next_vma = 0;
      return 1;
    }
  if (locals->curr_start < locals->curr_end
      && locals->address >= locals->curr_start
      && locals->address <= locals->curr_end - 1)
    {
      locals->vma->start = locals->curr_start;
      locals->vma->end = locals->curr_end;
      locals->retval = 0;
      locals->stop_at_next_vma = 1;
      return 0;
    }
# endif
  locals->curr_start = start; locals->curr_end = end;
  return 0;
}

int
sigsegv_get_vma (uintptr_t address, struct vma_struct *vma)
{
  struct callback_locals locals;
  locals.address = address;
  locals.vma = vma;
  locals.curr_start = 0;
  locals.curr_end = 0;
# if STACK_DIRECTION < 0
  locals.prev_end = 0;
# else
  locals.stop_at_next_vma = 0;
# endif
  locals.retval = -1;

  vma_iterate (&locals);
  if (locals.retval < 0)
    {
      if (locals.curr_start < locals.curr_end
          && address >= locals.curr_start && address <= locals.curr_end - 1)
        {
          vma->start = locals.curr_start;
          vma->end = locals.curr_end;
# if STACK_DIRECTION < 0
          vma->prev_end = locals.prev_end;
# else
          vma->next_start = 0;
# endif
          locals.retval = 0;
        }
    }
  if (locals.retval == 0)
    {
# if !(STACK_DIRECTION < 0)
      if (locals.stop_at_next_vma)
        vma->next_start = 0;
# endif
      vma->is_near_this = simple_is_near_this;
      return 0;
    }

  return mincore_get_vma (address, vma);
}

/* --------------------------- stackvma-mquery.c --------------------------- */

/* mquery() is a system call that allows to inquire the status of a
   range of pages of virtual memory.  In particular, it allows to inquire
   whether a page is mapped at all, and where is the next unmapped page
   after a given address.
   As of 2021, mquery() is supported by:
     - OpenBSD, since OpenBSD 3.4.
   Note that this file can give different results.  For example, on
   OpenBSD 4.4 / i386 the stack segment (which starts around 0xcdbfe000)
   ends at 0xcfbfdfff according to mincore, but at 0xffffffff according to
   mquery.  */

#elif defined __OpenBSD__ /* OpenBSD */

# include <unistd.h> /* getpagesize, mincore */
# include <sys/types.h>
# include <sys/mman.h> /* mincore */

/* Cache for getpagesize().  */
static uintptr_t pagesize;

/* Initialize pagesize.  */
static void
init_pagesize (void)
{
  pagesize = getpagesize ();
}

/* Test whether the page starting at ADDR is among the address range.
   ADDR must be a multiple of pagesize.  */
static int
is_mapped (uintptr_t addr)
{
  /* Avoid calling mquery with a NULL first argument, because this argument
     value has a specific meaning.  We know the NULL page is unmapped.  */
  if (addr == 0)
    return 0;
  return mquery ((void *) addr, pagesize, 0, MAP_FIXED, -1, 0) == (void *) -1;
}

/* Assuming that the page starting at ADDR is among the address range,
   return the start of its virtual memory range.
   ADDR must be a multiple of pagesize.  */
static uintptr_t
mapped_range_start (uintptr_t addr)
{
  uintptr_t stepsize;
  uintptr_t known_unmapped_page;

  /* Look at smaller addresses, in larger and larger steps, to minimize the
     number of mquery() calls.  */
  stepsize = pagesize;
  for (;;)
    {
      uintptr_t hole;

      if (addr == 0)
        abort ();

      if (addr <= stepsize)
        {
          known_unmapped_page = 0;
          break;
        }

      hole = (uintptr_t) mquery ((void *) (addr - stepsize), pagesize,
                                     0, 0, -1, 0);
      if (!(hole == (uintptr_t) (void *) -1 || hole >= addr))
        {
          /* Some part of [addr - stepsize, addr - 1] is unmapped.  */
          known_unmapped_page = hole;
          break;
        }

      /* The entire range [addr - stepsize, addr - 1] is mapped.  */
      addr -= stepsize;

      if (2 * stepsize > stepsize && 2 * stepsize < addr)
        stepsize = 2 * stepsize;
    }

  /* Now reduce the step size again.
     We know that the page at known_unmapped_page is unmapped and that
     0 < addr - known_unmapped_page <= stepsize.  */
  while (stepsize > pagesize && stepsize / 2 >= addr - known_unmapped_page)
    stepsize = stepsize / 2;
  /* Still 0 < addr - known_unmapped_page <= stepsize.  */
  while (stepsize > pagesize)
    {
      uintptr_t hole;

      stepsize = stepsize / 2;
      hole = (uintptr_t) mquery ((void *) (addr - stepsize), pagesize,
                                     0, 0, -1, 0);
      if (!(hole == (uintptr_t) (void *) -1 || hole >= addr))
        /* Some part of [addr - stepsize, addr - 1] is unmapped.  */
        known_unmapped_page = hole;
      else
        /* The entire range [addr - stepsize, addr - 1] is mapped.  */
        addr -= stepsize;
      /* Still 0 < addr - known_unmapped_page <= stepsize.  */
    }

  return addr;
}

/* Assuming that the page starting at ADDR is among the address range,
   return the end of its virtual memory range + 1.
   ADDR must be a multiple of pagesize.  */
static uintptr_t
mapped_range_end (uintptr_t addr)
{
  uintptr_t end;

  if (addr == 0)
    abort ();

  end = (uintptr_t) mquery ((void *) addr, pagesize, 0, 0, -1, 0);
  if (end == (uintptr_t) (void *) -1)
    end = 0; /* wrap around */
  return end;
}

/* Determine whether an address range [ADDR1..ADDR2] is completely unmapped.
   ADDR1 must be <= ADDR2.  */
static int
is_unmapped (uintptr_t addr1, uintptr_t addr2)
{
  /* Round addr1 down.  */
  addr1 = (addr1 / pagesize) * pagesize;
  /* Round addr2 up and turn it into an exclusive bound.  */
  addr2 = ((addr2 / pagesize) + 1) * pagesize;

  /* Avoid calling mquery with a NULL first argument, because this argument
     value has a specific meaning.  We know the NULL page is unmapped.  */
  if (addr1 == 0)
    addr1 = pagesize;

  if (addr1 < addr2)
    {
      if (mquery ((void *) addr1, addr2 - addr1, 0, MAP_FIXED, -1, 0)
          == (void *) -1)
        /* Not all the interval [addr1 .. addr2 - 1] is unmapped.  */
        return 0;
      else
        /* The interval [addr1 .. addr2 - 1] is unmapped.  */
        return 1;
    }
  return 1;
}

# if STACK_DIRECTION < 0

/* Info about the gap between this VMA and the previous one.
   addr must be < vma->start.  */
static int
mquery_is_near_this (uintptr_t addr, struct vma_struct *vma)
{
  /*   vma->start - addr <= (vma->start - vma->prev_end) / 2
     is mathematically equivalent to
       vma->prev_end <= 2 * addr - vma->start
     <==> is_unmapped (2 * addr - vma->start, vma->start - 1).
     But be careful about overflow: if 2 * addr - vma->start is negative,
     we consider a tiny "guard page" mapping [0, 0] to be present around
     NULL; it intersects the range (2 * addr - vma->start, vma->start - 1),
     therefore return false.  */
  uintptr_t testaddr = addr - (vma->start - addr);
  if (testaddr > addr) /* overflow? */
    return 0;
  /* Here testaddr <= addr < vma->start.  */
  return is_unmapped (testaddr, vma->start - 1);
}

# endif
# if STACK_DIRECTION > 0

/* Info about the gap between this VMA and the next one.
   addr must be > vma->end - 1.  */
static int
mquery_is_near_this (uintptr_t addr, struct vma_struct *vma)
{
  /*   addr - vma->end < (vma->next_start - vma->end) / 2
     is mathematically equivalent to
       vma->next_start > 2 * addr - vma->end
     <==> is_unmapped (vma->end, 2 * addr - vma->end).
     But be careful about overflow: if 2 * addr - vma->end is > ~0UL,
     we consider a tiny "guard page" mapping [0, 0] to be present around
     NULL; it intersects the range (vma->end, 2 * addr - vma->end),
     therefore return false.  */
  uintptr_t testaddr = addr + (addr - vma->end);
  if (testaddr < addr) /* overflow? */
    return 0;
  /* Here vma->end - 1 < addr <= testaddr.  */
  return is_unmapped (vma->end, testaddr);
}

# endif

int
sigsegv_get_vma (uintptr_t address, struct vma_struct *vma)
{
  if (pagesize == 0)
    init_pagesize ();
  address = (address / pagesize) * pagesize;
  vma->start = mapped_range_start (address);
  vma->end = mapped_range_end (address);
  vma->is_near_this = mquery_is_near_this;
  return 0;
}

/* ---------------------------- stackvma-mach.c ---------------------------- */

#elif (defined __APPLE__ && defined __MACH__) /* macOS */

#include <libc.h>
#include <nlist.h>
#include <mach/mach.h>
#include <mach/machine/vm_param.h>

int
sigsegv_get_vma (uintptr_t req_address, struct vma_struct *vma)
{
  uintptr_t prev_address = 0, prev_size = 0;
  uintptr_t join_address = 0, join_size = 0;
  int more = 1;
  vm_address_t address;
  vm_size_t size;
  task_t task = mach_task_self ();

  for (address = VM_MIN_ADDRESS; more; address += size)
    {
      mach_port_t object_name;
      /* In MacOS X 10.5, the types vm_address_t, vm_offset_t, vm_size_t have
         32 bits in 32-bit processes and 64 bits in 64-bit processes. Whereas
         mach_vm_address_t and mach_vm_size_t are always 64 bits large.
         MacOS X 10.5 has three vm_region like methods:
           - vm_region. It has arguments that depend on whether the current
             process is 32-bit or 64-bit. When linking dynamically, this
             function exists only in 32-bit processes. Therefore we use it only
             in 32-bit processes.
           - vm_region_64. It has arguments that depend on whether the current
             process is 32-bit or 64-bit. It interprets a flavor
             VM_REGION_BASIC_INFO as VM_REGION_BASIC_INFO_64, which is
             dangerous since 'struct vm_region_basic_info_64' is larger than
             'struct vm_region_basic_info'; therefore let's write
             VM_REGION_BASIC_INFO_64 explicitly.
           - mach_vm_region. It has arguments that are 64-bit always. This
             function is useful when you want to access the VM of a process
             other than the current process.
         In 64-bit processes, we could use vm_region_64 or mach_vm_region.
         I choose vm_region_64 because it uses the same types as vm_region,
         resulting in less conditional code.  */
# if defined __aarch64__ || defined __ppc64__ || defined __x86_64__
      struct vm_region_basic_info_64 info;
      mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT_64;

      more = (vm_region_64 (task, &address, &size, VM_REGION_BASIC_INFO_64,
                            (vm_region_info_t)&info, &info_count, &object_name)
              == KERN_SUCCESS);
# else
      struct vm_region_basic_info info;
      mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;

      more = (vm_region (task, &address, &size, VM_REGION_BASIC_INFO,
                         (vm_region_info_t)&info, &info_count, &object_name)
              == KERN_SUCCESS);
# endif
      if (!more)
        {
          address = join_address + join_size;
          size = 0;
        }

      if ((uintptr_t) address == join_address + join_size)
        join_size += size;
      else
        {
          prev_address = join_address;
          prev_size = join_size;
          join_address = (uintptr_t) address;
          join_size = size;
        }

      if (object_name != MACH_PORT_NULL)
        mach_port_deallocate (mach_task_self (), object_name);

# if STACK_DIRECTION < 0
      if (join_address <= req_address && join_address + join_size > req_address)
        {
          vma->start = join_address;
          vma->end = join_address + join_size;
          vma->prev_end = prev_address + prev_size;
          vma->is_near_this = simple_is_near_this;
          return 0;
        }
# else
      if (prev_address <= req_address && prev_address + prev_size > req_address)
        {
          vma->start = prev_address;
          vma->end = prev_address + prev_size;
          vma->next_start = join_address;
          vma->is_near_this = simple_is_near_this;
          return 0;
        }
# endif
    }

# if STACK_DIRECTION > 0
  if (join_address <= req_address && join_address + size > req_address)
    {
      vma->start = prev_address;
      vma->end = prev_address + prev_size;
      vma->next_start = ~0UL;
      vma->is_near_this = simple_is_near_this;
      return 0;
    }
# endif

  return -1;
}

/* -------------------------------------------------------------------------- */

#elif defined _AIX /* AIX */

int
sigsegv_get_vma (uintptr_t address, struct vma_struct *vma)
{
  return mincore_get_vma (address, vma);
}

/* --------------------------- stackvma-procfs.h --------------------------- */

#elif defined __sgi || defined __sun /* IRIX, Solaris */

# include <errno.h> /* errno, EINTR */
# include <fcntl.h> /* open, O_RDONLY */
# include <stddef.h> /* size_t */
# include <unistd.h> /* getpagesize, getpid, read, close */
# include <sys/types.h>
# include <sys/mman.h> /* mmap, munmap */
# include <sys/stat.h> /* fstat */
# include <string.h> /* memcpy */

/* Try to use the newer ("structured") /proc filesystem API, if supported.  */
# define _STRUCTURED_PROC 1
# include <sys/procfs.h> /* prmap_t, optionally PIOC* */

# if !defined __sun

/* Cache for getpagesize().  */
static uintptr_t pagesize;

/* Initialize pagesize.  */
static void
init_pagesize (void)
{
  pagesize = getpagesize ();
}

# endif

struct callback_locals
{
  uintptr_t address;
  struct vma_struct *vma;
# if STACK_DIRECTION < 0
  uintptr_t prev;
# else
  int stop_at_next_vma;
# endif
  int retval;
};

static int
callback (struct callback_locals *locals, uintptr_t start, uintptr_t end)
{
# if STACK_DIRECTION < 0
  if (locals->address >= start && locals->address <= end - 1)
    {
      locals->vma->start = start;
      locals->vma->end = end;
      locals->vma->prev_end = locals->prev;
      locals->retval = 0;
      return 1;
    }
  locals->prev = end;
# else
  if (locals->stop_at_next_vma)
    {
      locals->vma->next_start = start;
      locals->stop_at_next_vma = 0;
      return 1;
    }
  if (locals->address >= start && locals->address <= end - 1)
    {
      locals->vma->start = start;
      locals->vma->end = end;
      locals->retval = 0;
      locals->stop_at_next_vma = 1;
      return 0;
    }
# endif
  return 0;
}

/* Iterate over the virtual memory areas of the current process.
   If such iteration is supported, the callback is called once for every
   virtual memory area, in ascending order, with the following arguments:
     - LOCALS is the same argument as passed to vma_iterate.
     - START is the address of the first byte in the area, page-aligned.
     - END is the address of the last byte in the area plus 1, page-aligned.
       Note that it may be 0 for the last area in the address space.
   If the callback returns 0, the iteration continues.  If it returns 1,
   the iteration terminates prematurely.
   This function may open file descriptors, but does not call malloc().
   Return 0 if all went well, or -1 in case of error.  */
/* This code is a simplified copy (no handling of protection flags) of the
   code in gnulib's lib/vma-iter.c.  */
static int
vma_iterate (struct callback_locals *locals)
{
  /* Note: Solaris <sys/procfs.h> defines a different type prmap_t with
     _STRUCTURED_PROC than without! Here's a table of sizeof(prmap_t):
                                  32-bit   64-bit
         _STRUCTURED_PROC = 0       32       56
         _STRUCTURED_PROC = 1       96      104
     Therefore, if the include files provide the newer API, prmap_t has
     the bigger size, and thus you MUST use the newer API.  And if the
     include files provide the older API, prmap_t has the smaller size,
     and thus you MUST use the older API.  */

# if defined PIOCNMAP && defined PIOCMAP
  /* We must use the older /proc interface.  */

  char fnamebuf[6+10+1];
  char *fname;
  int fd;
  int nmaps;
  size_t memneed;
#  if HAVE_MAP_ANONYMOUS
#   define zero_fd -1
#   define map_flags MAP_ANONYMOUS
#  else /* !HAVE_MAP_ANONYMOUS */
  int zero_fd;
#   define map_flags 0
#  endif
  void *auxmap;
  uintptr_t auxmap_start;
  uintptr_t auxmap_end;
  prmap_t* maps;
  prmap_t* mp;

  if (pagesize == 0)
    init_pagesize ();

  /* Construct fname = sprintf (fnamebuf+i, "/proc/%u", getpid ()).  */
  fname = fnamebuf + sizeof (fnamebuf) - 1;
  *fname = '\0';
  {
    unsigned int value = getpid ();
    do
      *--fname = (value % 10) + '0';
    while ((value = value / 10) > 0);
  }
  fname -= 6;
  memcpy (fname, "/proc/", 6);

  fd = open (fname, O_RDONLY);
  if (fd < 0)
    return -1;

  if (ioctl (fd, PIOCNMAP, &nmaps) < 0)
    goto fail2;

  memneed = (nmaps + 10) * sizeof (prmap_t);
  /* Allocate memneed bytes of memory.
     We cannot use alloca here, because not much stack space is guaranteed.
     We also cannot use malloc here, because a malloc() call may call mmap()
     and thus pre-allocate available memory.
     So use mmap(), and ignore the resulting VMA.  */
  memneed = ((memneed - 1) / pagesize + 1) * pagesize;
#  if !HAVE_MAP_ANONYMOUS
  zero_fd = open ("/dev/zero", O_RDONLY, 0644);
  if (zero_fd < 0)
    goto fail2;
#  endif
  auxmap = (void *) mmap ((void *) 0, memneed, PROT_READ | PROT_WRITE,
                          map_flags | MAP_PRIVATE, zero_fd, 0);
#  if !HAVE_MAP_ANONYMOUS
  close (zero_fd);
#  endif
  if (auxmap == (void *) -1)
    goto fail2;
  auxmap_start = (uintptr_t) auxmap;
  auxmap_end = auxmap_start + memneed;
  maps = (prmap_t *) auxmap;

  if (ioctl (fd, PIOCMAP, maps) < 0)
    goto fail1;

  for (mp = maps;;)
    {
      uintptr_t start, end;

      start = (uintptr_t) mp->pr_vaddr;
      end = start + mp->pr_size;
      if (start == 0 && end == 0)
        break;
      mp++;
      if (start <= auxmap_start && auxmap_end - 1 <= end - 1)
        {
          /* Consider [start,end-1] \ [auxmap_start,auxmap_end-1]
             = [start,auxmap_start-1] u [auxmap_end,end-1].  */
          if (start < auxmap_start)
            if (callback (locals, start, auxmap_start))
              break;
          if (auxmap_end - 1 < end - 1)
            if (callback (locals, auxmap_end, end))
              break;
        }
      else
        {
          if (callback (locals, start, end))
            break;
        }
    }
  munmap (auxmap, memneed);
  close (fd);
  return 0;

 fail1:
  munmap (auxmap, memneed);
 fail2:
  close (fd);
  return -1;

# else
  /* We must use the newer /proc interface.
     Documentation:
     https://docs.oracle.com/cd/E23824_01/html/821-1473/proc-4.html
     The contents of /proc/<pid>/map consists of records of type
     prmap_t.  These are different in 32-bit and 64-bit processes,
     but here we are fortunately accessing only the current process.  */

  char fnamebuf[6+10+4+1];
  char *fname;
  int fd;
  int nmaps;
  size_t memneed;
#  if HAVE_MAP_ANONYMOUS
#   define zero_fd -1
#   define map_flags MAP_ANONYMOUS
#  else /* !HAVE_MAP_ANONYMOUS */
  int zero_fd;
#   define map_flags 0
#  endif
  void *auxmap;
  uintptr_t auxmap_start;
  uintptr_t auxmap_end;
  prmap_t* maps;
  prmap_t* maps_end;
  prmap_t* mp;

  if (pagesize == 0)
    init_pagesize ();

  /* Construct fname = sprintf (fnamebuf+i, "/proc/%u/map", getpid ()).  */
  fname = fnamebuf + sizeof (fnamebuf) - 1 - 4;
  memcpy (fname, "/map", 4 + 1);
  {
    unsigned int value = getpid ();
    do
      *--fname = (value % 10) + '0';
    while ((value = value / 10) > 0);
  }
  fname -= 6;
  memcpy (fname, "/proc/", 6);

  fd = open (fname, O_RDONLY);
  if (fd < 0)
    return -1;

  {
    struct stat statbuf;
    if (fstat (fd, &statbuf) < 0)
      goto fail2;
    nmaps = statbuf.st_size / sizeof (prmap_t);
  }

  memneed = (nmaps + 10) * sizeof (prmap_t);
  /* Allocate memneed bytes of memory.
     We cannot use alloca here, because not much stack space is guaranteed.
     We also cannot use malloc here, because a malloc() call may call mmap()
     and thus pre-allocate available memory.
     So use mmap(), and ignore the resulting VMA.  */
  memneed = ((memneed - 1) / pagesize + 1) * pagesize;
#  if !HAVE_MAP_ANONYMOUS
  zero_fd = open ("/dev/zero", O_RDONLY, 0644);
  if (zero_fd < 0)
    goto fail2;
#  endif
  auxmap = (void *) mmap ((void *) 0, memneed, PROT_READ | PROT_WRITE,
                          map_flags | MAP_PRIVATE, zero_fd, 0);
#  if !HAVE_MAP_ANONYMOUS
  close (zero_fd);
#  endif
  if (auxmap == (void *) -1)
    goto fail2;
  auxmap_start = (uintptr_t) auxmap;
  auxmap_end = auxmap_start + memneed;
  maps = (prmap_t *) auxmap;

  /* Read up to memneed bytes from fd into maps.  */
  {
    size_t remaining = memneed;
    size_t total_read = 0;
    char *ptr = (char *) maps;

    do
      {
        size_t nread = read (fd, ptr, remaining);
        if (nread == (size_t)-1)
          {
            if (errno == EINTR)
              continue;
            goto fail1;
          }
        if (nread == 0)
          /* EOF */
          break;
        total_read += nread;
        ptr += nread;
        remaining -= nread;
      }
    while (remaining > 0);

    nmaps = (memneed - remaining) / sizeof (prmap_t);
    maps_end = maps + nmaps;
  }

  for (mp = maps; mp < maps_end; mp++)
    {
      uintptr_t start, end;

      start = (uintptr_t) mp->pr_vaddr;
      end = start + mp->pr_size;
      if (start <= auxmap_start && auxmap_end - 1 <= end - 1)
        {
          /* Consider [start,end-1] \ [auxmap_start,auxmap_end-1]
             = [start,auxmap_start-1] u [auxmap_end,end-1].  */
          if (start < auxmap_start)
            if (callback (locals, start, auxmap_start))
              break;
          if (auxmap_end - 1 < end - 1)
            if (callback (locals, auxmap_end, end))
              break;
        }
      else
        {
          if (callback (locals, start, end))
            break;
        }
    }
  munmap (auxmap, memneed);
  close (fd);
  return 0;

 fail1:
  munmap (auxmap, memneed);
 fail2:
  close (fd);
  return -1;

# endif
}

int
sigsegv_get_vma (uintptr_t address, struct vma_struct *vma)
{
  struct callback_locals locals;
  locals.address = address;
  locals.vma = vma;
# if STACK_DIRECTION < 0
  locals.prev = 0;
# else
  locals.stop_at_next_vma = 0;
# endif
  locals.retval = -1;

  vma_iterate (&locals);
  if (locals.retval == 0)
    {
# if !(STACK_DIRECTION < 0)
      if (locals.stop_at_next_vma)
        vma->next_start = 0;
# endif
      vma->is_near_this = simple_is_near_this;
      return 0;
    }

# if defined __sun
  return mincore_get_vma (address, vma);
# else
  return -1;
# endif
}

/* -------------------------------------------------------------------------- */

#elif defined __CYGWIN__ /* Cygwin */

struct callback_locals
{
  uintptr_t address;
  struct vma_struct *vma;
  /* The stack appears as three adjacents segments, therefore we
     merge adjacent segments.  */
  uintptr_t curr_start, curr_end;
# if STACK_DIRECTION < 0
  uintptr_t prev_end;
# else
  int stop_at_next_vma;
# endif
  int retval;
};

static int
callback (struct callback_locals *locals, uintptr_t start, uintptr_t end)
{
  if (start == locals->curr_end)
    {
      /* Merge adjacent segments.  */
      locals->curr_end = end;
      return 0;
    }
# if STACK_DIRECTION < 0
  if (locals->curr_start < locals->curr_end
      && locals->address >= locals->curr_start
      && locals->address <= locals->curr_end - 1)
    {
      locals->vma->start = locals->curr_start;
      locals->vma->end = locals->curr_end;
      locals->vma->prev_end = locals->prev_end;
      locals->retval = 0;
      return 1;
    }
  locals->prev_end = locals->curr_end;
# else
  if (locals->stop_at_next_vma)
    {
      locals->vma->next_start = locals->curr_start;
      locals->stop_at_next_vma = 0;
      return 1;
    }
  if (locals->curr_start < locals->curr_end
      && locals->address >= locals->curr_start
      && locals->address <= locals->curr_end - 1)
    {
      locals->vma->start = locals->curr_start;
      locals->vma->end = locals->curr_end;
      locals->retval = 0;
      locals->stop_at_next_vma = 1;
      return 0;
    }
# endif
  locals->curr_start = start; locals->curr_end = end;
  return 0;
}

int
sigsegv_get_vma (uintptr_t address, struct vma_struct *vma)
{
  struct callback_locals locals;
  locals.address = address;
  locals.vma = vma;
  locals.curr_start = 0;
  locals.curr_end = 0;
# if STACK_DIRECTION < 0
  locals.prev_end = 0;
# else
  locals.stop_at_next_vma = 0;
# endif
  locals.retval = -1;

  vma_iterate (&locals);
  if (locals.retval < 0)
    {
      if (locals.curr_start < locals.curr_end
          && address >= locals.curr_start && address <= locals.curr_end - 1)
        {
          vma->start = locals.curr_start;
          vma->end = locals.curr_end;
# if STACK_DIRECTION < 0
          vma->prev_end = locals.prev_end;
# else
          vma->next_start = 0;
# endif
          locals.retval = 0;
        }
    }
  if (locals.retval == 0)
    {
# if !(STACK_DIRECTION < 0)
      if (locals.stop_at_next_vma)
        vma->next_start = 0;
# endif
      vma->is_near_this = simple_is_near_this;
      return 0;
    }

  return -1;
}

/* ---------------------------- stackvma-beos.h ---------------------------- */

#elif defined __HAIKU__ /* Haiku */

# include <OS.h> /* get_next_area_info */

struct callback_locals
{
  uintptr_t address;
  struct vma_struct *vma;
# if STACK_DIRECTION < 0
  uintptr_t prev;
# else
  int stop_at_next_vma;
# endif
  int retval;
};

static int
callback (struct callback_locals *locals, uintptr_t start, uintptr_t end)
{
# if STACK_DIRECTION < 0
  if (locals->address >= start && locals->address <= end - 1)
    {
      locals->vma->start = start;
      locals->vma->end = end;
      locals->vma->prev_end = locals->prev;
      locals->retval = 0;
      return 1;
    }
  locals->prev = end;
# else
  if (locals->stop_at_next_vma)
    {
      locals->vma->next_start = start;
      locals->stop_at_next_vma = 0;
      return 1;
    }
  if (locals->address >= start && locals->address <= end - 1)
    {
      locals->vma->start = start;
      locals->vma->end = end;
      locals->retval = 0;
      locals->stop_at_next_vma = 1;
      return 0;
    }
# endif
  return 0;
}

/* Iterate over the virtual memory areas of the current process.
   If such iteration is supported, the callback is called once for every
   virtual memory area, in ascending order, with the following arguments:
     - LOCALS is the same argument as passed to vma_iterate.
     - START is the address of the first byte in the area, page-aligned.
     - END is the address of the last byte in the area plus 1, page-aligned.
       Note that it may be 0 for the last area in the address space.
   If the callback returns 0, the iteration continues.  If it returns 1,
   the iteration terminates prematurely.
   This function may open file descriptors, but does not call malloc().
   Return 0 if all went well, or -1 in case of error.  */
/* This code is a simplified copy (no handling of protection flags) of the
   code in gnulib's lib/vma-iter.c.  */
static int
vma_iterate (struct callback_locals *locals)
{
  area_info info;
  ssize_t cookie;

  cookie = 0;
  while (get_next_area_info (0, &cookie, &info) == B_OK)
    {
      uintptr_t start, end;

      start = (uintptr_t) info.address;
      end = start + info.size;

      if (callback (locals, start, end))
        break;
    }
  return 0;
}

int
sigsegv_get_vma (uintptr_t address, struct vma_struct *vma)
{
  struct callback_locals locals;
  locals.address = address;
  locals.vma = vma;
# if STACK_DIRECTION < 0
  locals.prev = 0;
# else
  locals.stop_at_next_vma = 0;
# endif
  locals.retval = -1;

  vma_iterate (&locals);
  if (locals.retval == 0)
    {
# if !(STACK_DIRECTION < 0)
      if (locals.stop_at_next_vma)
        vma->next_start = 0;
# endif
      vma->is_near_this = simple_is_near_this;
      return 0;
    }
  return -1;
}

/* -------------------------------------------------------------------------- */

#else /* Hurd, Minix, ... */

int
sigsegv_get_vma (uintptr_t address, struct vma_struct *vma)
{
  /* No way.  */
  return -1;
}

#endif