diff options
Diffstat (limited to 'tests/bezier-test.cpp')
-rw-r--r-- | tests/bezier-test.cpp | 680 |
1 files changed, 680 insertions, 0 deletions
diff --git a/tests/bezier-test.cpp b/tests/bezier-test.cpp new file mode 100644 index 0000000..0799393 --- /dev/null +++ b/tests/bezier-test.cpp @@ -0,0 +1,680 @@ +/** @file + * @brief Unit tests for Affine. + * Uses the Google Testing Framework + *//* + * Authors: + * Nathan Hurst <njh@njhurst.com> + * Krzysztof Kosiński <tweenk.pl@gmail.com> + * Johan Engelen <j.b.c.engelen@alumnus.utwente.nl> + * + * Copyright 2010 Authors + * + * This library is free software; you can redistribute it and/or + * modify it either under the terms of the GNU Lesser General Public + * License version 2.1 as published by the Free Software Foundation + * (the "LGPL") or, at your option, under the terms of the Mozilla + * Public License Version 1.1 (the "MPL"). If you do not alter this + * notice, a recipient may use your version of this file under either + * the MPL or the LGPL. + * + * You should have received a copy of the LGPL along with this library + * in the file COPYING-LGPL-2.1; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * You should have received a copy of the MPL along with this library + * in the file COPYING-MPL-1.1 + * + * The contents of this file are subject to the Mozilla Public License + * Version 1.1 (the "License"); you may not use this file except in + * compliance with the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY + * OF ANY KIND, either express or implied. See the LGPL or the MPL for + * the specific language governing rights and limitations. + */ + +#include "testing.h" +#include <iostream> + +#include <2geom/bezier.h> +#include <2geom/polynomial.h> +#include <2geom/basic-intersection.h> +#include <2geom/bezier-curve.h> +#include <vector> +#include <iterator> +#include <glib.h> + +using std::vector, std::min, std::max; +using namespace Geom; + +Poly lin_poly(double a, double b) { // ax + b + Poly p; + p.push_back(b); + p.push_back(a); + return p; +} + +bool are_equal(Bezier A, Bezier B) { + int maxSize = max(A.size(), B.size()); + double t = 0., dt = 1./maxSize; + + for(int i = 0; i <= maxSize; i++) { + EXPECT_FLOAT_EQ(A.valueAt(t), B.valueAt(t));// return false; + t += dt; + } + return true; +} + +class BezierTest : public ::testing::Test { +protected: + + BezierTest() + : zero(fragments[0]) + , unit(fragments[1]) + , hump(fragments[2]) + , wiggle(fragments[3]) + { + zero = Bezier(0.0,0.0); + unit = Bezier(0.0,1.0); + hump = Bezier(0,1,0); + wiggle = Bezier(0,1,-2,3); + } + + Bezier fragments[4]; + Bezier &zero, &unit, &hump, &wiggle; +}; + +TEST_F(BezierTest, Basics) { + + //std::cout << unit <<std::endl; + //std::cout << hump <<std::endl; + + EXPECT_TRUE(Bezier(0,0,0,0).isZero()); + EXPECT_TRUE(Bezier(0,1,2,3).isFinite()); + + EXPECT_EQ(3u, Bezier(0,2,4,5).order()); + + ///cout << " Bezier::Bezier(const Bezier& b);\n"; + //cout << Bezier(wiggle) << " == " << wiggle << endl; + + //cout << "explicit Bezier(unsigned ord);\n"; + //cout << Bezier(10) << endl; + + //cout << "Bezier(Coord c0, Coord c1);\n"; + //cout << Bezier(0.0,1.0) << endl; + + //cout << "Bezier(Coord c0, Coord c1, Coord c2);\n"; + //cout << Bezier(0,1, 2) << endl; + + //cout << "Bezier(Coord c0, Coord c1, Coord c2, Coord c3);\n"; + //cout << Bezier(0,1,2,3) << endl; + + //cout << "unsigned degree();\n"; + EXPECT_EQ(2u, hump.degree()); + + //cout << "unsigned size();\n"; + EXPECT_EQ(3u, hump.size()); +} + +TEST_F(BezierTest, ValueAt) { + EXPECT_EQ(0.0, wiggle.at0()); + EXPECT_EQ(3.0, wiggle.at1()); + + EXPECT_EQ(0.0, wiggle.valueAt(0.5)); + + EXPECT_EQ(0.0, wiggle(0.5)); + + //cout << "SBasis toSBasis();\n"; + //cout << unit.toSBasis() << endl; + //cout << hump.toSBasis() << endl; + //cout << wiggle.toSBasis() << endl; +} + +TEST_F(BezierTest, Casteljau) { + unsigned N = wiggle.order() + 1; + std::vector<Coord> left(N), right(N); + std::vector<Coord> left2(N), right2(N); + double eps = 1e-15; + + for (unsigned i = 0; i < 10000; ++i) { + double t = g_random_double_range(0, 1); + double vok = bernstein_value_at(t, &wiggle[0], wiggle.order()); + double v = casteljau_subdivision<double>(t, &wiggle[0], &left[0], &right[0], wiggle.order()); + EXPECT_near(v, vok, eps); + EXPECT_EQ(left[0], wiggle.at0()); + EXPECT_EQ(left[wiggle.order()], right[0]); + EXPECT_EQ(right[wiggle.order()], wiggle.at1()); + + double vl = casteljau_subdivision<double>(t, &wiggle[0], &left2[0], NULL, wiggle.order()); + double vr = casteljau_subdivision<double>(t, &wiggle[0], NULL, &right2[0], wiggle.order()); + EXPECT_EQ(vl, vok); + EXPECT_near(vr, vok, eps); + EXPECT_vector_near(left2, left, eps); + EXPECT_vector_equal(right2, right); + + double vnone = casteljau_subdivision<double>(t, &wiggle[0], NULL, NULL, wiggle.order()); + EXPECT_near(vnone, vok, 1e-12); + } +} + +TEST_F(BezierTest, Portion) { + constexpr Coord eps{1e-12}; + + for (unsigned i = 0; i < 10000; ++i) { + double from = g_random_double_range(0, 1); + double to = g_random_double_range(0, 1); + for (auto & input : fragments) { + Bezier result = portion(input, from, to); + + // the endpoints must correspond exactly + EXPECT_near(result.at0(), input.valueAt(from), eps); + EXPECT_near(result.at1(), input.valueAt(to), eps); + } + } +} + +TEST_F(BezierTest, Subdivide) { + std::vector<std::pair<Bezier, double> > errors; + for (unsigned i = 0; i < 10000; ++i) { + double t = g_random_double_range(0, 1e-6); + for (auto & input : fragments) { + std::pair<Bezier, Bezier> result = input.subdivide(t); + + // the endpoints must correspond exactly + // moreover, the subdivision point must be exactly equal to valueAt(t) + EXPECT_DOUBLE_EQ(result.first.at0(), input.at0()); + EXPECT_DOUBLE_EQ(result.first.at1(), result.second.at0()); + EXPECT_DOUBLE_EQ(result.second.at0(), input.valueAt(t)); + EXPECT_DOUBLE_EQ(result.second.at1(), input.at1()); + + // ditto for valueAt + EXPECT_DOUBLE_EQ(result.first.valueAt(0), input.valueAt(0)); + EXPECT_DOUBLE_EQ(result.first.valueAt(1), result.second.valueAt(0)); + EXPECT_DOUBLE_EQ(result.second.valueAt(0), input.valueAt(t)); + EXPECT_DOUBLE_EQ(result.second.valueAt(1), input.valueAt(1)); + + if (result.first.at1() != result.second.at0()) { + errors.emplace_back(input, t); + } + } + } + if (!errors.empty()) { + std::cout << "Found " << errors.size() << " subdivision errors" << std::endl; + for (unsigned i = 0; i < errors.size(); ++i) { + std::cout << "Error #" << i << ":\n" + << errors[i].first << "\n" + << "t: " << format_coord_nice(errors[i].second) << std::endl; + } + } +} + +TEST_F(BezierTest, Mutation) { +//Coord &operator[](unsigned ix); +//Coord const &operator[](unsigned ix); +//void setCoeff(unsigned ix double val); + //cout << "bigun\n"; + Bezier bigun(Bezier::Order(30)); + bigun.setCoeff(5,10.0); + for(unsigned i = 0; i < bigun.size(); i++) { + EXPECT_EQ((i == 5) ? 10 : 0, bigun[i]); + } + + bigun[5] = -3; + for(unsigned i = 0; i < bigun.size(); i++) { + EXPECT_EQ((i == 5) ? -3 : 0, bigun[i]); + } +} + +TEST_F(BezierTest, MultiDerivative) { + vector<double> vnd = wiggle.valueAndDerivatives(0.5, 5); + expect_array((const double[]){0,0,12,72,0,0}, vnd); +} + +TEST_F(BezierTest, DegreeElevation) { + EXPECT_TRUE(are_equal(wiggle, wiggle)); + Bezier Q = wiggle; + Bezier P = Q.elevate_degree(); + EXPECT_EQ(P.size(), Q.size()+1); + //EXPECT_EQ(0, P.forward_difference(1)[0]); + EXPECT_TRUE(are_equal(Q, P)); + Q = wiggle; + P = Q.elevate_to_degree(10); + EXPECT_EQ(10u, P.order()); + EXPECT_TRUE(are_equal(Q, P)); + //EXPECT_EQ(0, P.forward_difference(10)[0]); + /*Q = wiggle.elevate_degree(); + P = Q.reduce_degree(); + EXPECT_EQ(P.size()+1, Q.size()); + EXPECT_TRUE(are_equal(Q, P));*/ +} +//std::pair<Bezier, Bezier > subdivide(Coord t); + +// Constructs a linear Bezier with root at t +Bezier linear_root(double t) { + return Bezier(0-t, 1-t); +} + +// Constructs a Bezier with roots at the locations in x +Bezier array_roots(vector<double> x) { + Bezier b(1); + for(double i : x) { + b = multiply(b, linear_root(i)); + } + return b; +} + +TEST_F(BezierTest, Deflate) { + Bezier b = array_roots(vector_from_array((const double[]){0,0.25,0.5})); + EXPECT_FLOAT_EQ(0, b.at0()); + b = b.deflate(); + EXPECT_FLOAT_EQ(0, b.valueAt(0.25)); + b = b.subdivide(0.25).second; + EXPECT_FLOAT_EQ(0, b.at0()); + b = b.deflate(); + const double rootposition = (0.5-0.25) / (1-0.25); + constexpr Coord eps{1e-12}; + EXPECT_near(0.0, b.valueAt(rootposition), eps); + b = b.subdivide(rootposition).second; + EXPECT_near(0.0, b.at0(), eps); +} + +TEST_F(BezierTest, Roots) { + expect_array((const double[]){0, 0.5, 0.5}, wiggle.roots()); + + /*Bezier bigun(Bezier::Order(30)); + for(unsigned i = 0; i < bigun.size(); i++) { + bigun.setCoeff(i,rand()-0.5); + } + cout << bigun.roots() << endl;*/ + + // The results of our rootfinding are at the moment fairly inaccurate. + double eps = 5e-4; + + vector<vector<double> > tests; + tests.push_back(vector_from_array((const double[]){0})); + tests.push_back(vector_from_array((const double[]){1})); + tests.push_back(vector_from_array((const double[]){0, 0})); + tests.push_back(vector_from_array((const double[]){0.5})); + tests.push_back(vector_from_array((const double[]){0.5, 0.5})); + tests.push_back(vector_from_array((const double[]){0.1, 0.1})); + tests.push_back(vector_from_array((const double[]){0.1, 0.1, 0.1})); + tests.push_back(vector_from_array((const double[]){0.25,0.75})); + tests.push_back(vector_from_array((const double[]){0.5,0.5})); + tests.push_back(vector_from_array((const double[]){0, 0.2, 0.6, 0.6, 1})); + tests.push_back(vector_from_array((const double[]){.1,.2,.3,.4,.5,.6})); + tests.push_back(vector_from_array((const double[]){0.25,0.25,0.25,0.75,0.75,0.75})); + + for(auto & test : tests) { + Bezier b = array_roots(test); + //std::cout << tests[test_i] << ": " << b << std::endl; + //std::cout << b.roots() << std::endl; + EXPECT_vector_near(test, b.roots(), eps); + } +} + +TEST_F(BezierTest, BoundsExact) { + OptInterval unit_bounds = bounds_exact(unit); + EXPECT_EQ(unit_bounds->min(), 0); + EXPECT_EQ(unit_bounds->max(), 1); + + OptInterval hump_bounds = bounds_exact(hump); + EXPECT_EQ(hump_bounds->min(), 0); + EXPECT_FLOAT_EQ(hump_bounds->max(), hump.valueAt(0.5)); + + OptInterval wiggle_bounds = bounds_exact(wiggle); + EXPECT_EQ(wiggle_bounds->min(), 0); + EXPECT_EQ(wiggle_bounds->max(), 3); +} + +TEST_F(BezierTest, Operators) { + // Test equality operators + EXPECT_EQ(zero, zero); + EXPECT_EQ(hump, hump); + EXPECT_EQ(wiggle, wiggle); + EXPECT_EQ(unit, unit); + + EXPECT_NE(zero, hump); + EXPECT_NE(hump, zero); + EXPECT_NE(wiggle, hump); + EXPECT_NE(zero, wiggle); + EXPECT_NE(wiggle, unit); + + // Recall that hump == Bezier(0,1,0); + EXPECT_EQ(hump + 3, Bezier(3, 4, 3)); + EXPECT_EQ(hump - 3, Bezier(-3, -2, -3)); + EXPECT_EQ(hump * 3, Bezier(0, 3, 0)); + EXPECT_EQ(hump / 3, Bezier(0, 1.0/3.0, 0)); + EXPECT_EQ(-hump, Bezier(0, -1, 0)); + + Bezier reverse_wiggle = reverse(wiggle); + EXPECT_EQ(reverse_wiggle.at0(), wiggle.at1()); + EXPECT_EQ(reverse_wiggle.at1(), wiggle.at0()); + EXPECT_TRUE(are_equal(reverse(reverse_wiggle), wiggle)); + + //cout << "Bezier portion(const Bezier & a, double from, double to);\n"; + //cout << portion(Bezier(0.0,2.0), 0.5, 1) << endl; + +// std::vector<Point> bezier_points(const D2<Bezier > & a) { + + /*cout << "Bezier derivative(const Bezier & a);\n"; + std::cout << derivative(hump) <<std::endl; + std::cout << integral(hump) <<std::endl;*/ + + EXPECT_TRUE(are_equal(derivative(integral(wiggle)), wiggle)); + //std::cout << derivative(integral(hump)) <<std::endl; + expect_array((const double []){0.5}, derivative(hump).roots()); + + EXPECT_TRUE(bounds_fast(hump)->contains(Interval(0,hump.valueAt(0.5)))); + + EXPECT_EQ(Interval(0,hump.valueAt(0.5)), *bounds_exact(hump)); + + Interval tight_local_bounds(min(hump.valueAt(0.3),hump.valueAt(0.6)), + hump.valueAt(0.5)); + EXPECT_TRUE(bounds_local(hump, Interval(0.3, 0.6))->contains(tight_local_bounds)); + + Bezier Bs[] = {unit, hump, wiggle}; + for(auto B : Bs) { + Bezier product = multiply(B, B); + for(int i = 0; i <= 16; i++) { + double t = i/16.0; + double b = B.valueAt(t); + EXPECT_near(b*b, product.valueAt(t), 1e-12); + } + } +} + +struct XPt { + XPt(Coord x, Coord y, Coord ta, Coord tb) + : p(x, y), ta(ta), tb(tb) + {} + XPt() {} + Point p; + Coord ta, tb; +}; + +struct XTest { + D2<Bezier> a; + D2<Bezier> b; + std::vector<XPt> s; +}; + +struct CILess { + bool operator()(CurveIntersection const &a, CurveIntersection const &b) const { + if (a.first < b.first) return true; + if (a.first == b.first && a.second < b.second) return true; + return false; + } +}; + +TEST_F(BezierTest, Intersection) { + /* Intersection test cases taken from: + * Dieter Lasser (1988), Calculating the Self-Intersections of Bezier Curves + * https://archive.org/stream/calculatingselfi00lass + * + * The intersection points are not actually calculated to a high precision + * in the paper. The most relevant tests are whether the curves actually + * intersect at the returned time values (i.e. whether a(ta) = b(tb)) + * and whether the number of intersections is correct. + */ + typedef D2<Bezier> D2Bez; + std::vector<XTest> tests; + + // Example 1 + tests.emplace_back(); + tests.back().a = D2Bez(Bezier(-3.3, -3.3, 0, 3.3, 3.3), Bezier(1.3, -0.7, 2.3, -0.7, 1.3)); + tests.back().b = D2Bez(Bezier(-4.0, -4.0, 0, 4.0, 4.0), Bezier(-0.35, 3.0, -2.6, 3.0, -0.35)); + tests.back().s.resize(4); + tests.back().s[0] = XPt(-3.12109, 0.76362, 0.09834, 0.20604); + tests.back().s[1] = XPt(-1.67341, 0.60298, 0.32366, 0.35662); + tests.back().s[2] = XPt(1.67341, 0.60298, 0.67634, 0.64338); + tests.back().s[3] = XPt(3.12109, 0.76362, 0.90166, 0.79396); + + // Example 2 + tests.emplace_back(); + tests.back().a = D2Bez(Bezier(0, 0, 3, 3), Bezier(0, 14, -9, 5)); + tests.back().b = D2Bez(Bezier(-1, 13, -10, 4), Bezier(4, 4, 1, 1)); + tests.back().s.resize(9); + tests.back().s[0] = XPt(0.00809, 1.17249, 0.03029, 0.85430); + tests.back().s[1] = XPt(0.02596, 1.97778, 0.05471, 0.61825); + tests.back().s[2] = XPt(0.17250, 3.99191, 0.14570, 0.03029); + tests.back().s[3] = XPt(0.97778, 3.97404, 0.38175, 0.05471); + tests.back().s[4] = XPt(1.5, 2.5, 0.5, 0.5); + tests.back().s[5] = XPt(2.02221, 1.02596, 0.61825, 0.94529); + tests.back().s[6] = XPt(2.82750, 1.00809, 0.85430, 0.96971); + tests.back().s[7] = XPt(2.97404, 3.02221, 0.94529, 0.38175); + tests.back().s[8] = XPt(2.99191, 3.82750, 0.96971, 0.14570); + + // Example 3 + tests.emplace_back(); + tests.back().a = D2Bez(Bezier(-5, -5, -3, 0, 3, 5, 5), Bezier(0, 3.555, -1, 4.17, -1, 3.555, 0)); + tests.back().b = D2Bez(Bezier(-6, -6, -3, 0, 3, 6, 6), Bezier(3, -0.555, 4, -1.17, 4, -0.555, 3)); + tests.back().s.resize(6); + tests.back().s[0] = XPt(-3.64353, 1.49822, 0.23120, 0.27305); + tests.back().s[1] = XPt(-2.92393, 1.50086, 0.29330, 0.32148); + tests.back().s[2] = XPt(-0.77325, 1.49989, 0.44827, 0.45409); + tests.back().s[3] = XPt(0.77325, 1.49989, 0.55173, 0.54591); + tests.back().s[4] = XPt(2.92393, 1.50086, 0.70670, 0.67852); + tests.back().s[5] = XPt(3.64353, 1.49822, 0.76880, 0.72695); + + // Example 4 + tests.emplace_back(); + tests.back().a = D2Bez(Bezier(-4, -10, -2, -2, 2, 2, 10, 4), Bezier(0, 6, 6, 0, 0, 6, 6, 0)); + tests.back().b = D2Bez(Bezier(-8, 0, 8), Bezier(1, 6, 1)); + tests.back().s.resize(4); + tests.back().s[0] = XPt(-5.69310, 2.23393, 0.06613, 0.14418); + tests.back().s[1] = XPt(-2.68113, 3.21920, 0.35152, 0.33243); + tests.back().s[2] = XPt(2.68113, 3.21920, 0.64848, 0.66757); + tests.back().s[3] = XPt(5.69310, 2.23393, 0.93387, 0.85582); + + //std::cout << std::setprecision(5); + + for (unsigned i = 0; i < tests.size(); ++i) { + BezierCurve a(tests[i].a), b(tests[i].b); + std::vector<CurveIntersection> xs; + xs = a.intersect(b, 1e-8); + std::sort(xs.begin(), xs.end(), CILess()); + //xs.erase(std::unique(xs.begin(), xs.end(), XEqual()), xs.end()); + + std::cout << "\n\n" + << "===============================\n" + << "=== Intersection Testcase " << i+1 << " ===\n" + << "===============================\n" << std::endl; + + EXPECT_EQ(xs.size(), tests[i].s.size()); + //if (xs.size() != tests[i].s.size()) continue; + + for (unsigned j = 0; j < std::min(xs.size(), tests[i].s.size()); ++j) { + std::cout << xs[j].first << " = " << a.pointAt(xs[j].first) << " " + << xs[j].second << " = " << b.pointAt(xs[j].second) << "\n" + << tests[i].s[j].ta << " = " << tests[i].a.valueAt(tests[i].s[j].ta) << " " + << tests[i].s[j].tb << " = " << tests[i].b.valueAt(tests[i].s[j].tb) << std::endl; + } + + EXPECT_intersections_valid(a, b, xs, 1e-6); + } + + #if 0 + // these contain second-order intersections + Coord a5x[] = {-1.5, -1.5, -10, -10, 0, 10, 10, 1.5, 1.5}; + Coord a5y[] = {0, -8, -8, 9, 9, 9, -8, -8, 0}; + Coord b5x[] = {-3, -12, 0, 12, 3}; + Coord b5y[] = {-5, 8, 2.062507, 8, -5}; + Coord p5x[] = {-3.60359, -5.44653, 0, 5.44653, 3.60359}; + Coord p5y[] = {-4.10631, -0.76332, 4.14844, -0.76332, -4.10631}; + Coord p5ta[] = {0.01787, 0.10171, 0.5, 0.89829, 0.98213}; + Coord p5tb[] = {0.12443, 0.28110, 0.5, 0.71890, 0.87557}; + + Coord a6x[] = {5, 14, 10, -12, -12, -2}; + Coord a6y[] = {1, 6, -6, -6, 2, 2}; + Coord b6x[] = {0, 2, -10.5, -10.5, 3.5, 3, 8, 6}; + Coord b6y[] = {0, -8, -8, 9, 9, -4.129807, -4.129807, 3}; + Coord p6x[] = {6.29966, 5.87601, 0.04246, -4.67397, -3.57214}; + Coord p6y[] = {1.63288, -0.86192, -2.38219, -2.17973, 1.91463}; + Coord p6ta[] = {0.03184, 0.33990, 0.49353, 0.62148, 0.96618}; + Coord p6tb[] = {0.96977, 0.85797, 0.05087, 0.28232, 0.46102}; + #endif +} + +/** Basic test for intersecting a quadratic Bézier with a line segment. */ +TEST_F(BezierTest, QuadraticIntersectLineSeg) +{ + double const EPS = 1e-12; + auto const bow = QuadraticBezier({0, 0}, {1, 1}, {2, 0}); + auto const highhoriz = LineSegment(Point(0, 0), Point(2, 0)); + auto const midhoriz = LineSegment(Point(0, 0.25), Point(2, 0.25)); + auto const lowhoriz = LineSegment(Point(0, 0.5), Point(2, 0.5)); + auto const noninters = LineSegment(Point(0, 0.5 + EPS), Point(2, 0.5 + EPS)); + auto const noninters2 = LineSegment(Point(1, 0), Point(1, 0.5 - EPS)); + + auto const endpoint_intersections = bow.intersect(highhoriz, EPS); + EXPECT_EQ(endpoint_intersections.size(), 2); + EXPECT_intersections_valid(bow, highhoriz, endpoint_intersections, EPS); + for (auto const &ex : endpoint_intersections) { + EXPECT_DOUBLE_EQ(ex.point()[Y], 0.0); + } + + auto const mid_intersections = bow.intersect(midhoriz, EPS); + EXPECT_EQ(mid_intersections.size(), 2); + EXPECT_intersections_valid(bow, midhoriz, mid_intersections, EPS); + for (auto const &mx : mid_intersections) { + EXPECT_DOUBLE_EQ(mx.point()[Y], 0.25); + } + + auto const tangent_intersection = bow.intersect(lowhoriz, EPS); + EXPECT_EQ(tangent_intersection.size(), 1); + EXPECT_intersections_valid(bow, lowhoriz, tangent_intersection, EPS); + for (auto const &tx : tangent_intersection) { + EXPECT_DOUBLE_EQ(tx.point()[Y], 0.5); + } + + auto no_intersections = bow.intersect(noninters, EPS); + EXPECT_TRUE(no_intersections.empty()); + + no_intersections = bow.intersect(noninters2, EPS); + EXPECT_TRUE(no_intersections.empty()); +} + +TEST_F(BezierTest, QuadraticIntersectLineRandom) +{ + g_random_set_seed(0xB747A380); + auto const diagonal = LineSegment(Point(0, 0), Point(1, 1)); + double const EPS = 1e-12; + + for (unsigned i = 0; i < 10'000; i++) { + auto q = QuadraticBezier({0, 1}, {g_random_double_range(0.0, 1.0), g_random_double_range(0.0, 1.0)}, {1, 0}); + auto xings = q.intersect(diagonal, EPS); + ASSERT_EQ(xings.size(), 1); + auto pt = xings[0].point(); + EXPECT_TRUE(are_near(pt[X], pt[Y], EPS)); + EXPECT_intersections_valid(q, diagonal, xings, EPS); + } +} + +/** Basic test for intersecting a cubic Bézier with a line segment. */ +TEST_F(BezierTest, CubicIntersectLine) +{ + double const EPS = 1e-12; + auto const wavelet = CubicBezier({0, 0}, {1, 2}, {0, -2}, {1, 0}); + + auto const unit_seg = LineSegment(Point(0, 0), Point(1, 0)); + auto const expect3 = wavelet.intersect(unit_seg, EPS); + EXPECT_EQ(expect3.size(), 3); + EXPECT_intersections_valid(wavelet, unit_seg, expect3, EPS); + + auto const half_seg = LineSegment(Point(0, 0), Point(0.5, 0)); + auto const expect2 = wavelet.intersect(half_seg, EPS); + EXPECT_EQ(expect2.size(), 2); + EXPECT_intersections_valid(wavelet, half_seg, expect2, EPS); + + auto const less_than_half = LineSegment(Point(0, 0), Point(0.5 - EPS, 0)); + auto const expect1 = wavelet.intersect(less_than_half, EPS); + EXPECT_EQ(expect1.size(), 1); + EXPECT_intersections_valid(wavelet, less_than_half, expect1, EPS); + + auto const dollar_stroke = LineSegment(Point(0, 0.5), Point(1, -0.5)); + auto const dollar_xings = wavelet.intersect(dollar_stroke, EPS); + EXPECT_EQ(dollar_xings.size(), 3); + EXPECT_intersections_valid(wavelet, dollar_stroke, dollar_xings, EPS); +} + +TEST_F(BezierTest, CubicIntersectLineRandom) +{ + g_random_set_seed(0xCAFECAFE); + auto const diagonal = LineSegment(Point(0, 0), Point(1, 1)); + double const EPS = 1e-8; + + for (unsigned i = 0; i < 10'000; i++) { + double a1 = g_random_double_range(0.0, 1.0); + double a2 = g_random_double_range(a1, 1.0); + double b1 = g_random_double_range(0.0, 1.0); + double b2 = g_random_double_range(0.0, b1); + + auto c = CubicBezier({0, 1}, {a1, a2}, {b1, b2}, {1, 0}); + auto xings = c.intersect(diagonal, EPS); + ASSERT_EQ(xings.size(), 1); + auto pt = xings[0].point(); + EXPECT_TRUE(are_near(pt[X], pt[Y], EPS)); + EXPECT_intersections_valid(c, diagonal, xings, EPS); + } +} + +/** Regression test for issue https://gitlab.com/inkscape/lib2geom/-/issues/47 . */ +TEST_F(BezierTest, Balloon) +{ + auto const loop = CubicBezier({0, 0}, {4, -2}, {4, 2}, {0, 0}); + auto const seghoriz = LineSegment(Point(-1, 0), Point(0, 0)); + + for (double EPS : {1e-6, 1e-9, 1e-12}) { + // We expect that 2 intersections are found: one at each end of the loop, + // both at the coordinates (0, 0). + auto xings_horiz = loop.intersect(seghoriz, EPS); + EXPECT_EQ(xings_horiz.size(), 2); + EXPECT_intersections_valid(loop, seghoriz, xings_horiz, EPS); + } +} + +TEST_F(BezierTest, ExpandToTransformedTest) +{ + auto test_curve = [] (Curve const &c) { + constexpr int N = 50; + for (int i = 0; i < N; i++) { + auto angle = 2 * M_PI * i / N; + auto transform = Affine(Rotate(angle)); + + auto copy = std::unique_ptr<Curve>(c.duplicate()); + *copy *= transform; + auto box1 = copy->boundsExact(); + + auto pt = c.initialPoint() * transform; + auto box2 = Rect(pt, pt); + c.expandToTransformed(box2, transform); + + for (auto i : { X, Y }) { + EXPECT_DOUBLE_EQ(box1[i].min(), box2[i].min()); + EXPECT_DOUBLE_EQ(box1[i].max(), box2[i].max()); + } + } + }; + + test_curve(LineSegment(Point(-1, 0), Point(1, 2))); + test_curve(QuadraticBezier(Point(-1, 0), Point(1, 1), Point(3, 0))); + test_curve(CubicBezier(Point(-1, 0), Point(1, 1), Point(2, -2), Point(3, 0))); +} + +TEST_F(BezierTest, ForwardDifferenceTest) +{ + auto b = Bezier(3, 4, 2, -5, 7); + EXPECT_EQ(b.forward_difference(1), Bezier(19, 34, 22, 5)); + EXPECT_EQ(b.forward_difference(2), Bezier(-3, 2, 2)); +} + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |