1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
|
/** @file
* @brief Unit tests for Affine.
* Uses the Google Testing Framework
*//*
* Authors:
* Nathan Hurst <njh@njhurst.com>
* Krzysztof Kosiński <tweenk.pl@gmail.com>
* Johan Engelen <j.b.c.engelen@alumnus.utwente.nl>
*
* Copyright 2010 Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#include "testing.h"
#include <iostream>
#include <2geom/bezier.h>
#include <2geom/polynomial.h>
#include <2geom/basic-intersection.h>
#include <2geom/bezier-curve.h>
#include <vector>
#include <iterator>
#include <glib.h>
using std::vector, std::min, std::max;
using namespace Geom;
Poly lin_poly(double a, double b) { // ax + b
Poly p;
p.push_back(b);
p.push_back(a);
return p;
}
bool are_equal(Bezier A, Bezier B) {
int maxSize = max(A.size(), B.size());
double t = 0., dt = 1./maxSize;
for(int i = 0; i <= maxSize; i++) {
EXPECT_FLOAT_EQ(A.valueAt(t), B.valueAt(t));// return false;
t += dt;
}
return true;
}
class BezierTest : public ::testing::Test {
protected:
BezierTest()
: zero(fragments[0])
, unit(fragments[1])
, hump(fragments[2])
, wiggle(fragments[3])
{
zero = Bezier(0.0,0.0);
unit = Bezier(0.0,1.0);
hump = Bezier(0,1,0);
wiggle = Bezier(0,1,-2,3);
}
Bezier fragments[4];
Bezier &zero, &unit, &hump, &wiggle;
};
TEST_F(BezierTest, Basics) {
//std::cout << unit <<std::endl;
//std::cout << hump <<std::endl;
EXPECT_TRUE(Bezier(0,0,0,0).isZero());
EXPECT_TRUE(Bezier(0,1,2,3).isFinite());
EXPECT_EQ(3u, Bezier(0,2,4,5).order());
///cout << " Bezier::Bezier(const Bezier& b);\n";
//cout << Bezier(wiggle) << " == " << wiggle << endl;
//cout << "explicit Bezier(unsigned ord);\n";
//cout << Bezier(10) << endl;
//cout << "Bezier(Coord c0, Coord c1);\n";
//cout << Bezier(0.0,1.0) << endl;
//cout << "Bezier(Coord c0, Coord c1, Coord c2);\n";
//cout << Bezier(0,1, 2) << endl;
//cout << "Bezier(Coord c0, Coord c1, Coord c2, Coord c3);\n";
//cout << Bezier(0,1,2,3) << endl;
//cout << "unsigned degree();\n";
EXPECT_EQ(2u, hump.degree());
//cout << "unsigned size();\n";
EXPECT_EQ(3u, hump.size());
}
TEST_F(BezierTest, ValueAt) {
EXPECT_EQ(0.0, wiggle.at0());
EXPECT_EQ(3.0, wiggle.at1());
EXPECT_EQ(0.0, wiggle.valueAt(0.5));
EXPECT_EQ(0.0, wiggle(0.5));
//cout << "SBasis toSBasis();\n";
//cout << unit.toSBasis() << endl;
//cout << hump.toSBasis() << endl;
//cout << wiggle.toSBasis() << endl;
}
TEST_F(BezierTest, Casteljau) {
unsigned N = wiggle.order() + 1;
std::vector<Coord> left(N), right(N);
std::vector<Coord> left2(N), right2(N);
double eps = 1e-15;
for (unsigned i = 0; i < 10000; ++i) {
double t = g_random_double_range(0, 1);
double vok = bernstein_value_at(t, &wiggle[0], wiggle.order());
double v = casteljau_subdivision<double>(t, &wiggle[0], &left[0], &right[0], wiggle.order());
EXPECT_near(v, vok, eps);
EXPECT_EQ(left[0], wiggle.at0());
EXPECT_EQ(left[wiggle.order()], right[0]);
EXPECT_EQ(right[wiggle.order()], wiggle.at1());
double vl = casteljau_subdivision<double>(t, &wiggle[0], &left2[0], NULL, wiggle.order());
double vr = casteljau_subdivision<double>(t, &wiggle[0], NULL, &right2[0], wiggle.order());
EXPECT_EQ(vl, vok);
EXPECT_near(vr, vok, eps);
EXPECT_vector_near(left2, left, eps);
EXPECT_vector_equal(right2, right);
double vnone = casteljau_subdivision<double>(t, &wiggle[0], NULL, NULL, wiggle.order());
EXPECT_near(vnone, vok, 1e-12);
}
}
TEST_F(BezierTest, Portion) {
constexpr Coord eps{1e-12};
for (unsigned i = 0; i < 10000; ++i) {
double from = g_random_double_range(0, 1);
double to = g_random_double_range(0, 1);
for (auto & input : fragments) {
Bezier result = portion(input, from, to);
// the endpoints must correspond exactly
EXPECT_near(result.at0(), input.valueAt(from), eps);
EXPECT_near(result.at1(), input.valueAt(to), eps);
}
}
}
TEST_F(BezierTest, Subdivide) {
std::vector<std::pair<Bezier, double> > errors;
for (unsigned i = 0; i < 10000; ++i) {
double t = g_random_double_range(0, 1e-6);
for (auto & input : fragments) {
std::pair<Bezier, Bezier> result = input.subdivide(t);
// the endpoints must correspond exactly
// moreover, the subdivision point must be exactly equal to valueAt(t)
EXPECT_DOUBLE_EQ(result.first.at0(), input.at0());
EXPECT_DOUBLE_EQ(result.first.at1(), result.second.at0());
EXPECT_DOUBLE_EQ(result.second.at0(), input.valueAt(t));
EXPECT_DOUBLE_EQ(result.second.at1(), input.at1());
// ditto for valueAt
EXPECT_DOUBLE_EQ(result.first.valueAt(0), input.valueAt(0));
EXPECT_DOUBLE_EQ(result.first.valueAt(1), result.second.valueAt(0));
EXPECT_DOUBLE_EQ(result.second.valueAt(0), input.valueAt(t));
EXPECT_DOUBLE_EQ(result.second.valueAt(1), input.valueAt(1));
if (result.first.at1() != result.second.at0()) {
errors.emplace_back(input, t);
}
}
}
if (!errors.empty()) {
std::cout << "Found " << errors.size() << " subdivision errors" << std::endl;
for (unsigned i = 0; i < errors.size(); ++i) {
std::cout << "Error #" << i << ":\n"
<< errors[i].first << "\n"
<< "t: " << format_coord_nice(errors[i].second) << std::endl;
}
}
}
TEST_F(BezierTest, Mutation) {
//Coord &operator[](unsigned ix);
//Coord const &operator[](unsigned ix);
//void setCoeff(unsigned ix double val);
//cout << "bigun\n";
Bezier bigun(Bezier::Order(30));
bigun.setCoeff(5,10.0);
for(unsigned i = 0; i < bigun.size(); i++) {
EXPECT_EQ((i == 5) ? 10 : 0, bigun[i]);
}
bigun[5] = -3;
for(unsigned i = 0; i < bigun.size(); i++) {
EXPECT_EQ((i == 5) ? -3 : 0, bigun[i]);
}
}
TEST_F(BezierTest, MultiDerivative) {
vector<double> vnd = wiggle.valueAndDerivatives(0.5, 5);
expect_array((const double[]){0,0,12,72,0,0}, vnd);
}
TEST_F(BezierTest, DegreeElevation) {
EXPECT_TRUE(are_equal(wiggle, wiggle));
Bezier Q = wiggle;
Bezier P = Q.elevate_degree();
EXPECT_EQ(P.size(), Q.size()+1);
//EXPECT_EQ(0, P.forward_difference(1)[0]);
EXPECT_TRUE(are_equal(Q, P));
Q = wiggle;
P = Q.elevate_to_degree(10);
EXPECT_EQ(10u, P.order());
EXPECT_TRUE(are_equal(Q, P));
//EXPECT_EQ(0, P.forward_difference(10)[0]);
/*Q = wiggle.elevate_degree();
P = Q.reduce_degree();
EXPECT_EQ(P.size()+1, Q.size());
EXPECT_TRUE(are_equal(Q, P));*/
}
//std::pair<Bezier, Bezier > subdivide(Coord t);
// Constructs a linear Bezier with root at t
Bezier linear_root(double t) {
return Bezier(0-t, 1-t);
}
// Constructs a Bezier with roots at the locations in x
Bezier array_roots(vector<double> x) {
Bezier b(1);
for(double i : x) {
b = multiply(b, linear_root(i));
}
return b;
}
TEST_F(BezierTest, Deflate) {
Bezier b = array_roots(vector_from_array((const double[]){0,0.25,0.5}));
EXPECT_FLOAT_EQ(0, b.at0());
b = b.deflate();
EXPECT_FLOAT_EQ(0, b.valueAt(0.25));
b = b.subdivide(0.25).second;
EXPECT_FLOAT_EQ(0, b.at0());
b = b.deflate();
const double rootposition = (0.5-0.25) / (1-0.25);
constexpr Coord eps{1e-12};
EXPECT_near(0.0, b.valueAt(rootposition), eps);
b = b.subdivide(rootposition).second;
EXPECT_near(0.0, b.at0(), eps);
}
TEST_F(BezierTest, Roots) {
expect_array((const double[]){0, 0.5, 0.5}, wiggle.roots());
/*Bezier bigun(Bezier::Order(30));
for(unsigned i = 0; i < bigun.size(); i++) {
bigun.setCoeff(i,rand()-0.5);
}
cout << bigun.roots() << endl;*/
// The results of our rootfinding are at the moment fairly inaccurate.
double eps = 5e-4;
vector<vector<double> > tests;
tests.push_back(vector_from_array((const double[]){0}));
tests.push_back(vector_from_array((const double[]){1}));
tests.push_back(vector_from_array((const double[]){0, 0}));
tests.push_back(vector_from_array((const double[]){0.5}));
tests.push_back(vector_from_array((const double[]){0.5, 0.5}));
tests.push_back(vector_from_array((const double[]){0.1, 0.1}));
tests.push_back(vector_from_array((const double[]){0.1, 0.1, 0.1}));
tests.push_back(vector_from_array((const double[]){0.25,0.75}));
tests.push_back(vector_from_array((const double[]){0.5,0.5}));
tests.push_back(vector_from_array((const double[]){0, 0.2, 0.6, 0.6, 1}));
tests.push_back(vector_from_array((const double[]){.1,.2,.3,.4,.5,.6}));
tests.push_back(vector_from_array((const double[]){0.25,0.25,0.25,0.75,0.75,0.75}));
for(auto & test : tests) {
Bezier b = array_roots(test);
//std::cout << tests[test_i] << ": " << b << std::endl;
//std::cout << b.roots() << std::endl;
EXPECT_vector_near(test, b.roots(), eps);
}
}
TEST_F(BezierTest, BoundsExact) {
OptInterval unit_bounds = bounds_exact(unit);
EXPECT_EQ(unit_bounds->min(), 0);
EXPECT_EQ(unit_bounds->max(), 1);
OptInterval hump_bounds = bounds_exact(hump);
EXPECT_EQ(hump_bounds->min(), 0);
EXPECT_FLOAT_EQ(hump_bounds->max(), hump.valueAt(0.5));
OptInterval wiggle_bounds = bounds_exact(wiggle);
EXPECT_EQ(wiggle_bounds->min(), 0);
EXPECT_EQ(wiggle_bounds->max(), 3);
}
TEST_F(BezierTest, Operators) {
// Test equality operators
EXPECT_EQ(zero, zero);
EXPECT_EQ(hump, hump);
EXPECT_EQ(wiggle, wiggle);
EXPECT_EQ(unit, unit);
EXPECT_NE(zero, hump);
EXPECT_NE(hump, zero);
EXPECT_NE(wiggle, hump);
EXPECT_NE(zero, wiggle);
EXPECT_NE(wiggle, unit);
// Recall that hump == Bezier(0,1,0);
EXPECT_EQ(hump + 3, Bezier(3, 4, 3));
EXPECT_EQ(hump - 3, Bezier(-3, -2, -3));
EXPECT_EQ(hump * 3, Bezier(0, 3, 0));
EXPECT_EQ(hump / 3, Bezier(0, 1.0/3.0, 0));
EXPECT_EQ(-hump, Bezier(0, -1, 0));
Bezier reverse_wiggle = reverse(wiggle);
EXPECT_EQ(reverse_wiggle.at0(), wiggle.at1());
EXPECT_EQ(reverse_wiggle.at1(), wiggle.at0());
EXPECT_TRUE(are_equal(reverse(reverse_wiggle), wiggle));
//cout << "Bezier portion(const Bezier & a, double from, double to);\n";
//cout << portion(Bezier(0.0,2.0), 0.5, 1) << endl;
// std::vector<Point> bezier_points(const D2<Bezier > & a) {
/*cout << "Bezier derivative(const Bezier & a);\n";
std::cout << derivative(hump) <<std::endl;
std::cout << integral(hump) <<std::endl;*/
EXPECT_TRUE(are_equal(derivative(integral(wiggle)), wiggle));
//std::cout << derivative(integral(hump)) <<std::endl;
expect_array((const double []){0.5}, derivative(hump).roots());
EXPECT_TRUE(bounds_fast(hump)->contains(Interval(0,hump.valueAt(0.5))));
EXPECT_EQ(Interval(0,hump.valueAt(0.5)), *bounds_exact(hump));
Interval tight_local_bounds(min(hump.valueAt(0.3),hump.valueAt(0.6)),
hump.valueAt(0.5));
EXPECT_TRUE(bounds_local(hump, Interval(0.3, 0.6))->contains(tight_local_bounds));
Bezier Bs[] = {unit, hump, wiggle};
for(auto B : Bs) {
Bezier product = multiply(B, B);
for(int i = 0; i <= 16; i++) {
double t = i/16.0;
double b = B.valueAt(t);
EXPECT_near(b*b, product.valueAt(t), 1e-12);
}
}
}
struct XPt {
XPt(Coord x, Coord y, Coord ta, Coord tb)
: p(x, y), ta(ta), tb(tb)
{}
XPt() {}
Point p;
Coord ta, tb;
};
struct XTest {
D2<Bezier> a;
D2<Bezier> b;
std::vector<XPt> s;
};
struct CILess {
bool operator()(CurveIntersection const &a, CurveIntersection const &b) const {
if (a.first < b.first) return true;
if (a.first == b.first && a.second < b.second) return true;
return false;
}
};
TEST_F(BezierTest, Intersection) {
/* Intersection test cases taken from:
* Dieter Lasser (1988), Calculating the Self-Intersections of Bezier Curves
* https://archive.org/stream/calculatingselfi00lass
*
* The intersection points are not actually calculated to a high precision
* in the paper. The most relevant tests are whether the curves actually
* intersect at the returned time values (i.e. whether a(ta) = b(tb))
* and whether the number of intersections is correct.
*/
typedef D2<Bezier> D2Bez;
std::vector<XTest> tests;
// Example 1
tests.emplace_back();
tests.back().a = D2Bez(Bezier(-3.3, -3.3, 0, 3.3, 3.3), Bezier(1.3, -0.7, 2.3, -0.7, 1.3));
tests.back().b = D2Bez(Bezier(-4.0, -4.0, 0, 4.0, 4.0), Bezier(-0.35, 3.0, -2.6, 3.0, -0.35));
tests.back().s.resize(4);
tests.back().s[0] = XPt(-3.12109, 0.76362, 0.09834, 0.20604);
tests.back().s[1] = XPt(-1.67341, 0.60298, 0.32366, 0.35662);
tests.back().s[2] = XPt(1.67341, 0.60298, 0.67634, 0.64338);
tests.back().s[3] = XPt(3.12109, 0.76362, 0.90166, 0.79396);
// Example 2
tests.emplace_back();
tests.back().a = D2Bez(Bezier(0, 0, 3, 3), Bezier(0, 14, -9, 5));
tests.back().b = D2Bez(Bezier(-1, 13, -10, 4), Bezier(4, 4, 1, 1));
tests.back().s.resize(9);
tests.back().s[0] = XPt(0.00809, 1.17249, 0.03029, 0.85430);
tests.back().s[1] = XPt(0.02596, 1.97778, 0.05471, 0.61825);
tests.back().s[2] = XPt(0.17250, 3.99191, 0.14570, 0.03029);
tests.back().s[3] = XPt(0.97778, 3.97404, 0.38175, 0.05471);
tests.back().s[4] = XPt(1.5, 2.5, 0.5, 0.5);
tests.back().s[5] = XPt(2.02221, 1.02596, 0.61825, 0.94529);
tests.back().s[6] = XPt(2.82750, 1.00809, 0.85430, 0.96971);
tests.back().s[7] = XPt(2.97404, 3.02221, 0.94529, 0.38175);
tests.back().s[8] = XPt(2.99191, 3.82750, 0.96971, 0.14570);
// Example 3
tests.emplace_back();
tests.back().a = D2Bez(Bezier(-5, -5, -3, 0, 3, 5, 5), Bezier(0, 3.555, -1, 4.17, -1, 3.555, 0));
tests.back().b = D2Bez(Bezier(-6, -6, -3, 0, 3, 6, 6), Bezier(3, -0.555, 4, -1.17, 4, -0.555, 3));
tests.back().s.resize(6);
tests.back().s[0] = XPt(-3.64353, 1.49822, 0.23120, 0.27305);
tests.back().s[1] = XPt(-2.92393, 1.50086, 0.29330, 0.32148);
tests.back().s[2] = XPt(-0.77325, 1.49989, 0.44827, 0.45409);
tests.back().s[3] = XPt(0.77325, 1.49989, 0.55173, 0.54591);
tests.back().s[4] = XPt(2.92393, 1.50086, 0.70670, 0.67852);
tests.back().s[5] = XPt(3.64353, 1.49822, 0.76880, 0.72695);
// Example 4
tests.emplace_back();
tests.back().a = D2Bez(Bezier(-4, -10, -2, -2, 2, 2, 10, 4), Bezier(0, 6, 6, 0, 0, 6, 6, 0));
tests.back().b = D2Bez(Bezier(-8, 0, 8), Bezier(1, 6, 1));
tests.back().s.resize(4);
tests.back().s[0] = XPt(-5.69310, 2.23393, 0.06613, 0.14418);
tests.back().s[1] = XPt(-2.68113, 3.21920, 0.35152, 0.33243);
tests.back().s[2] = XPt(2.68113, 3.21920, 0.64848, 0.66757);
tests.back().s[3] = XPt(5.69310, 2.23393, 0.93387, 0.85582);
//std::cout << std::setprecision(5);
for (unsigned i = 0; i < tests.size(); ++i) {
BezierCurve a(tests[i].a), b(tests[i].b);
std::vector<CurveIntersection> xs;
xs = a.intersect(b, 1e-8);
std::sort(xs.begin(), xs.end(), CILess());
//xs.erase(std::unique(xs.begin(), xs.end(), XEqual()), xs.end());
std::cout << "\n\n"
<< "===============================\n"
<< "=== Intersection Testcase " << i+1 << " ===\n"
<< "===============================\n" << std::endl;
EXPECT_EQ(xs.size(), tests[i].s.size());
//if (xs.size() != tests[i].s.size()) continue;
for (unsigned j = 0; j < std::min(xs.size(), tests[i].s.size()); ++j) {
std::cout << xs[j].first << " = " << a.pointAt(xs[j].first) << " "
<< xs[j].second << " = " << b.pointAt(xs[j].second) << "\n"
<< tests[i].s[j].ta << " = " << tests[i].a.valueAt(tests[i].s[j].ta) << " "
<< tests[i].s[j].tb << " = " << tests[i].b.valueAt(tests[i].s[j].tb) << std::endl;
}
EXPECT_intersections_valid(a, b, xs, 1e-6);
}
#if 0
// these contain second-order intersections
Coord a5x[] = {-1.5, -1.5, -10, -10, 0, 10, 10, 1.5, 1.5};
Coord a5y[] = {0, -8, -8, 9, 9, 9, -8, -8, 0};
Coord b5x[] = {-3, -12, 0, 12, 3};
Coord b5y[] = {-5, 8, 2.062507, 8, -5};
Coord p5x[] = {-3.60359, -5.44653, 0, 5.44653, 3.60359};
Coord p5y[] = {-4.10631, -0.76332, 4.14844, -0.76332, -4.10631};
Coord p5ta[] = {0.01787, 0.10171, 0.5, 0.89829, 0.98213};
Coord p5tb[] = {0.12443, 0.28110, 0.5, 0.71890, 0.87557};
Coord a6x[] = {5, 14, 10, -12, -12, -2};
Coord a6y[] = {1, 6, -6, -6, 2, 2};
Coord b6x[] = {0, 2, -10.5, -10.5, 3.5, 3, 8, 6};
Coord b6y[] = {0, -8, -8, 9, 9, -4.129807, -4.129807, 3};
Coord p6x[] = {6.29966, 5.87601, 0.04246, -4.67397, -3.57214};
Coord p6y[] = {1.63288, -0.86192, -2.38219, -2.17973, 1.91463};
Coord p6ta[] = {0.03184, 0.33990, 0.49353, 0.62148, 0.96618};
Coord p6tb[] = {0.96977, 0.85797, 0.05087, 0.28232, 0.46102};
#endif
}
/** Basic test for intersecting a quadratic Bézier with a line segment. */
TEST_F(BezierTest, QuadraticIntersectLineSeg)
{
double const EPS = 1e-12;
auto const bow = QuadraticBezier({0, 0}, {1, 1}, {2, 0});
auto const highhoriz = LineSegment(Point(0, 0), Point(2, 0));
auto const midhoriz = LineSegment(Point(0, 0.25), Point(2, 0.25));
auto const lowhoriz = LineSegment(Point(0, 0.5), Point(2, 0.5));
auto const noninters = LineSegment(Point(0, 0.5 + EPS), Point(2, 0.5 + EPS));
auto const noninters2 = LineSegment(Point(1, 0), Point(1, 0.5 - EPS));
auto const endpoint_intersections = bow.intersect(highhoriz, EPS);
EXPECT_EQ(endpoint_intersections.size(), 2);
EXPECT_intersections_valid(bow, highhoriz, endpoint_intersections, EPS);
for (auto const &ex : endpoint_intersections) {
EXPECT_DOUBLE_EQ(ex.point()[Y], 0.0);
}
auto const mid_intersections = bow.intersect(midhoriz, EPS);
EXPECT_EQ(mid_intersections.size(), 2);
EXPECT_intersections_valid(bow, midhoriz, mid_intersections, EPS);
for (auto const &mx : mid_intersections) {
EXPECT_DOUBLE_EQ(mx.point()[Y], 0.25);
}
auto const tangent_intersection = bow.intersect(lowhoriz, EPS);
EXPECT_EQ(tangent_intersection.size(), 1);
EXPECT_intersections_valid(bow, lowhoriz, tangent_intersection, EPS);
for (auto const &tx : tangent_intersection) {
EXPECT_DOUBLE_EQ(tx.point()[Y], 0.5);
}
auto no_intersections = bow.intersect(noninters, EPS);
EXPECT_TRUE(no_intersections.empty());
no_intersections = bow.intersect(noninters2, EPS);
EXPECT_TRUE(no_intersections.empty());
}
TEST_F(BezierTest, QuadraticIntersectLineRandom)
{
g_random_set_seed(0xB747A380);
auto const diagonal = LineSegment(Point(0, 0), Point(1, 1));
double const EPS = 1e-12;
for (unsigned i = 0; i < 10'000; i++) {
auto q = QuadraticBezier({0, 1}, {g_random_double_range(0.0, 1.0), g_random_double_range(0.0, 1.0)}, {1, 0});
auto xings = q.intersect(diagonal, EPS);
ASSERT_EQ(xings.size(), 1);
auto pt = xings[0].point();
EXPECT_TRUE(are_near(pt[X], pt[Y], EPS));
EXPECT_intersections_valid(q, diagonal, xings, EPS);
}
}
/** Basic test for intersecting a cubic Bézier with a line segment. */
TEST_F(BezierTest, CubicIntersectLine)
{
double const EPS = 1e-12;
auto const wavelet = CubicBezier({0, 0}, {1, 2}, {0, -2}, {1, 0});
auto const unit_seg = LineSegment(Point(0, 0), Point(1, 0));
auto const expect3 = wavelet.intersect(unit_seg, EPS);
EXPECT_EQ(expect3.size(), 3);
EXPECT_intersections_valid(wavelet, unit_seg, expect3, EPS);
auto const half_seg = LineSegment(Point(0, 0), Point(0.5, 0));
auto const expect2 = wavelet.intersect(half_seg, EPS);
EXPECT_EQ(expect2.size(), 2);
EXPECT_intersections_valid(wavelet, half_seg, expect2, EPS);
auto const less_than_half = LineSegment(Point(0, 0), Point(0.5 - EPS, 0));
auto const expect1 = wavelet.intersect(less_than_half, EPS);
EXPECT_EQ(expect1.size(), 1);
EXPECT_intersections_valid(wavelet, less_than_half, expect1, EPS);
auto const dollar_stroke = LineSegment(Point(0, 0.5), Point(1, -0.5));
auto const dollar_xings = wavelet.intersect(dollar_stroke, EPS);
EXPECT_EQ(dollar_xings.size(), 3);
EXPECT_intersections_valid(wavelet, dollar_stroke, dollar_xings, EPS);
}
TEST_F(BezierTest, CubicIntersectLineRandom)
{
g_random_set_seed(0xCAFECAFE);
auto const diagonal = LineSegment(Point(0, 0), Point(1, 1));
double const EPS = 1e-8;
for (unsigned i = 0; i < 10'000; i++) {
double a1 = g_random_double_range(0.0, 1.0);
double a2 = g_random_double_range(a1, 1.0);
double b1 = g_random_double_range(0.0, 1.0);
double b2 = g_random_double_range(0.0, b1);
auto c = CubicBezier({0, 1}, {a1, a2}, {b1, b2}, {1, 0});
auto xings = c.intersect(diagonal, EPS);
ASSERT_EQ(xings.size(), 1);
auto pt = xings[0].point();
EXPECT_TRUE(are_near(pt[X], pt[Y], EPS));
EXPECT_intersections_valid(c, diagonal, xings, EPS);
}
}
/** Regression test for issue https://gitlab.com/inkscape/lib2geom/-/issues/47 . */
TEST_F(BezierTest, Balloon)
{
auto const loop = CubicBezier({0, 0}, {4, -2}, {4, 2}, {0, 0});
auto const seghoriz = LineSegment(Point(-1, 0), Point(0, 0));
for (double EPS : {1e-6, 1e-9, 1e-12}) {
// We expect that 2 intersections are found: one at each end of the loop,
// both at the coordinates (0, 0).
auto xings_horiz = loop.intersect(seghoriz, EPS);
EXPECT_EQ(xings_horiz.size(), 2);
EXPECT_intersections_valid(loop, seghoriz, xings_horiz, EPS);
}
}
TEST_F(BezierTest, ExpandToTransformedTest)
{
auto test_curve = [] (Curve const &c) {
constexpr int N = 50;
for (int i = 0; i < N; i++) {
auto angle = 2 * M_PI * i / N;
auto transform = Affine(Rotate(angle));
auto copy = std::unique_ptr<Curve>(c.duplicate());
*copy *= transform;
auto box1 = copy->boundsExact();
auto pt = c.initialPoint() * transform;
auto box2 = Rect(pt, pt);
c.expandToTransformed(box2, transform);
for (auto i : { X, Y }) {
EXPECT_DOUBLE_EQ(box1[i].min(), box2[i].min());
EXPECT_DOUBLE_EQ(box1[i].max(), box2[i].max());
}
}
};
test_curve(LineSegment(Point(-1, 0), Point(1, 2)));
test_curve(QuadraticBezier(Point(-1, 0), Point(1, 1), Point(3, 0)));
test_curve(CubicBezier(Point(-1, 0), Point(1, 1), Point(2, -2), Point(3, 0)));
}
TEST_F(BezierTest, ForwardDifferenceTest)
{
auto b = Bezier(3, 4, 2, -5, 7);
EXPECT_EQ(b.forward_difference(1), Bezier(19, 34, 22, 5));
EXPECT_EQ(b.forward_difference(2), Bezier(-3, 2, 2));
}
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|