1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
|
/**
* \file
* \brief Intersection graph for Boolean operations
*//*
* Authors:
* Krzysztof Kosiński <tweenk.pl@gmail.com>
*
* Copyright 2015 Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#include <2geom/intersection-graph.h>
#include <2geom/path.h>
#include <2geom/pathvector.h>
#include <2geom/utils.h>
#include <iostream>
#include <iterator>
namespace Geom {
/// Function object for comparing intersection vertices based on the intersection time.
struct PathIntersectionGraph::IntersectionVertexLess {
bool operator()(IntersectionVertex const &a, IntersectionVertex const &b) const {
return a.pos < b.pos;
}
};
PathIntersectionGraph::PathIntersectionGraph(PathVector const &a, PathVector const &b, Coord precision)
: _graph_valid(true)
{
_pv[0] = a;
_pv[1] = b;
if (a.empty() || b.empty()) return;
_prepareArguments();
bool has_intersections = _prepareIntersectionLists(precision);
if (!has_intersections) return;
_assignEdgeWindingParities(precision);
// If a path has only degenerate intersections, assign its status now.
// This protects against later accidentally picking a point for winding
// determination that is exactly at a removed intersection.
_assignComponentStatusFromDegenerateIntersections();
_removeDegenerateIntersections();
if (_graph_valid) {
_verify();
}
}
/** Prepare the operands stored in PathIntersectionGraph::_pv by closing all of their constituent
* paths and removing degenerate segments from them.
*/
void PathIntersectionGraph::_prepareArguments()
{
// all paths must be closed, otherwise we will miss some intersections
for (auto & w : _pv) {
for (auto & i : w) {
i.close();
}
}
// remove degenerate segments
for (auto & w : _pv) {
for (std::size_t i = w.size(); i > 0; --i) {
if (w[i-1].empty()) {
w.erase(w.begin() + (i-1));
continue;
}
for (std::size_t j = w[i-1].size(); j > 0; --j) {
if (w[i-1][j-1].isDegenerate()) {
w[i-1].erase(w[i-1].begin() + (j-1));
}
}
}
}
}
/** @brief Compute the lists of intersections between the constituent paths of both operands.
* @param precision – the precision setting for the sweepline algorithm.
* @return Whether any intersections were found.
*/
bool PathIntersectionGraph::_prepareIntersectionLists(Coord precision)
{
std::vector<PVIntersection> pxs = _pv[0].intersect(_pv[1], precision);
// NOTE: this early return means that the path data structures will not be created
// if there are no intersections at all!
if (pxs.empty()) return false;
// prepare intersection lists for each path component
for (unsigned w = 0; w < 2; ++w) {
for (std::size_t i = 0; i < _pv[w].size(); ++i) {
_components[w].push_back(new PathData(w, i));
}
}
// create intersection vertices
for (auto & px : pxs) {
IntersectionVertex *xa, *xb;
xa = new IntersectionVertex();
xb = new IntersectionVertex();
//xa->processed = xb->processed = false;
xa->which = 0; xb->which = 1;
xa->pos = px.first;
xb->pos = px.second;
xa->p = xb->p = px.point();
xa->neighbor = xb;
xb->neighbor = xa;
xa->next_edge = xb->next_edge = OUTSIDE;
xa->defective = xb->defective = false;
_xs.push_back(xa);
_xs.push_back(xb);
_components[0][xa->pos.path_index].xlist.push_back(*xa);
_components[1][xb->pos.path_index].xlist.push_back(*xb);
}
// sort intersections in each component according to time value
for (auto & _component : _components) {
for (std::size_t i = 0; i < _component.size(); ++i) {
_component[i].xlist.sort(IntersectionVertexLess());
}
}
return true;
}
/** Determine whether path portions between consecutive intersections lie inside or outside
* of the other path-vector.
*/
void PathIntersectionGraph::_assignEdgeWindingParities(Coord precision)
{
for (unsigned w = 0; w < 2; ++w) {
unsigned ow = (w+1) % 2; ///< The index of the other operand
for (unsigned li = 0; li < _components[w].size(); ++li) { // Traverse all paths in the component
IntersectionList &xl = _components[w][li].xlist;
for (ILIter i = xl.begin(); i != xl.end(); ++i) { // Traverse all intersections in the path
ILIter n = cyclic_next(i, xl);
std::size_t pi = i->pos.path_index;
/// Path time interval from the current crossing to the next one
PathInterval ival = forward_interval(i->pos, n->pos, _pv[w][pi].size());
PathTime mid = ival.inside(precision);
Point wpoint = _pv[w][pi].pointAt(mid);
_winding_points.push_back(wpoint);
int wdg = _pv[ow].winding(wpoint);
if (wdg % 2) {
i->next_edge = INSIDE;
} else {
i->next_edge = OUTSIDE;
}
}
}
}
}
/** Detect the situation where a path is either entirely inside or entirely outside of the other
* path-vector and set the status flag accordingly.
*/
void PathIntersectionGraph::_assignComponentStatusFromDegenerateIntersections()
{
for (auto & _component : _components) {
for (unsigned li = 0; li < _component.size(); ++li) {
IntersectionList &xl = _component[li].xlist;
bool has_in = false;
bool has_out = false;
for (auto & i : xl) {
has_in |= (i.next_edge == INSIDE);
has_out |= (i.next_edge == OUTSIDE);
}
if (has_in && !has_out) {
_component[li].status = INSIDE;
}
if (!has_in && has_out) {
_component[li].status = OUTSIDE;
}
}
}
}
/** Remove intersections that don't change between in/out.
*
* In general, a degenerate intersection can happen at a point where
* two shapes "kiss" (are tangent) but do not cross into each other.
*/
void PathIntersectionGraph::_removeDegenerateIntersections()
{
for (auto & _component : _components) {
for (unsigned li = 0; li < _component.size(); ++li) {
IntersectionList &xl = _component[li].xlist;
for (ILIter i = xl.begin(); i != xl.end();) {
ILIter n = cyclic_next(i, xl);
if (i->next_edge == n->next_edge) { // Both edges inside or both outside
bool last_node = (i == n); ///< Whether this is the last remaining crossing.
ILIter nn = _getNeighbor(n);
IntersectionList &oxl = _getPathData(nn).xlist;
// When exactly 3 out of 4 edges adjacent to an intersection
// have the same winding, we have a defective intersection,
// which is neither degenerate nor normal. Those can occur in paths
// that contain overlapping segments.
if (cyclic_prior(nn, oxl)->next_edge != nn->next_edge) {
// Not a backtrack - set the defective flag.
_graph_valid = false;
n->defective = true;
nn->defective = true;
++i;
continue;
}
// Erase the degenerate or defective crossings
oxl.erase(nn);
xl.erase(n);
if (last_node) break;
} else {
++i;
}
}
}
}
}
/** Verify that all paths contain an even number of intersections and that
* the intersection graph does not contain leaves (degree one vertices).
*/
void PathIntersectionGraph::_verify()
{
#ifndef NDEBUG
for (auto & _component : _components) {
for (unsigned li = 0; li < _component.size(); ++li) {
IntersectionList &xl = _component[li].xlist;
assert(xl.size() % 2 == 0);
for (ILIter i = xl.begin(); i != xl.end(); ++i) {
ILIter j = cyclic_next(i, xl);
assert(i->next_edge != j->next_edge);
}
}
}
#endif
}
PathVector PathIntersectionGraph::getUnion()
{
PathVector result = _getResult(false, false);
_handleNonintersectingPaths(result, 0, false);
_handleNonintersectingPaths(result, 1, false);
return result;
}
PathVector PathIntersectionGraph::getIntersection()
{
PathVector result = _getResult(true, true);
_handleNonintersectingPaths(result, 0, true);
_handleNonintersectingPaths(result, 1, true);
return result;
}
PathVector PathIntersectionGraph::getAminusB()
{
PathVector result = _getResult(false, true);
_handleNonintersectingPaths(result, 0, false);
_handleNonintersectingPaths(result, 1, true);
return result;
}
PathVector PathIntersectionGraph::getBminusA()
{
PathVector result = _getResult(true, false);
_handleNonintersectingPaths(result, 1, false);
_handleNonintersectingPaths(result, 0, true);
return result;
}
PathVector PathIntersectionGraph::getXOR()
{
PathVector r1, r2;
r1 = getAminusB();
r2 = getBminusA();
std::copy(r2.begin(), r2.end(), std::back_inserter(r1));
return r1;
}
std::size_t PathIntersectionGraph::size() const
{
std::size_t result = 0;
for (std::size_t i = 0; i < _components[0].size(); ++i) {
result += _components[0][i].xlist.size();
}
return result;
}
std::vector<Point> PathIntersectionGraph::intersectionPoints(bool defective) const
{
std::vector<Point> result;
for (std::size_t i = 0; i < _components[0].size(); ++i) {
for (const auto & j : _components[0][i].xlist) {
if (j.defective == defective) {
result.push_back(j.p);
}
}
}
return result;
}
void PathIntersectionGraph::fragments(PathVector &in, PathVector &out) const
{
typedef boost::ptr_vector<PathData>::const_iterator PIter;
for (unsigned w = 0; w < 2; ++w) {
for (PIter li = _components[w].begin(); li != _components[w].end(); ++li) {
for (CILIter k = li->xlist.begin(); k != li->xlist.end(); ++k) {
CILIter n = cyclic_next(k, li->xlist);
// TODO: investigate why non-contiguous paths are sometimes generated here
Path frag(k->p);
frag.setStitching(true);
PathInterval ival = forward_interval(k->pos, n->pos, _pv[w][k->pos.path_index].size());
_pv[w][k->pos.path_index].appendPortionTo(frag, ival, k->p, n->p);
if (k->next_edge == INSIDE) {
in.push_back(frag);
} else {
out.push_back(frag);
}
}
}
}
}
/** @brief Compute the partial result of a boolean operation by looking at components containing
* intersections and stitching the correct path portions between them, depending on the truth
* table of the operation.
*
* @param enter_a – whether the path portions contained inside operand A should be part of the boundary
* of the boolean operation's result.
* @param enter_b – whether the path portions contained inside operand B should be part of the boundary
* of the boolean operation's result.
*
* These two flags completely determine how to resolve the crossings when building the result
* and therefore encode which boolean operation we are performing. For example, the boolean intersection
* corresponds to enter_a == true and enter_b == true, as can be seen by looking at a Venn diagram.
*/
PathVector PathIntersectionGraph::_getResult(bool enter_a, bool enter_b)
{
PathVector result;
if (_xs.empty()) return result;
// Create the list of intersections to process
_ulist.clear();
for (auto & _component : _components) {
for (auto & li : _component) {
for (auto & k : li.xlist) {
_ulist.push_back(k);
}
}
}
unsigned n_processed = 0;
while (true) {
// get unprocessed intersection
if (_ulist.empty()) break;
IntersectionVertex &iv = _ulist.front();
unsigned w = iv.which;
ILIter i = _components[w][iv.pos.path_index].xlist.iterator_to(iv);
result.push_back(Path(i->p));
result.back().setStitching(true);
bool reverse = false; ///< Whether to traverse the current component in the backwards direction.
while (i->_proc_hook.is_linked()) {
ILIter prev = i;
std::size_t pi = i->pos.path_index; ///< Index of the path in its PathVector
// determine which direction to go
// union: always go outside
// intersection: always go inside
// a minus b: go inside in b, outside in a
// b minus a: go inside in a, outside in b
if (w == 0) { // The path we're on is a part of A
reverse = (i->next_edge == INSIDE) ^ enter_a;
} else { // The path we're on is a part of B
reverse = (i->next_edge == INSIDE) ^ enter_b;
}
// get next intersection
if (reverse) {
i = cyclic_prior(i, _components[w][pi].xlist);
} else {
i = cyclic_next(i, _components[w][pi].xlist);
}
// append portion of path to the result
PathInterval ival = PathInterval::from_direction(
prev->pos.asPathTime(), i->pos.asPathTime(),
reverse, _pv[i->which][pi].size());
_pv[i->which][pi].appendPortionTo(result.back(), ival, prev->p, i->p);
// count both vertices as processed
n_processed += 2;
if (prev->_proc_hook.is_linked()) {
_ulist.erase(_ulist.iterator_to(*prev));
}
if (i->_proc_hook.is_linked()) {
_ulist.erase(_ulist.iterator_to(*i));
}
// switch to the other path
i = _getNeighbor(i);
w = i->which;
}
result.back().close(true);
if (reverse){
result.back() = result.back().reversed();
}
if (result.back().empty()) {
// std::cerr << "Path is empty" << std::endl;
throw GEOM_ERR_INTERSECGRAPH;
}
}
if (n_processed != size() * 2) {
// std::cerr << "Processed " << n_processed << " intersections, expected " << (size() * 2) << std::endl;
throw GEOM_ERR_INTERSECGRAPH;
}
return result;
}
/** @brief Select intersection-free path components ahead of a boolean operation based on whether
* they should be a part of that operation's result.
*
* Every component that has intersections will be processed by _getResult().
* Here we take care of paths that don't have any intersections. They are either
* completely inside or completely outside the other path-vector.
*
* @param result – output parameter to store the selected components.
* @param which – which of the two operands to search for intersection-free paths.
* @param inside – If set to true, add paths entirely contained inside the other path-vector to
* the result. If set to false, add paths entirely outside of the other path-vector instead.
*/
void PathIntersectionGraph::_handleNonintersectingPaths(PathVector &result, unsigned which, bool inside)
{
unsigned w = which;
unsigned ow = (w+1) % 2;
for (std::size_t i = 0; i < _pv[w].size(); ++i) {
// the path data vector might have been left empty if there were no intersections at all
bool has_path_data = !_components[w].empty();
// Skip if the path has intersections
if (has_path_data && !_components[w][i].xlist.empty()) continue;
bool path_inside = false;
// Use the status flag set in the constructor if available.
if (has_path_data && _components[w][i].status == INSIDE) {
path_inside = true;
} else if (has_path_data && _components[w][i].status == OUTSIDE) {
path_inside = false;
} else {
// The status flag is ambiguous: we evaluate the winding number of the initial point.
int wdg = _pv[ow].winding(_pv[w][i].initialPoint());
path_inside = wdg % 2 != 0;
}
if (path_inside == inside) {
result.push_back(_pv[w][i]);
}
}
}
/** @brief Get an iterator to the corresponding crossing on the other path-vector.
*
* @param ILIter – an iterator to a list of intersections in one of the path-vectors.
* @return An iterator to the corresponding intersection in the other path-vector.
*/
PathIntersectionGraph::ILIter PathIntersectionGraph::_getNeighbor(ILIter iter)
{
unsigned ow = (iter->which + 1) % 2;
return _components[ow][iter->neighbor->pos.path_index].xlist.iterator_to(*iter->neighbor);
}
/** Get the path data for the path containing the intersection given an iterator to the intersection */
PathIntersectionGraph::PathData &
PathIntersectionGraph::_getPathData(ILIter iter)
{
return _components[iter->which][iter->pos.path_index];
}
/** Format the PathIntersectionGraph for output. */
std::ostream &operator<<(std::ostream &os, PathIntersectionGraph const &pig)
{
os << "Intersection graph:\n"
<< pig._xs.size()/2 << " total intersections\n"
<< pig.size() << " considered intersections\n";
for (std::size_t i = 0; i < pig._components[0].size(); ++i) {
PathIntersectionGraph::IntersectionList const &xl = pig._components[0][i].xlist;
for (const auto & j : xl) {
os << j.pos << " - " << j.neighbor->pos << " @ " << j.p << "\n";
}
}
return os;
}
} // namespace Geom
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|