1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
/*
* make up an elliptical arc knowing 3 points lying on the arc
* and the ellipse centre
*
* Authors:
* Marco Cecchetti <mrcekets at gmail.com>
*
* Copyright 2008 authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#include <toys/path-cairo.h>
#include <toys/toy-framework-2.h>
#include <2geom/elliptical-arc.h>
#include <2geom/numeric/linear_system.h>
namespace Geom
{
bool make_elliptical_arc( EllipticalArc & ea,
Point const& centre,
Point const& initial,
Point const& final,
Point const& inner )
{
Point p[3] = { initial, inner, final };
double x1, x2, x3, x4;
double y1, y2, y3, y4;
double x1y1, x2y2, x3y1, x1y3;
NL::Matrix m(3,3);
NL::Vector v(3);
NL::LinearSystem ls(m, v);
m.set_all(0);
v.set_all(0);
for (auto & k : p)
{
// init_x_y
x1 = k[X] - centre[X]; x2 = x1 * x1; x3 = x2 * x1; x4 = x3 * x1;
y1 = k[Y] - centre[Y]; y2 = y1 * y1; y3 = y2 * y1; y4 = y3 * y1;
x1y1 = x1 * y1;
x2y2 = x2 * y2;
x3y1 = x3 * y1; x1y3 = x1 * y3;
// init linear system
m(0,0) += x4;
m(0,1) += x3y1;
m(0,2) += x2y2;
m(1,0) += x3y1;
m(1,1) += x2y2;
m(1,2) += x1y3;
m(2,0) += x2y2;
m(2,1) += x1y3;
m(2,2) += y4;
v[0] += x2;
v[1] += x1y1;
v[2] += y2;
}
ls.SV_solve();
double A = ls.solution()[0];
double B = ls.solution()[1];
double C = ls.solution()[2];
//evaluate ellipse rotation angle
double rot = std::atan2( -B, -(A - C) )/2;
std::cerr << "rot = " << rot << std::endl;
bool swap_axes = false;
if ( are_near(rot, 0) ) rot = 0;
if ( are_near(rot, M_PI/2) || rot < 0 )
{
swap_axes = true;
}
// evaluate the length of the ellipse rays
double cosrot = std::cos(rot);
double sinrot = std::sin(rot);
double cos2 = cosrot * cosrot;
double sin2 = sinrot * sinrot;
double cossin = cosrot * sinrot;
double den = A * cos2 + B * cossin + C * sin2;
if ( den <= 0 )
{
std::cerr << "!(den > 0) error" << std::endl;
std::cerr << "evaluating rx" << std::endl;
return false;
}
double rx = std::sqrt(1/den);
den = C * cos2 - B * cossin + A * sin2;
if ( den <= 0 )
{
std::cerr << "!(den > 0) error" << std::endl;
std::cerr << "evaluating ry" << std::endl;
return false;
}
double ry = std::sqrt(1/den);
// the solution is not unique so we choose always the ellipse
// with a rotation angle between 0 and PI/2
if ( swap_axes ) std::swap(rx, ry);
if ( are_near(rot, M_PI/2)
|| are_near(rot, -M_PI/2)
|| are_near(rx, ry) )
{
rot = 0;
}
else if ( rot < 0 )
{
rot += M_PI/2;
}
std::cerr << "swap axes: " << swap_axes << std::endl;
std::cerr << "rx = " << rx << " ry = " << ry << std::endl;
std::cerr << "rot = " << deg_from_rad(rot) << std::endl;
std::cerr << "centre: " << centre << std::endl;
// find out how we should set the large_arc_flag and sweep_flag
bool large_arc_flag = true;
bool sweep_flag = true;
Point sp_cp = initial - centre;
Point ep_cp = final - centre;
Point ip_cp = inner - centre;
double angle1 = angle_between(sp_cp, ep_cp);
double angle2 = angle_between(sp_cp, ip_cp);
double angle3 = angle_between(ip_cp, ep_cp);
if ( angle1 > 0 )
{
if ( angle2 > 0 && angle3 > 0 )
{
large_arc_flag = false;
sweep_flag = true;
}
else
{
large_arc_flag = true;
sweep_flag = false;
}
}
else
{
if ( angle2 < 0 && angle3 < 0 )
{
large_arc_flag = false;
sweep_flag = false;
}
else
{
large_arc_flag = true;
sweep_flag = true;
}
}
// finally we're going to create the elliptical arc!
try
{
ea.set( initial, rx, ry, rot,
large_arc_flag, sweep_flag, final );
}
catch( RangeError e )
{
std::cerr << e.what() << std::endl;
return false;
}
return true;
}
}
using namespace Geom;
class ElliptiArcMaker : public Toy
{
private:
void draw( cairo_t *cr, std::ostringstream *notify,
int width, int height, bool save, std::ostringstream *timer_stream) override
{
cairo_set_line_width (cr, 0.3);
cairo_set_source_rgb(cr, 0,0,0.3);
draw_text(cr, O.pos, "centre");
draw_text(cr, A.pos, "initial");
draw_text(cr, B.pos, "final");
draw_text(cr, C.pos, "inner");
cairo_stroke(cr);
cairo_set_source_rgb(cr, 0.7,0,0);
bool status
= make_elliptical_arc(ea, O.pos, A.pos, B.pos, C.pos);
if (status)
{
D2<Geom::SBasis> easb = ea.toSBasis();
cairo_d2_sb(cr, easb);
}
cairo_stroke(cr);
Toy::draw(cr, notify, width, height, save,timer_stream);
}
public:
ElliptiArcMaker()
: O(443, 441),
A(516, 275),
B(222, 455),
C(190, 234)
{
handles.push_back(&O);
handles.push_back(&A);
handles.push_back(&B);
handles.push_back(&C);
}
private:
PointHandle O, A, B, C;
EllipticalArc ea;
};
int main(int argc, char **argv)
{
init( argc, argv, new ElliptiArcMaker() );
return 0;
}
|