summaryrefslogtreecommitdiffstats
path: root/src/test/regress/expected/partition_aggregate.out
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 13:44:03 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 13:44:03 +0000
commit293913568e6a7a86fd1479e1cff8e2ecb58d6568 (patch)
treefc3b469a3ec5ab71b36ea97cc7aaddb838423a0c /src/test/regress/expected/partition_aggregate.out
parentInitial commit. (diff)
downloadpostgresql-16-293913568e6a7a86fd1479e1cff8e2ecb58d6568.tar.xz
postgresql-16-293913568e6a7a86fd1479e1cff8e2ecb58d6568.zip
Adding upstream version 16.2.upstream/16.2
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/test/regress/expected/partition_aggregate.out')
-rw-r--r--src/test/regress/expected/partition_aggregate.out1520
1 files changed, 1520 insertions, 0 deletions
diff --git a/src/test/regress/expected/partition_aggregate.out b/src/test/regress/expected/partition_aggregate.out
new file mode 100644
index 0000000..1b900fd
--- /dev/null
+++ b/src/test/regress/expected/partition_aggregate.out
@@ -0,0 +1,1520 @@
+--
+-- PARTITION_AGGREGATE
+-- Test partitionwise aggregation on partitioned tables
+--
+-- Note: to ensure plan stability, it's a good idea to make the partitions of
+-- any one partitioned table in this test all have different numbers of rows.
+--
+-- Enable partitionwise aggregate, which by default is disabled.
+SET enable_partitionwise_aggregate TO true;
+-- Enable partitionwise join, which by default is disabled.
+SET enable_partitionwise_join TO true;
+-- Disable parallel plans.
+SET max_parallel_workers_per_gather TO 0;
+-- Disable incremental sort, which can influence selected plans due to fuzz factor.
+SET enable_incremental_sort TO off;
+--
+-- Tests for list partitioned tables.
+--
+CREATE TABLE pagg_tab (a int, b int, c text, d int) PARTITION BY LIST(c);
+CREATE TABLE pagg_tab_p1 PARTITION OF pagg_tab FOR VALUES IN ('0000', '0001', '0002', '0003', '0004');
+CREATE TABLE pagg_tab_p2 PARTITION OF pagg_tab FOR VALUES IN ('0005', '0006', '0007', '0008');
+CREATE TABLE pagg_tab_p3 PARTITION OF pagg_tab FOR VALUES IN ('0009', '0010', '0011');
+INSERT INTO pagg_tab SELECT i % 20, i % 30, to_char(i % 12, 'FM0000'), i % 30 FROM generate_series(0, 2999) i;
+ANALYZE pagg_tab;
+-- When GROUP BY clause matches; full aggregation is performed for each partition.
+EXPLAIN (COSTS OFF)
+SELECT c, sum(a), avg(b), count(*), min(a), max(b) FROM pagg_tab GROUP BY c HAVING avg(d) < 15 ORDER BY 1, 2, 3;
+ QUERY PLAN
+--------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab.c, (sum(pagg_tab.a)), (avg(pagg_tab.b))
+ -> Append
+ -> HashAggregate
+ Group Key: pagg_tab.c
+ Filter: (avg(pagg_tab.d) < '15'::numeric)
+ -> Seq Scan on pagg_tab_p1 pagg_tab
+ -> HashAggregate
+ Group Key: pagg_tab_1.c
+ Filter: (avg(pagg_tab_1.d) < '15'::numeric)
+ -> Seq Scan on pagg_tab_p2 pagg_tab_1
+ -> HashAggregate
+ Group Key: pagg_tab_2.c
+ Filter: (avg(pagg_tab_2.d) < '15'::numeric)
+ -> Seq Scan on pagg_tab_p3 pagg_tab_2
+(15 rows)
+
+SELECT c, sum(a), avg(b), count(*), min(a), max(b) FROM pagg_tab GROUP BY c HAVING avg(d) < 15 ORDER BY 1, 2, 3;
+ c | sum | avg | count | min | max
+------+------+---------------------+-------+-----+-----
+ 0000 | 2000 | 12.0000000000000000 | 250 | 0 | 24
+ 0001 | 2250 | 13.0000000000000000 | 250 | 1 | 25
+ 0002 | 2500 | 14.0000000000000000 | 250 | 2 | 26
+ 0006 | 2500 | 12.0000000000000000 | 250 | 2 | 24
+ 0007 | 2750 | 13.0000000000000000 | 250 | 3 | 25
+ 0008 | 2000 | 14.0000000000000000 | 250 | 0 | 26
+(6 rows)
+
+-- When GROUP BY clause does not match; partial aggregation is performed for each partition.
+EXPLAIN (COSTS OFF)
+SELECT a, sum(b), avg(b), count(*), min(a), max(b) FROM pagg_tab GROUP BY a HAVING avg(d) < 15 ORDER BY 1, 2, 3;
+ QUERY PLAN
+--------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab.a, (sum(pagg_tab.b)), (avg(pagg_tab.b))
+ -> Finalize HashAggregate
+ Group Key: pagg_tab.a
+ Filter: (avg(pagg_tab.d) < '15'::numeric)
+ -> Append
+ -> Partial HashAggregate
+ Group Key: pagg_tab.a
+ -> Seq Scan on pagg_tab_p1 pagg_tab
+ -> Partial HashAggregate
+ Group Key: pagg_tab_1.a
+ -> Seq Scan on pagg_tab_p2 pagg_tab_1
+ -> Partial HashAggregate
+ Group Key: pagg_tab_2.a
+ -> Seq Scan on pagg_tab_p3 pagg_tab_2
+(15 rows)
+
+SELECT a, sum(b), avg(b), count(*), min(a), max(b) FROM pagg_tab GROUP BY a HAVING avg(d) < 15 ORDER BY 1, 2, 3;
+ a | sum | avg | count | min | max
+----+------+---------------------+-------+-----+-----
+ 0 | 1500 | 10.0000000000000000 | 150 | 0 | 20
+ 1 | 1650 | 11.0000000000000000 | 150 | 1 | 21
+ 2 | 1800 | 12.0000000000000000 | 150 | 2 | 22
+ 3 | 1950 | 13.0000000000000000 | 150 | 3 | 23
+ 4 | 2100 | 14.0000000000000000 | 150 | 4 | 24
+ 10 | 1500 | 10.0000000000000000 | 150 | 10 | 20
+ 11 | 1650 | 11.0000000000000000 | 150 | 11 | 21
+ 12 | 1800 | 12.0000000000000000 | 150 | 12 | 22
+ 13 | 1950 | 13.0000000000000000 | 150 | 13 | 23
+ 14 | 2100 | 14.0000000000000000 | 150 | 14 | 24
+(10 rows)
+
+-- Check with multiple columns in GROUP BY
+EXPLAIN (COSTS OFF)
+SELECT a, c, count(*) FROM pagg_tab GROUP BY a, c;
+ QUERY PLAN
+------------------------------------------------
+ Append
+ -> HashAggregate
+ Group Key: pagg_tab.a, pagg_tab.c
+ -> Seq Scan on pagg_tab_p1 pagg_tab
+ -> HashAggregate
+ Group Key: pagg_tab_1.a, pagg_tab_1.c
+ -> Seq Scan on pagg_tab_p2 pagg_tab_1
+ -> HashAggregate
+ Group Key: pagg_tab_2.a, pagg_tab_2.c
+ -> Seq Scan on pagg_tab_p3 pagg_tab_2
+(10 rows)
+
+-- Check with multiple columns in GROUP BY, order in GROUP BY is reversed
+EXPLAIN (COSTS OFF)
+SELECT a, c, count(*) FROM pagg_tab GROUP BY c, a;
+ QUERY PLAN
+------------------------------------------------
+ Append
+ -> HashAggregate
+ Group Key: pagg_tab.c, pagg_tab.a
+ -> Seq Scan on pagg_tab_p1 pagg_tab
+ -> HashAggregate
+ Group Key: pagg_tab_1.c, pagg_tab_1.a
+ -> Seq Scan on pagg_tab_p2 pagg_tab_1
+ -> HashAggregate
+ Group Key: pagg_tab_2.c, pagg_tab_2.a
+ -> Seq Scan on pagg_tab_p3 pagg_tab_2
+(10 rows)
+
+-- Check with multiple columns in GROUP BY, order in target-list is reversed
+EXPLAIN (COSTS OFF)
+SELECT c, a, count(*) FROM pagg_tab GROUP BY a, c;
+ QUERY PLAN
+------------------------------------------------
+ Append
+ -> HashAggregate
+ Group Key: pagg_tab.a, pagg_tab.c
+ -> Seq Scan on pagg_tab_p1 pagg_tab
+ -> HashAggregate
+ Group Key: pagg_tab_1.a, pagg_tab_1.c
+ -> Seq Scan on pagg_tab_p2 pagg_tab_1
+ -> HashAggregate
+ Group Key: pagg_tab_2.a, pagg_tab_2.c
+ -> Seq Scan on pagg_tab_p3 pagg_tab_2
+(10 rows)
+
+-- Test when input relation for grouping is dummy
+EXPLAIN (COSTS OFF)
+SELECT c, sum(a) FROM pagg_tab WHERE 1 = 2 GROUP BY c;
+ QUERY PLAN
+--------------------------------
+ HashAggregate
+ Group Key: c
+ -> Result
+ One-Time Filter: false
+(4 rows)
+
+SELECT c, sum(a) FROM pagg_tab WHERE 1 = 2 GROUP BY c;
+ c | sum
+---+-----
+(0 rows)
+
+EXPLAIN (COSTS OFF)
+SELECT c, sum(a) FROM pagg_tab WHERE c = 'x' GROUP BY c;
+ QUERY PLAN
+--------------------------------
+ GroupAggregate
+ -> Result
+ One-Time Filter: false
+(3 rows)
+
+SELECT c, sum(a) FROM pagg_tab WHERE c = 'x' GROUP BY c;
+ c | sum
+---+-----
+(0 rows)
+
+-- Test GroupAggregate paths by disabling hash aggregates.
+SET enable_hashagg TO false;
+-- When GROUP BY clause matches full aggregation is performed for each partition.
+EXPLAIN (COSTS OFF)
+SELECT c, sum(a), avg(b), count(*) FROM pagg_tab GROUP BY 1 HAVING avg(d) < 15 ORDER BY 1, 2, 3;
+ QUERY PLAN
+--------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab.c, (sum(pagg_tab.a)), (avg(pagg_tab.b))
+ -> Append
+ -> GroupAggregate
+ Group Key: pagg_tab.c
+ Filter: (avg(pagg_tab.d) < '15'::numeric)
+ -> Sort
+ Sort Key: pagg_tab.c
+ -> Seq Scan on pagg_tab_p1 pagg_tab
+ -> GroupAggregate
+ Group Key: pagg_tab_1.c
+ Filter: (avg(pagg_tab_1.d) < '15'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_1.c
+ -> Seq Scan on pagg_tab_p2 pagg_tab_1
+ -> GroupAggregate
+ Group Key: pagg_tab_2.c
+ Filter: (avg(pagg_tab_2.d) < '15'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_2.c
+ -> Seq Scan on pagg_tab_p3 pagg_tab_2
+(21 rows)
+
+SELECT c, sum(a), avg(b), count(*) FROM pagg_tab GROUP BY 1 HAVING avg(d) < 15 ORDER BY 1, 2, 3;
+ c | sum | avg | count
+------+------+---------------------+-------
+ 0000 | 2000 | 12.0000000000000000 | 250
+ 0001 | 2250 | 13.0000000000000000 | 250
+ 0002 | 2500 | 14.0000000000000000 | 250
+ 0006 | 2500 | 12.0000000000000000 | 250
+ 0007 | 2750 | 13.0000000000000000 | 250
+ 0008 | 2000 | 14.0000000000000000 | 250
+(6 rows)
+
+-- When GROUP BY clause does not match; partial aggregation is performed for each partition.
+EXPLAIN (COSTS OFF)
+SELECT a, sum(b), avg(b), count(*) FROM pagg_tab GROUP BY 1 HAVING avg(d) < 15 ORDER BY 1, 2, 3;
+ QUERY PLAN
+------------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab.a, (sum(pagg_tab.b)), (avg(pagg_tab.b))
+ -> Finalize GroupAggregate
+ Group Key: pagg_tab.a
+ Filter: (avg(pagg_tab.d) < '15'::numeric)
+ -> Merge Append
+ Sort Key: pagg_tab.a
+ -> Partial GroupAggregate
+ Group Key: pagg_tab.a
+ -> Sort
+ Sort Key: pagg_tab.a
+ -> Seq Scan on pagg_tab_p1 pagg_tab
+ -> Partial GroupAggregate
+ Group Key: pagg_tab_1.a
+ -> Sort
+ Sort Key: pagg_tab_1.a
+ -> Seq Scan on pagg_tab_p2 pagg_tab_1
+ -> Partial GroupAggregate
+ Group Key: pagg_tab_2.a
+ -> Sort
+ Sort Key: pagg_tab_2.a
+ -> Seq Scan on pagg_tab_p3 pagg_tab_2
+(22 rows)
+
+SELECT a, sum(b), avg(b), count(*) FROM pagg_tab GROUP BY 1 HAVING avg(d) < 15 ORDER BY 1, 2, 3;
+ a | sum | avg | count
+----+------+---------------------+-------
+ 0 | 1500 | 10.0000000000000000 | 150
+ 1 | 1650 | 11.0000000000000000 | 150
+ 2 | 1800 | 12.0000000000000000 | 150
+ 3 | 1950 | 13.0000000000000000 | 150
+ 4 | 2100 | 14.0000000000000000 | 150
+ 10 | 1500 | 10.0000000000000000 | 150
+ 11 | 1650 | 11.0000000000000000 | 150
+ 12 | 1800 | 12.0000000000000000 | 150
+ 13 | 1950 | 13.0000000000000000 | 150
+ 14 | 2100 | 14.0000000000000000 | 150
+(10 rows)
+
+-- Test partitionwise grouping without any aggregates
+EXPLAIN (COSTS OFF)
+SELECT c FROM pagg_tab GROUP BY c ORDER BY 1;
+ QUERY PLAN
+------------------------------------------------------
+ Merge Append
+ Sort Key: pagg_tab.c
+ -> Group
+ Group Key: pagg_tab.c
+ -> Sort
+ Sort Key: pagg_tab.c
+ -> Seq Scan on pagg_tab_p1 pagg_tab
+ -> Group
+ Group Key: pagg_tab_1.c
+ -> Sort
+ Sort Key: pagg_tab_1.c
+ -> Seq Scan on pagg_tab_p2 pagg_tab_1
+ -> Group
+ Group Key: pagg_tab_2.c
+ -> Sort
+ Sort Key: pagg_tab_2.c
+ -> Seq Scan on pagg_tab_p3 pagg_tab_2
+(17 rows)
+
+SELECT c FROM pagg_tab GROUP BY c ORDER BY 1;
+ c
+------
+ 0000
+ 0001
+ 0002
+ 0003
+ 0004
+ 0005
+ 0006
+ 0007
+ 0008
+ 0009
+ 0010
+ 0011
+(12 rows)
+
+EXPLAIN (COSTS OFF)
+SELECT a FROM pagg_tab WHERE a < 3 GROUP BY a ORDER BY 1;
+ QUERY PLAN
+------------------------------------------------------------
+ Group
+ Group Key: pagg_tab.a
+ -> Merge Append
+ Sort Key: pagg_tab.a
+ -> Group
+ Group Key: pagg_tab.a
+ -> Sort
+ Sort Key: pagg_tab.a
+ -> Seq Scan on pagg_tab_p1 pagg_tab
+ Filter: (a < 3)
+ -> Group
+ Group Key: pagg_tab_1.a
+ -> Sort
+ Sort Key: pagg_tab_1.a
+ -> Seq Scan on pagg_tab_p2 pagg_tab_1
+ Filter: (a < 3)
+ -> Group
+ Group Key: pagg_tab_2.a
+ -> Sort
+ Sort Key: pagg_tab_2.a
+ -> Seq Scan on pagg_tab_p3 pagg_tab_2
+ Filter: (a < 3)
+(22 rows)
+
+SELECT a FROM pagg_tab WHERE a < 3 GROUP BY a ORDER BY 1;
+ a
+---
+ 0
+ 1
+ 2
+(3 rows)
+
+RESET enable_hashagg;
+-- ROLLUP, partitionwise aggregation does not apply
+EXPLAIN (COSTS OFF)
+SELECT c, sum(a) FROM pagg_tab GROUP BY rollup(c) ORDER BY 1, 2;
+ QUERY PLAN
+------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab.c, (sum(pagg_tab.a))
+ -> MixedAggregate
+ Hash Key: pagg_tab.c
+ Group Key: ()
+ -> Append
+ -> Seq Scan on pagg_tab_p1 pagg_tab_1
+ -> Seq Scan on pagg_tab_p2 pagg_tab_2
+ -> Seq Scan on pagg_tab_p3 pagg_tab_3
+(9 rows)
+
+-- ORDERED SET within the aggregate.
+-- Full aggregation; since all the rows that belong to the same group come
+-- from the same partition, having an ORDER BY within the aggregate doesn't
+-- make any difference.
+EXPLAIN (COSTS OFF)
+SELECT c, sum(b order by a) FROM pagg_tab GROUP BY c ORDER BY 1, 2;
+ QUERY PLAN
+---------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab.c, (sum(pagg_tab.b ORDER BY pagg_tab.a))
+ -> Append
+ -> GroupAggregate
+ Group Key: pagg_tab.c
+ -> Sort
+ Sort Key: pagg_tab.c, pagg_tab.a
+ -> Seq Scan on pagg_tab_p1 pagg_tab
+ -> GroupAggregate
+ Group Key: pagg_tab_1.c
+ -> Sort
+ Sort Key: pagg_tab_1.c, pagg_tab_1.a
+ -> Seq Scan on pagg_tab_p2 pagg_tab_1
+ -> GroupAggregate
+ Group Key: pagg_tab_2.c
+ -> Sort
+ Sort Key: pagg_tab_2.c, pagg_tab_2.a
+ -> Seq Scan on pagg_tab_p3 pagg_tab_2
+(18 rows)
+
+-- Since GROUP BY clause does not match with PARTITION KEY; we need to do
+-- partial aggregation. However, ORDERED SET are not partial safe and thus
+-- partitionwise aggregation plan is not generated.
+EXPLAIN (COSTS OFF)
+SELECT a, sum(b order by a) FROM pagg_tab GROUP BY a ORDER BY 1, 2;
+ QUERY PLAN
+---------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab.a, (sum(pagg_tab.b ORDER BY pagg_tab.a))
+ -> GroupAggregate
+ Group Key: pagg_tab.a
+ -> Sort
+ Sort Key: pagg_tab.a
+ -> Append
+ -> Seq Scan on pagg_tab_p1 pagg_tab_1
+ -> Seq Scan on pagg_tab_p2 pagg_tab_2
+ -> Seq Scan on pagg_tab_p3 pagg_tab_3
+(10 rows)
+
+-- JOIN query
+CREATE TABLE pagg_tab1(x int, y int) PARTITION BY RANGE(x);
+CREATE TABLE pagg_tab1_p1 PARTITION OF pagg_tab1 FOR VALUES FROM (0) TO (10);
+CREATE TABLE pagg_tab1_p2 PARTITION OF pagg_tab1 FOR VALUES FROM (10) TO (20);
+CREATE TABLE pagg_tab1_p3 PARTITION OF pagg_tab1 FOR VALUES FROM (20) TO (30);
+CREATE TABLE pagg_tab2(x int, y int) PARTITION BY RANGE(y);
+CREATE TABLE pagg_tab2_p1 PARTITION OF pagg_tab2 FOR VALUES FROM (0) TO (10);
+CREATE TABLE pagg_tab2_p2 PARTITION OF pagg_tab2 FOR VALUES FROM (10) TO (20);
+CREATE TABLE pagg_tab2_p3 PARTITION OF pagg_tab2 FOR VALUES FROM (20) TO (30);
+INSERT INTO pagg_tab1 SELECT i % 30, i % 20 FROM generate_series(0, 299, 2) i;
+INSERT INTO pagg_tab2 SELECT i % 20, i % 30 FROM generate_series(0, 299, 3) i;
+ANALYZE pagg_tab1;
+ANALYZE pagg_tab2;
+-- When GROUP BY clause matches; full aggregation is performed for each partition.
+EXPLAIN (COSTS OFF)
+SELECT t1.x, sum(t1.y), count(*) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t1.x ORDER BY 1, 2, 3;
+ QUERY PLAN
+-------------------------------------------------------------
+ Sort
+ Sort Key: t1.x, (sum(t1.y)), (count(*))
+ -> Append
+ -> HashAggregate
+ Group Key: t1.x
+ -> Hash Join
+ Hash Cond: (t1.x = t2.y)
+ -> Seq Scan on pagg_tab1_p1 t1
+ -> Hash
+ -> Seq Scan on pagg_tab2_p1 t2
+ -> HashAggregate
+ Group Key: t1_1.x
+ -> Hash Join
+ Hash Cond: (t1_1.x = t2_1.y)
+ -> Seq Scan on pagg_tab1_p2 t1_1
+ -> Hash
+ -> Seq Scan on pagg_tab2_p2 t2_1
+ -> HashAggregate
+ Group Key: t1_2.x
+ -> Hash Join
+ Hash Cond: (t2_2.y = t1_2.x)
+ -> Seq Scan on pagg_tab2_p3 t2_2
+ -> Hash
+ -> Seq Scan on pagg_tab1_p3 t1_2
+(24 rows)
+
+SELECT t1.x, sum(t1.y), count(*) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t1.x ORDER BY 1, 2, 3;
+ x | sum | count
+----+------+-------
+ 0 | 500 | 100
+ 6 | 1100 | 100
+ 12 | 700 | 100
+ 18 | 1300 | 100
+ 24 | 900 | 100
+(5 rows)
+
+-- Check with whole-row reference; partitionwise aggregation does not apply
+EXPLAIN (COSTS OFF)
+SELECT t1.x, sum(t1.y), count(t1) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t1.x ORDER BY 1, 2, 3;
+ QUERY PLAN
+-------------------------------------------------------------
+ Sort
+ Sort Key: t1.x, (sum(t1.y)), (count(((t1.*)::pagg_tab1)))
+ -> HashAggregate
+ Group Key: t1.x
+ -> Hash Join
+ Hash Cond: (t1.x = t2.y)
+ -> Append
+ -> Seq Scan on pagg_tab1_p1 t1_1
+ -> Seq Scan on pagg_tab1_p2 t1_2
+ -> Seq Scan on pagg_tab1_p3 t1_3
+ -> Hash
+ -> Append
+ -> Seq Scan on pagg_tab2_p1 t2_1
+ -> Seq Scan on pagg_tab2_p2 t2_2
+ -> Seq Scan on pagg_tab2_p3 t2_3
+(15 rows)
+
+SELECT t1.x, sum(t1.y), count(t1) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t1.x ORDER BY 1, 2, 3;
+ x | sum | count
+----+------+-------
+ 0 | 500 | 100
+ 6 | 1100 | 100
+ 12 | 700 | 100
+ 18 | 1300 | 100
+ 24 | 900 | 100
+(5 rows)
+
+-- GROUP BY having other matching key
+EXPLAIN (COSTS OFF)
+SELECT t2.y, sum(t1.y), count(*) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t2.y ORDER BY 1, 2, 3;
+ QUERY PLAN
+-------------------------------------------------------------
+ Sort
+ Sort Key: t2.y, (sum(t1.y)), (count(*))
+ -> Append
+ -> HashAggregate
+ Group Key: t2.y
+ -> Hash Join
+ Hash Cond: (t1.x = t2.y)
+ -> Seq Scan on pagg_tab1_p1 t1
+ -> Hash
+ -> Seq Scan on pagg_tab2_p1 t2
+ -> HashAggregate
+ Group Key: t2_1.y
+ -> Hash Join
+ Hash Cond: (t1_1.x = t2_1.y)
+ -> Seq Scan on pagg_tab1_p2 t1_1
+ -> Hash
+ -> Seq Scan on pagg_tab2_p2 t2_1
+ -> HashAggregate
+ Group Key: t2_2.y
+ -> Hash Join
+ Hash Cond: (t2_2.y = t1_2.x)
+ -> Seq Scan on pagg_tab2_p3 t2_2
+ -> Hash
+ -> Seq Scan on pagg_tab1_p3 t1_2
+(24 rows)
+
+-- When GROUP BY clause does not match; partial aggregation is performed for each partition.
+-- Also test GroupAggregate paths by disabling hash aggregates.
+SET enable_hashagg TO false;
+EXPLAIN (COSTS OFF)
+SELECT t1.y, sum(t1.x), count(*) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t1.y HAVING avg(t1.x) > 10 ORDER BY 1, 2, 3;
+ QUERY PLAN
+-------------------------------------------------------------------------
+ Sort
+ Sort Key: t1.y, (sum(t1.x)), (count(*))
+ -> Finalize GroupAggregate
+ Group Key: t1.y
+ Filter: (avg(t1.x) > '10'::numeric)
+ -> Merge Append
+ Sort Key: t1.y
+ -> Partial GroupAggregate
+ Group Key: t1.y
+ -> Sort
+ Sort Key: t1.y
+ -> Hash Join
+ Hash Cond: (t1.x = t2.y)
+ -> Seq Scan on pagg_tab1_p1 t1
+ -> Hash
+ -> Seq Scan on pagg_tab2_p1 t2
+ -> Partial GroupAggregate
+ Group Key: t1_1.y
+ -> Sort
+ Sort Key: t1_1.y
+ -> Hash Join
+ Hash Cond: (t1_1.x = t2_1.y)
+ -> Seq Scan on pagg_tab1_p2 t1_1
+ -> Hash
+ -> Seq Scan on pagg_tab2_p2 t2_1
+ -> Partial GroupAggregate
+ Group Key: t1_2.y
+ -> Sort
+ Sort Key: t1_2.y
+ -> Hash Join
+ Hash Cond: (t2_2.y = t1_2.x)
+ -> Seq Scan on pagg_tab2_p3 t2_2
+ -> Hash
+ -> Seq Scan on pagg_tab1_p3 t1_2
+(34 rows)
+
+SELECT t1.y, sum(t1.x), count(*) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t1.y HAVING avg(t1.x) > 10 ORDER BY 1, 2, 3;
+ y | sum | count
+----+------+-------
+ 2 | 600 | 50
+ 4 | 1200 | 50
+ 8 | 900 | 50
+ 12 | 600 | 50
+ 14 | 1200 | 50
+ 18 | 900 | 50
+(6 rows)
+
+RESET enable_hashagg;
+-- Check with LEFT/RIGHT/FULL OUTER JOINs which produces NULL values for
+-- aggregation
+-- LEFT JOIN, should produce partial partitionwise aggregation plan as
+-- GROUP BY is on nullable column
+EXPLAIN (COSTS OFF)
+SELECT b.y, sum(a.y) FROM pagg_tab1 a LEFT JOIN pagg_tab2 b ON a.x = b.y GROUP BY b.y ORDER BY 1 NULLS LAST;
+ QUERY PLAN
+------------------------------------------------------------------
+ Finalize GroupAggregate
+ Group Key: b.y
+ -> Sort
+ Sort Key: b.y
+ -> Append
+ -> Partial HashAggregate
+ Group Key: b.y
+ -> Hash Left Join
+ Hash Cond: (a.x = b.y)
+ -> Seq Scan on pagg_tab1_p1 a
+ -> Hash
+ -> Seq Scan on pagg_tab2_p1 b
+ -> Partial HashAggregate
+ Group Key: b_1.y
+ -> Hash Left Join
+ Hash Cond: (a_1.x = b_1.y)
+ -> Seq Scan on pagg_tab1_p2 a_1
+ -> Hash
+ -> Seq Scan on pagg_tab2_p2 b_1
+ -> Partial HashAggregate
+ Group Key: b_2.y
+ -> Hash Right Join
+ Hash Cond: (b_2.y = a_2.x)
+ -> Seq Scan on pagg_tab2_p3 b_2
+ -> Hash
+ -> Seq Scan on pagg_tab1_p3 a_2
+(26 rows)
+
+SELECT b.y, sum(a.y) FROM pagg_tab1 a LEFT JOIN pagg_tab2 b ON a.x = b.y GROUP BY b.y ORDER BY 1 NULLS LAST;
+ y | sum
+----+------
+ 0 | 500
+ 6 | 1100
+ 12 | 700
+ 18 | 1300
+ 24 | 900
+ | 900
+(6 rows)
+
+-- RIGHT JOIN, should produce full partitionwise aggregation plan as
+-- GROUP BY is on non-nullable column
+EXPLAIN (COSTS OFF)
+SELECT b.y, sum(a.y) FROM pagg_tab1 a RIGHT JOIN pagg_tab2 b ON a.x = b.y GROUP BY b.y ORDER BY 1 NULLS LAST;
+ QUERY PLAN
+------------------------------------------------------------
+ Sort
+ Sort Key: b.y
+ -> Append
+ -> HashAggregate
+ Group Key: b.y
+ -> Hash Right Join
+ Hash Cond: (a.x = b.y)
+ -> Seq Scan on pagg_tab1_p1 a
+ -> Hash
+ -> Seq Scan on pagg_tab2_p1 b
+ -> HashAggregate
+ Group Key: b_1.y
+ -> Hash Right Join
+ Hash Cond: (a_1.x = b_1.y)
+ -> Seq Scan on pagg_tab1_p2 a_1
+ -> Hash
+ -> Seq Scan on pagg_tab2_p2 b_1
+ -> HashAggregate
+ Group Key: b_2.y
+ -> Hash Left Join
+ Hash Cond: (b_2.y = a_2.x)
+ -> Seq Scan on pagg_tab2_p3 b_2
+ -> Hash
+ -> Seq Scan on pagg_tab1_p3 a_2
+(24 rows)
+
+SELECT b.y, sum(a.y) FROM pagg_tab1 a RIGHT JOIN pagg_tab2 b ON a.x = b.y GROUP BY b.y ORDER BY 1 NULLS LAST;
+ y | sum
+----+------
+ 0 | 500
+ 3 |
+ 6 | 1100
+ 9 |
+ 12 | 700
+ 15 |
+ 18 | 1300
+ 21 |
+ 24 | 900
+ 27 |
+(10 rows)
+
+-- FULL JOIN, should produce partial partitionwise aggregation plan as
+-- GROUP BY is on nullable column
+EXPLAIN (COSTS OFF)
+SELECT a.x, sum(b.x) FROM pagg_tab1 a FULL OUTER JOIN pagg_tab2 b ON a.x = b.y GROUP BY a.x ORDER BY 1 NULLS LAST;
+ QUERY PLAN
+------------------------------------------------------------------
+ Finalize GroupAggregate
+ Group Key: a.x
+ -> Sort
+ Sort Key: a.x
+ -> Append
+ -> Partial HashAggregate
+ Group Key: a.x
+ -> Hash Full Join
+ Hash Cond: (a.x = b.y)
+ -> Seq Scan on pagg_tab1_p1 a
+ -> Hash
+ -> Seq Scan on pagg_tab2_p1 b
+ -> Partial HashAggregate
+ Group Key: a_1.x
+ -> Hash Full Join
+ Hash Cond: (a_1.x = b_1.y)
+ -> Seq Scan on pagg_tab1_p2 a_1
+ -> Hash
+ -> Seq Scan on pagg_tab2_p2 b_1
+ -> Partial HashAggregate
+ Group Key: a_2.x
+ -> Hash Full Join
+ Hash Cond: (b_2.y = a_2.x)
+ -> Seq Scan on pagg_tab2_p3 b_2
+ -> Hash
+ -> Seq Scan on pagg_tab1_p3 a_2
+(26 rows)
+
+SELECT a.x, sum(b.x) FROM pagg_tab1 a FULL OUTER JOIN pagg_tab2 b ON a.x = b.y GROUP BY a.x ORDER BY 1 NULLS LAST;
+ x | sum
+----+------
+ 0 | 500
+ 2 |
+ 4 |
+ 6 | 1100
+ 8 |
+ 10 |
+ 12 | 700
+ 14 |
+ 16 |
+ 18 | 1300
+ 20 |
+ 22 |
+ 24 | 900
+ 26 |
+ 28 |
+ | 500
+(16 rows)
+
+-- LEFT JOIN, with dummy relation on right side, ideally
+-- should produce full partitionwise aggregation plan as GROUP BY is on
+-- non-nullable columns.
+-- But right now we are unable to do partitionwise join in this case.
+EXPLAIN (COSTS OFF)
+SELECT a.x, b.y, count(*) FROM (SELECT * FROM pagg_tab1 WHERE x < 20) a LEFT JOIN (SELECT * FROM pagg_tab2 WHERE y > 10) b ON a.x = b.y WHERE a.x > 5 or b.y < 20 GROUP BY a.x, b.y ORDER BY 1, 2;
+ QUERY PLAN
+--------------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab1.x, pagg_tab2.y
+ -> HashAggregate
+ Group Key: pagg_tab1.x, pagg_tab2.y
+ -> Hash Left Join
+ Hash Cond: (pagg_tab1.x = pagg_tab2.y)
+ Filter: ((pagg_tab1.x > 5) OR (pagg_tab2.y < 20))
+ -> Append
+ -> Seq Scan on pagg_tab1_p1 pagg_tab1_1
+ Filter: (x < 20)
+ -> Seq Scan on pagg_tab1_p2 pagg_tab1_2
+ Filter: (x < 20)
+ -> Hash
+ -> Append
+ -> Seq Scan on pagg_tab2_p2 pagg_tab2_1
+ Filter: (y > 10)
+ -> Seq Scan on pagg_tab2_p3 pagg_tab2_2
+ Filter: (y > 10)
+(18 rows)
+
+SELECT a.x, b.y, count(*) FROM (SELECT * FROM pagg_tab1 WHERE x < 20) a LEFT JOIN (SELECT * FROM pagg_tab2 WHERE y > 10) b ON a.x = b.y WHERE a.x > 5 or b.y < 20 GROUP BY a.x, b.y ORDER BY 1, 2;
+ x | y | count
+----+----+-------
+ 6 | | 10
+ 8 | | 10
+ 10 | | 10
+ 12 | 12 | 100
+ 14 | | 10
+ 16 | | 10
+ 18 | 18 | 100
+(7 rows)
+
+-- FULL JOIN, with dummy relations on both sides, ideally
+-- should produce partial partitionwise aggregation plan as GROUP BY is on
+-- nullable columns.
+-- But right now we are unable to do partitionwise join in this case.
+EXPLAIN (COSTS OFF)
+SELECT a.x, b.y, count(*) FROM (SELECT * FROM pagg_tab1 WHERE x < 20) a FULL JOIN (SELECT * FROM pagg_tab2 WHERE y > 10) b ON a.x = b.y WHERE a.x > 5 or b.y < 20 GROUP BY a.x, b.y ORDER BY 1, 2;
+ QUERY PLAN
+--------------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab1.x, pagg_tab2.y
+ -> HashAggregate
+ Group Key: pagg_tab1.x, pagg_tab2.y
+ -> Hash Full Join
+ Hash Cond: (pagg_tab1.x = pagg_tab2.y)
+ Filter: ((pagg_tab1.x > 5) OR (pagg_tab2.y < 20))
+ -> Append
+ -> Seq Scan on pagg_tab1_p1 pagg_tab1_1
+ Filter: (x < 20)
+ -> Seq Scan on pagg_tab1_p2 pagg_tab1_2
+ Filter: (x < 20)
+ -> Hash
+ -> Append
+ -> Seq Scan on pagg_tab2_p2 pagg_tab2_1
+ Filter: (y > 10)
+ -> Seq Scan on pagg_tab2_p3 pagg_tab2_2
+ Filter: (y > 10)
+(18 rows)
+
+SELECT a.x, b.y, count(*) FROM (SELECT * FROM pagg_tab1 WHERE x < 20) a FULL JOIN (SELECT * FROM pagg_tab2 WHERE y > 10) b ON a.x = b.y WHERE a.x > 5 or b.y < 20 GROUP BY a.x, b.y ORDER BY 1, 2;
+ x | y | count
+----+----+-------
+ 6 | | 10
+ 8 | | 10
+ 10 | | 10
+ 12 | 12 | 100
+ 14 | | 10
+ 16 | | 10
+ 18 | 18 | 100
+ | 15 | 10
+(8 rows)
+
+-- Empty join relation because of empty outer side, no partitionwise agg plan
+EXPLAIN (COSTS OFF)
+SELECT a.x, a.y, count(*) FROM (SELECT * FROM pagg_tab1 WHERE x = 1 AND x = 2) a LEFT JOIN pagg_tab2 b ON a.x = b.y GROUP BY a.x, a.y ORDER BY 1, 2;
+ QUERY PLAN
+--------------------------------------
+ GroupAggregate
+ Group Key: pagg_tab1.y
+ -> Sort
+ Sort Key: pagg_tab1.y
+ -> Result
+ One-Time Filter: false
+(6 rows)
+
+SELECT a.x, a.y, count(*) FROM (SELECT * FROM pagg_tab1 WHERE x = 1 AND x = 2) a LEFT JOIN pagg_tab2 b ON a.x = b.y GROUP BY a.x, a.y ORDER BY 1, 2;
+ x | y | count
+---+---+-------
+(0 rows)
+
+-- Partition by multiple columns
+CREATE TABLE pagg_tab_m (a int, b int, c int) PARTITION BY RANGE(a, ((a+b)/2));
+CREATE TABLE pagg_tab_m_p1 PARTITION OF pagg_tab_m FOR VALUES FROM (0, 0) TO (12, 12);
+CREATE TABLE pagg_tab_m_p2 PARTITION OF pagg_tab_m FOR VALUES FROM (12, 12) TO (22, 22);
+CREATE TABLE pagg_tab_m_p3 PARTITION OF pagg_tab_m FOR VALUES FROM (22, 22) TO (30, 30);
+INSERT INTO pagg_tab_m SELECT i % 30, i % 40, i % 50 FROM generate_series(0, 2999) i;
+ANALYZE pagg_tab_m;
+-- Partial aggregation as GROUP BY clause does not match with PARTITION KEY
+EXPLAIN (COSTS OFF)
+SELECT a, sum(b), avg(c), count(*) FROM pagg_tab_m GROUP BY a HAVING avg(c) < 22 ORDER BY 1, 2, 3;
+ QUERY PLAN
+--------------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab_m.a, (sum(pagg_tab_m.b)), (avg(pagg_tab_m.c))
+ -> Finalize HashAggregate
+ Group Key: pagg_tab_m.a
+ Filter: (avg(pagg_tab_m.c) < '22'::numeric)
+ -> Append
+ -> Partial HashAggregate
+ Group Key: pagg_tab_m.a
+ -> Seq Scan on pagg_tab_m_p1 pagg_tab_m
+ -> Partial HashAggregate
+ Group Key: pagg_tab_m_1.a
+ -> Seq Scan on pagg_tab_m_p2 pagg_tab_m_1
+ -> Partial HashAggregate
+ Group Key: pagg_tab_m_2.a
+ -> Seq Scan on pagg_tab_m_p3 pagg_tab_m_2
+(15 rows)
+
+SELECT a, sum(b), avg(c), count(*) FROM pagg_tab_m GROUP BY a HAVING avg(c) < 22 ORDER BY 1, 2, 3;
+ a | sum | avg | count
+----+------+---------------------+-------
+ 0 | 1500 | 20.0000000000000000 | 100
+ 1 | 1600 | 21.0000000000000000 | 100
+ 10 | 1500 | 20.0000000000000000 | 100
+ 11 | 1600 | 21.0000000000000000 | 100
+ 20 | 1500 | 20.0000000000000000 | 100
+ 21 | 1600 | 21.0000000000000000 | 100
+(6 rows)
+
+-- Full aggregation as GROUP BY clause matches with PARTITION KEY
+EXPLAIN (COSTS OFF)
+SELECT a, sum(b), avg(c), count(*) FROM pagg_tab_m GROUP BY a, (a+b)/2 HAVING sum(b) < 50 ORDER BY 1, 2, 3;
+ QUERY PLAN
+----------------------------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab_m.a, (sum(pagg_tab_m.b)), (avg(pagg_tab_m.c))
+ -> Append
+ -> HashAggregate
+ Group Key: pagg_tab_m.a, ((pagg_tab_m.a + pagg_tab_m.b) / 2)
+ Filter: (sum(pagg_tab_m.b) < 50)
+ -> Seq Scan on pagg_tab_m_p1 pagg_tab_m
+ -> HashAggregate
+ Group Key: pagg_tab_m_1.a, ((pagg_tab_m_1.a + pagg_tab_m_1.b) / 2)
+ Filter: (sum(pagg_tab_m_1.b) < 50)
+ -> Seq Scan on pagg_tab_m_p2 pagg_tab_m_1
+ -> HashAggregate
+ Group Key: pagg_tab_m_2.a, ((pagg_tab_m_2.a + pagg_tab_m_2.b) / 2)
+ Filter: (sum(pagg_tab_m_2.b) < 50)
+ -> Seq Scan on pagg_tab_m_p3 pagg_tab_m_2
+(15 rows)
+
+SELECT a, sum(b), avg(c), count(*) FROM pagg_tab_m GROUP BY a, (a+b)/2 HAVING sum(b) < 50 ORDER BY 1, 2, 3;
+ a | sum | avg | count
+----+-----+---------------------+-------
+ 0 | 0 | 20.0000000000000000 | 25
+ 1 | 25 | 21.0000000000000000 | 25
+ 10 | 0 | 20.0000000000000000 | 25
+ 11 | 25 | 21.0000000000000000 | 25
+ 20 | 0 | 20.0000000000000000 | 25
+ 21 | 25 | 21.0000000000000000 | 25
+(6 rows)
+
+-- Full aggregation as PARTITION KEY is part of GROUP BY clause
+EXPLAIN (COSTS OFF)
+SELECT a, c, sum(b), avg(c), count(*) FROM pagg_tab_m GROUP BY (a+b)/2, 2, 1 HAVING sum(b) = 50 AND avg(c) > 25 ORDER BY 1, 2, 3;
+ QUERY PLAN
+--------------------------------------------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab_m.a, pagg_tab_m.c, (sum(pagg_tab_m.b))
+ -> Append
+ -> HashAggregate
+ Group Key: ((pagg_tab_m.a + pagg_tab_m.b) / 2), pagg_tab_m.c, pagg_tab_m.a
+ Filter: ((sum(pagg_tab_m.b) = 50) AND (avg(pagg_tab_m.c) > '25'::numeric))
+ -> Seq Scan on pagg_tab_m_p1 pagg_tab_m
+ -> HashAggregate
+ Group Key: ((pagg_tab_m_1.a + pagg_tab_m_1.b) / 2), pagg_tab_m_1.c, pagg_tab_m_1.a
+ Filter: ((sum(pagg_tab_m_1.b) = 50) AND (avg(pagg_tab_m_1.c) > '25'::numeric))
+ -> Seq Scan on pagg_tab_m_p2 pagg_tab_m_1
+ -> HashAggregate
+ Group Key: ((pagg_tab_m_2.a + pagg_tab_m_2.b) / 2), pagg_tab_m_2.c, pagg_tab_m_2.a
+ Filter: ((sum(pagg_tab_m_2.b) = 50) AND (avg(pagg_tab_m_2.c) > '25'::numeric))
+ -> Seq Scan on pagg_tab_m_p3 pagg_tab_m_2
+(15 rows)
+
+SELECT a, c, sum(b), avg(c), count(*) FROM pagg_tab_m GROUP BY (a+b)/2, 2, 1 HAVING sum(b) = 50 AND avg(c) > 25 ORDER BY 1, 2, 3;
+ a | c | sum | avg | count
+----+----+-----+---------------------+-------
+ 0 | 30 | 50 | 30.0000000000000000 | 5
+ 0 | 40 | 50 | 40.0000000000000000 | 5
+ 10 | 30 | 50 | 30.0000000000000000 | 5
+ 10 | 40 | 50 | 40.0000000000000000 | 5
+ 20 | 30 | 50 | 30.0000000000000000 | 5
+ 20 | 40 | 50 | 40.0000000000000000 | 5
+(6 rows)
+
+-- Test with multi-level partitioning scheme
+CREATE TABLE pagg_tab_ml (a int, b int, c text) PARTITION BY RANGE(a);
+CREATE TABLE pagg_tab_ml_p1 PARTITION OF pagg_tab_ml FOR VALUES FROM (0) TO (12);
+CREATE TABLE pagg_tab_ml_p2 PARTITION OF pagg_tab_ml FOR VALUES FROM (12) TO (20) PARTITION BY LIST (c);
+CREATE TABLE pagg_tab_ml_p2_s1 PARTITION OF pagg_tab_ml_p2 FOR VALUES IN ('0000', '0001', '0002');
+CREATE TABLE pagg_tab_ml_p2_s2 PARTITION OF pagg_tab_ml_p2 FOR VALUES IN ('0003');
+-- This level of partitioning has different column positions than the parent
+CREATE TABLE pagg_tab_ml_p3(b int, c text, a int) PARTITION BY RANGE (b);
+CREATE TABLE pagg_tab_ml_p3_s1(c text, a int, b int);
+CREATE TABLE pagg_tab_ml_p3_s2 PARTITION OF pagg_tab_ml_p3 FOR VALUES FROM (7) TO (10);
+ALTER TABLE pagg_tab_ml_p3 ATTACH PARTITION pagg_tab_ml_p3_s1 FOR VALUES FROM (0) TO (7);
+ALTER TABLE pagg_tab_ml ATTACH PARTITION pagg_tab_ml_p3 FOR VALUES FROM (20) TO (30);
+INSERT INTO pagg_tab_ml SELECT i % 30, i % 10, to_char(i % 4, 'FM0000') FROM generate_series(0, 29999) i;
+ANALYZE pagg_tab_ml;
+-- For Parallel Append
+SET max_parallel_workers_per_gather TO 2;
+SET parallel_setup_cost = 0;
+-- Full aggregation at level 1 as GROUP BY clause matches with PARTITION KEY
+-- for level 1 only. For subpartitions, GROUP BY clause does not match with
+-- PARTITION KEY, but still we do not see a partial aggregation as array_agg()
+-- is not partial agg safe.
+EXPLAIN (COSTS OFF)
+SELECT a, sum(b), array_agg(distinct c), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
+ QUERY PLAN
+--------------------------------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab_ml.a, (sum(pagg_tab_ml.b)), (array_agg(DISTINCT pagg_tab_ml.c))
+ -> Gather
+ Workers Planned: 2
+ -> Parallel Append
+ -> GroupAggregate
+ Group Key: pagg_tab_ml.a
+ Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml.a, pagg_tab_ml.c
+ -> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
+ -> GroupAggregate
+ Group Key: pagg_tab_ml_5.a
+ Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml_5.a, pagg_tab_ml_5.c
+ -> Append
+ -> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
+ -> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
+ -> GroupAggregate
+ Group Key: pagg_tab_ml_2.a
+ Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml_2.a, pagg_tab_ml_2.c
+ -> Append
+ -> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
+ -> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
+(27 rows)
+
+SELECT a, sum(b), array_agg(distinct c), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
+ a | sum | array_agg | count
+----+------+-------------+-------
+ 0 | 0 | {0000,0002} | 1000
+ 1 | 1000 | {0001,0003} | 1000
+ 2 | 2000 | {0000,0002} | 1000
+ 10 | 0 | {0000,0002} | 1000
+ 11 | 1000 | {0001,0003} | 1000
+ 12 | 2000 | {0000,0002} | 1000
+ 20 | 0 | {0000,0002} | 1000
+ 21 | 1000 | {0001,0003} | 1000
+ 22 | 2000 | {0000,0002} | 1000
+(9 rows)
+
+-- Without ORDER BY clause, to test Gather at top-most path
+EXPLAIN (COSTS OFF)
+SELECT a, sum(b), array_agg(distinct c), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3;
+ QUERY PLAN
+---------------------------------------------------------------------------
+ Gather
+ Workers Planned: 2
+ -> Parallel Append
+ -> GroupAggregate
+ Group Key: pagg_tab_ml.a
+ Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml.a, pagg_tab_ml.c
+ -> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
+ -> GroupAggregate
+ Group Key: pagg_tab_ml_5.a
+ Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml_5.a, pagg_tab_ml_5.c
+ -> Append
+ -> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
+ -> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
+ -> GroupAggregate
+ Group Key: pagg_tab_ml_2.a
+ Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml_2.a, pagg_tab_ml_2.c
+ -> Append
+ -> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
+ -> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
+(25 rows)
+
+RESET parallel_setup_cost;
+-- Full aggregation at level 1 as GROUP BY clause matches with PARTITION KEY
+-- for level 1 only. For subpartitions, GROUP BY clause does not match with
+-- PARTITION KEY, thus we will have a partial aggregation for them.
+EXPLAIN (COSTS OFF)
+SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
+ QUERY PLAN
+---------------------------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab_ml.a, (sum(pagg_tab_ml.b)), (count(*))
+ -> Append
+ -> HashAggregate
+ Group Key: pagg_tab_ml.a
+ Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
+ -> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
+ -> Finalize GroupAggregate
+ Group Key: pagg_tab_ml_2.a
+ Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml_2.a
+ -> Append
+ -> Partial HashAggregate
+ Group Key: pagg_tab_ml_2.a
+ -> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
+ -> Partial HashAggregate
+ Group Key: pagg_tab_ml_3.a
+ -> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
+ -> Finalize GroupAggregate
+ Group Key: pagg_tab_ml_5.a
+ Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml_5.a
+ -> Append
+ -> Partial HashAggregate
+ Group Key: pagg_tab_ml_5.a
+ -> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
+ -> Partial HashAggregate
+ Group Key: pagg_tab_ml_6.a
+ -> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
+(31 rows)
+
+SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
+ a | sum | count
+----+------+-------
+ 0 | 0 | 1000
+ 1 | 1000 | 1000
+ 2 | 2000 | 1000
+ 10 | 0 | 1000
+ 11 | 1000 | 1000
+ 12 | 2000 | 1000
+ 20 | 0 | 1000
+ 21 | 1000 | 1000
+ 22 | 2000 | 1000
+(9 rows)
+
+-- Partial aggregation at all levels as GROUP BY clause does not match with
+-- PARTITION KEY
+EXPLAIN (COSTS OFF)
+SELECT b, sum(a), count(*) FROM pagg_tab_ml GROUP BY b ORDER BY 1, 2, 3;
+ QUERY PLAN
+---------------------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab_ml.b, (sum(pagg_tab_ml.a)), (count(*))
+ -> Finalize GroupAggregate
+ Group Key: pagg_tab_ml.b
+ -> Sort
+ Sort Key: pagg_tab_ml.b
+ -> Append
+ -> Partial HashAggregate
+ Group Key: pagg_tab_ml.b
+ -> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
+ -> Partial HashAggregate
+ Group Key: pagg_tab_ml_1.b
+ -> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_1
+ -> Partial HashAggregate
+ Group Key: pagg_tab_ml_2.b
+ -> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_2
+ -> Partial HashAggregate
+ Group Key: pagg_tab_ml_3.b
+ -> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_3
+ -> Partial HashAggregate
+ Group Key: pagg_tab_ml_4.b
+ -> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_4
+(22 rows)
+
+SELECT b, sum(a), count(*) FROM pagg_tab_ml GROUP BY b HAVING avg(a) < 15 ORDER BY 1, 2, 3;
+ b | sum | count
+---+-------+-------
+ 0 | 30000 | 3000
+ 1 | 33000 | 3000
+ 2 | 36000 | 3000
+ 3 | 39000 | 3000
+ 4 | 42000 | 3000
+(5 rows)
+
+-- Full aggregation at all levels as GROUP BY clause matches with PARTITION KEY
+EXPLAIN (COSTS OFF)
+SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a, b, c HAVING avg(b) > 7 ORDER BY 1, 2, 3;
+ QUERY PLAN
+----------------------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab_ml.a, (sum(pagg_tab_ml.b)), (count(*))
+ -> Append
+ -> HashAggregate
+ Group Key: pagg_tab_ml.a, pagg_tab_ml.b, pagg_tab_ml.c
+ Filter: (avg(pagg_tab_ml.b) > '7'::numeric)
+ -> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
+ -> HashAggregate
+ Group Key: pagg_tab_ml_1.a, pagg_tab_ml_1.b, pagg_tab_ml_1.c
+ Filter: (avg(pagg_tab_ml_1.b) > '7'::numeric)
+ -> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_1
+ -> HashAggregate
+ Group Key: pagg_tab_ml_2.a, pagg_tab_ml_2.b, pagg_tab_ml_2.c
+ Filter: (avg(pagg_tab_ml_2.b) > '7'::numeric)
+ -> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_2
+ -> HashAggregate
+ Group Key: pagg_tab_ml_3.a, pagg_tab_ml_3.b, pagg_tab_ml_3.c
+ Filter: (avg(pagg_tab_ml_3.b) > '7'::numeric)
+ -> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_3
+ -> HashAggregate
+ Group Key: pagg_tab_ml_4.a, pagg_tab_ml_4.b, pagg_tab_ml_4.c
+ Filter: (avg(pagg_tab_ml_4.b) > '7'::numeric)
+ -> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_4
+(23 rows)
+
+SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a, b, c HAVING avg(b) > 7 ORDER BY 1, 2, 3;
+ a | sum | count
+----+------+-------
+ 8 | 4000 | 500
+ 8 | 4000 | 500
+ 9 | 4500 | 500
+ 9 | 4500 | 500
+ 18 | 4000 | 500
+ 18 | 4000 | 500
+ 19 | 4500 | 500
+ 19 | 4500 | 500
+ 28 | 4000 | 500
+ 28 | 4000 | 500
+ 29 | 4500 | 500
+ 29 | 4500 | 500
+(12 rows)
+
+-- Parallelism within partitionwise aggregates
+SET min_parallel_table_scan_size TO '8kB';
+SET parallel_setup_cost TO 0;
+-- Full aggregation at level 1 as GROUP BY clause matches with PARTITION KEY
+-- for level 1 only. For subpartitions, GROUP BY clause does not match with
+-- PARTITION KEY, thus we will have a partial aggregation for them.
+EXPLAIN (COSTS OFF)
+SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
+ QUERY PLAN
+------------------------------------------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab_ml.a, (sum(pagg_tab_ml.b)), (count(*))
+ -> Append
+ -> Finalize GroupAggregate
+ Group Key: pagg_tab_ml.a
+ Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
+ -> Gather Merge
+ Workers Planned: 2
+ -> Sort
+ Sort Key: pagg_tab_ml.a
+ -> Partial HashAggregate
+ Group Key: pagg_tab_ml.a
+ -> Parallel Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
+ -> Finalize GroupAggregate
+ Group Key: pagg_tab_ml_2.a
+ Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
+ -> Gather Merge
+ Workers Planned: 2
+ -> Sort
+ Sort Key: pagg_tab_ml_2.a
+ -> Parallel Append
+ -> Partial HashAggregate
+ Group Key: pagg_tab_ml_2.a
+ -> Parallel Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
+ -> Partial HashAggregate
+ Group Key: pagg_tab_ml_3.a
+ -> Parallel Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
+ -> Finalize GroupAggregate
+ Group Key: pagg_tab_ml_5.a
+ Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
+ -> Gather Merge
+ Workers Planned: 2
+ -> Sort
+ Sort Key: pagg_tab_ml_5.a
+ -> Parallel Append
+ -> Partial HashAggregate
+ Group Key: pagg_tab_ml_5.a
+ -> Parallel Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
+ -> Partial HashAggregate
+ Group Key: pagg_tab_ml_6.a
+ -> Parallel Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
+(41 rows)
+
+SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
+ a | sum | count
+----+------+-------
+ 0 | 0 | 1000
+ 1 | 1000 | 1000
+ 2 | 2000 | 1000
+ 10 | 0 | 1000
+ 11 | 1000 | 1000
+ 12 | 2000 | 1000
+ 20 | 0 | 1000
+ 21 | 1000 | 1000
+ 22 | 2000 | 1000
+(9 rows)
+
+-- Partial aggregation at all levels as GROUP BY clause does not match with
+-- PARTITION KEY
+EXPLAIN (COSTS OFF)
+SELECT b, sum(a), count(*) FROM pagg_tab_ml GROUP BY b ORDER BY 1, 2, 3;
+ QUERY PLAN
+------------------------------------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab_ml.b, (sum(pagg_tab_ml.a)), (count(*))
+ -> Finalize GroupAggregate
+ Group Key: pagg_tab_ml.b
+ -> Gather Merge
+ Workers Planned: 2
+ -> Sort
+ Sort Key: pagg_tab_ml.b
+ -> Parallel Append
+ -> Partial HashAggregate
+ Group Key: pagg_tab_ml.b
+ -> Parallel Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
+ -> Partial HashAggregate
+ Group Key: pagg_tab_ml_3.b
+ -> Parallel Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_3
+ -> Partial HashAggregate
+ Group Key: pagg_tab_ml_1.b
+ -> Parallel Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_1
+ -> Partial HashAggregate
+ Group Key: pagg_tab_ml_4.b
+ -> Parallel Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_4
+ -> Partial HashAggregate
+ Group Key: pagg_tab_ml_2.b
+ -> Parallel Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_2
+(24 rows)
+
+SELECT b, sum(a), count(*) FROM pagg_tab_ml GROUP BY b HAVING avg(a) < 15 ORDER BY 1, 2, 3;
+ b | sum | count
+---+-------+-------
+ 0 | 30000 | 3000
+ 1 | 33000 | 3000
+ 2 | 36000 | 3000
+ 3 | 39000 | 3000
+ 4 | 42000 | 3000
+(5 rows)
+
+-- Full aggregation at all levels as GROUP BY clause matches with PARTITION KEY
+EXPLAIN (COSTS OFF)
+SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a, b, c HAVING avg(b) > 7 ORDER BY 1, 2, 3;
+ QUERY PLAN
+----------------------------------------------------------------------------------
+ Gather Merge
+ Workers Planned: 2
+ -> Sort
+ Sort Key: pagg_tab_ml.a, (sum(pagg_tab_ml.b)), (count(*))
+ -> Parallel Append
+ -> HashAggregate
+ Group Key: pagg_tab_ml.a, pagg_tab_ml.b, pagg_tab_ml.c
+ Filter: (avg(pagg_tab_ml.b) > '7'::numeric)
+ -> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
+ -> HashAggregate
+ Group Key: pagg_tab_ml_3.a, pagg_tab_ml_3.b, pagg_tab_ml_3.c
+ Filter: (avg(pagg_tab_ml_3.b) > '7'::numeric)
+ -> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_3
+ -> HashAggregate
+ Group Key: pagg_tab_ml_1.a, pagg_tab_ml_1.b, pagg_tab_ml_1.c
+ Filter: (avg(pagg_tab_ml_1.b) > '7'::numeric)
+ -> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_1
+ -> HashAggregate
+ Group Key: pagg_tab_ml_4.a, pagg_tab_ml_4.b, pagg_tab_ml_4.c
+ Filter: (avg(pagg_tab_ml_4.b) > '7'::numeric)
+ -> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_4
+ -> HashAggregate
+ Group Key: pagg_tab_ml_2.a, pagg_tab_ml_2.b, pagg_tab_ml_2.c
+ Filter: (avg(pagg_tab_ml_2.b) > '7'::numeric)
+ -> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_2
+(25 rows)
+
+SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a, b, c HAVING avg(b) > 7 ORDER BY 1, 2, 3;
+ a | sum | count
+----+------+-------
+ 8 | 4000 | 500
+ 8 | 4000 | 500
+ 9 | 4500 | 500
+ 9 | 4500 | 500
+ 18 | 4000 | 500
+ 18 | 4000 | 500
+ 19 | 4500 | 500
+ 19 | 4500 | 500
+ 28 | 4000 | 500
+ 28 | 4000 | 500
+ 29 | 4500 | 500
+ 29 | 4500 | 500
+(12 rows)
+
+-- Parallelism within partitionwise aggregates (single level)
+-- Add few parallel setup cost, so that we will see a plan which gathers
+-- partially created paths even for full aggregation and sticks a single Gather
+-- followed by finalization step.
+-- Without this, the cost of doing partial aggregation + Gather + finalization
+-- for each partition and then Append over it turns out to be same and this
+-- wins as we add it first. This parallel_setup_cost plays a vital role in
+-- costing such plans.
+SET parallel_setup_cost TO 10;
+CREATE TABLE pagg_tab_para(x int, y int) PARTITION BY RANGE(x);
+CREATE TABLE pagg_tab_para_p1 PARTITION OF pagg_tab_para FOR VALUES FROM (0) TO (12);
+CREATE TABLE pagg_tab_para_p2 PARTITION OF pagg_tab_para FOR VALUES FROM (12) TO (22);
+CREATE TABLE pagg_tab_para_p3 PARTITION OF pagg_tab_para FOR VALUES FROM (22) TO (30);
+INSERT INTO pagg_tab_para SELECT i % 30, i % 20 FROM generate_series(0, 29999) i;
+ANALYZE pagg_tab_para;
+-- When GROUP BY clause matches; full aggregation is performed for each partition.
+EXPLAIN (COSTS OFF)
+SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
+ QUERY PLAN
+-------------------------------------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab_para.x, (sum(pagg_tab_para.y)), (avg(pagg_tab_para.y))
+ -> Finalize GroupAggregate
+ Group Key: pagg_tab_para.x
+ Filter: (avg(pagg_tab_para.y) < '7'::numeric)
+ -> Gather Merge
+ Workers Planned: 2
+ -> Sort
+ Sort Key: pagg_tab_para.x
+ -> Parallel Append
+ -> Partial HashAggregate
+ Group Key: pagg_tab_para.x
+ -> Parallel Seq Scan on pagg_tab_para_p1 pagg_tab_para
+ -> Partial HashAggregate
+ Group Key: pagg_tab_para_1.x
+ -> Parallel Seq Scan on pagg_tab_para_p2 pagg_tab_para_1
+ -> Partial HashAggregate
+ Group Key: pagg_tab_para_2.x
+ -> Parallel Seq Scan on pagg_tab_para_p3 pagg_tab_para_2
+(19 rows)
+
+SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
+ x | sum | avg | count
+----+------+--------------------+-------
+ 0 | 5000 | 5.0000000000000000 | 1000
+ 1 | 6000 | 6.0000000000000000 | 1000
+ 10 | 5000 | 5.0000000000000000 | 1000
+ 11 | 6000 | 6.0000000000000000 | 1000
+ 20 | 5000 | 5.0000000000000000 | 1000
+ 21 | 6000 | 6.0000000000000000 | 1000
+(6 rows)
+
+-- When GROUP BY clause does not match; partial aggregation is performed for each partition.
+EXPLAIN (COSTS OFF)
+SELECT y, sum(x), avg(x), count(*) FROM pagg_tab_para GROUP BY y HAVING avg(x) < 12 ORDER BY 1, 2, 3;
+ QUERY PLAN
+-------------------------------------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab_para.y, (sum(pagg_tab_para.x)), (avg(pagg_tab_para.x))
+ -> Finalize GroupAggregate
+ Group Key: pagg_tab_para.y
+ Filter: (avg(pagg_tab_para.x) < '12'::numeric)
+ -> Gather Merge
+ Workers Planned: 2
+ -> Sort
+ Sort Key: pagg_tab_para.y
+ -> Parallel Append
+ -> Partial HashAggregate
+ Group Key: pagg_tab_para.y
+ -> Parallel Seq Scan on pagg_tab_para_p1 pagg_tab_para
+ -> Partial HashAggregate
+ Group Key: pagg_tab_para_1.y
+ -> Parallel Seq Scan on pagg_tab_para_p2 pagg_tab_para_1
+ -> Partial HashAggregate
+ Group Key: pagg_tab_para_2.y
+ -> Parallel Seq Scan on pagg_tab_para_p3 pagg_tab_para_2
+(19 rows)
+
+SELECT y, sum(x), avg(x), count(*) FROM pagg_tab_para GROUP BY y HAVING avg(x) < 12 ORDER BY 1, 2, 3;
+ y | sum | avg | count
+----+-------+---------------------+-------
+ 0 | 15000 | 10.0000000000000000 | 1500
+ 1 | 16500 | 11.0000000000000000 | 1500
+ 10 | 15000 | 10.0000000000000000 | 1500
+ 11 | 16500 | 11.0000000000000000 | 1500
+(4 rows)
+
+-- Test when parent can produce parallel paths but not any (or some) of its children
+-- (Use one more aggregate to tilt the cost estimates for the plan we want)
+ALTER TABLE pagg_tab_para_p1 SET (parallel_workers = 0);
+ALTER TABLE pagg_tab_para_p3 SET (parallel_workers = 0);
+ANALYZE pagg_tab_para;
+EXPLAIN (COSTS OFF)
+SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
+ QUERY PLAN
+-------------------------------------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab_para.x, (sum(pagg_tab_para.y)), (avg(pagg_tab_para.y))
+ -> Finalize GroupAggregate
+ Group Key: pagg_tab_para.x
+ Filter: (avg(pagg_tab_para.y) < '7'::numeric)
+ -> Gather Merge
+ Workers Planned: 2
+ -> Sort
+ Sort Key: pagg_tab_para.x
+ -> Partial HashAggregate
+ Group Key: pagg_tab_para.x
+ -> Parallel Append
+ -> Seq Scan on pagg_tab_para_p1 pagg_tab_para_1
+ -> Seq Scan on pagg_tab_para_p3 pagg_tab_para_3
+ -> Parallel Seq Scan on pagg_tab_para_p2 pagg_tab_para_2
+(15 rows)
+
+SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
+ x | sum | avg | sum | count
+----+------+--------------------+-------+-------
+ 0 | 5000 | 5.0000000000000000 | 5000 | 1000
+ 1 | 6000 | 6.0000000000000000 | 7000 | 1000
+ 10 | 5000 | 5.0000000000000000 | 15000 | 1000
+ 11 | 6000 | 6.0000000000000000 | 17000 | 1000
+ 20 | 5000 | 5.0000000000000000 | 25000 | 1000
+ 21 | 6000 | 6.0000000000000000 | 27000 | 1000
+(6 rows)
+
+ALTER TABLE pagg_tab_para_p2 SET (parallel_workers = 0);
+ANALYZE pagg_tab_para;
+EXPLAIN (COSTS OFF)
+SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
+ QUERY PLAN
+----------------------------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab_para.x, (sum(pagg_tab_para.y)), (avg(pagg_tab_para.y))
+ -> Finalize GroupAggregate
+ Group Key: pagg_tab_para.x
+ Filter: (avg(pagg_tab_para.y) < '7'::numeric)
+ -> Gather Merge
+ Workers Planned: 2
+ -> Sort
+ Sort Key: pagg_tab_para.x
+ -> Partial HashAggregate
+ Group Key: pagg_tab_para.x
+ -> Parallel Append
+ -> Seq Scan on pagg_tab_para_p1 pagg_tab_para_1
+ -> Seq Scan on pagg_tab_para_p2 pagg_tab_para_2
+ -> Seq Scan on pagg_tab_para_p3 pagg_tab_para_3
+(15 rows)
+
+SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
+ x | sum | avg | sum | count
+----+------+--------------------+-------+-------
+ 0 | 5000 | 5.0000000000000000 | 5000 | 1000
+ 1 | 6000 | 6.0000000000000000 | 7000 | 1000
+ 10 | 5000 | 5.0000000000000000 | 15000 | 1000
+ 11 | 6000 | 6.0000000000000000 | 17000 | 1000
+ 20 | 5000 | 5.0000000000000000 | 25000 | 1000
+ 21 | 6000 | 6.0000000000000000 | 27000 | 1000
+(6 rows)
+
+-- Reset parallelism parameters to get partitionwise aggregation plan.
+RESET min_parallel_table_scan_size;
+RESET parallel_setup_cost;
+EXPLAIN (COSTS OFF)
+SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
+ QUERY PLAN
+-----------------------------------------------------------------------------
+ Sort
+ Sort Key: pagg_tab_para.x, (sum(pagg_tab_para.y)), (avg(pagg_tab_para.y))
+ -> Append
+ -> HashAggregate
+ Group Key: pagg_tab_para.x
+ Filter: (avg(pagg_tab_para.y) < '7'::numeric)
+ -> Seq Scan on pagg_tab_para_p1 pagg_tab_para
+ -> HashAggregate
+ Group Key: pagg_tab_para_1.x
+ Filter: (avg(pagg_tab_para_1.y) < '7'::numeric)
+ -> Seq Scan on pagg_tab_para_p2 pagg_tab_para_1
+ -> HashAggregate
+ Group Key: pagg_tab_para_2.x
+ Filter: (avg(pagg_tab_para_2.y) < '7'::numeric)
+ -> Seq Scan on pagg_tab_para_p3 pagg_tab_para_2
+(15 rows)
+
+SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
+ x | sum | avg | count
+----+------+--------------------+-------
+ 0 | 5000 | 5.0000000000000000 | 1000
+ 1 | 6000 | 6.0000000000000000 | 1000
+ 10 | 5000 | 5.0000000000000000 | 1000
+ 11 | 6000 | 6.0000000000000000 | 1000
+ 20 | 5000 | 5.0000000000000000 | 1000
+ 21 | 6000 | 6.0000000000000000 | 1000
+(6 rows)
+