summaryrefslogtreecommitdiffstats
path: root/src/test/regress/expected/partition_aggregate.out
blob: 1b900fddf8ea552631434032c17fd5947940583a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
--
-- PARTITION_AGGREGATE
-- Test partitionwise aggregation on partitioned tables
--
-- Note: to ensure plan stability, it's a good idea to make the partitions of
-- any one partitioned table in this test all have different numbers of rows.
--
-- Enable partitionwise aggregate, which by default is disabled.
SET enable_partitionwise_aggregate TO true;
-- Enable partitionwise join, which by default is disabled.
SET enable_partitionwise_join TO true;
-- Disable parallel plans.
SET max_parallel_workers_per_gather TO 0;
-- Disable incremental sort, which can influence selected plans due to fuzz factor.
SET enable_incremental_sort TO off;
--
-- Tests for list partitioned tables.
--
CREATE TABLE pagg_tab (a int, b int, c text, d int) PARTITION BY LIST(c);
CREATE TABLE pagg_tab_p1 PARTITION OF pagg_tab FOR VALUES IN ('0000', '0001', '0002', '0003', '0004');
CREATE TABLE pagg_tab_p2 PARTITION OF pagg_tab FOR VALUES IN ('0005', '0006', '0007', '0008');
CREATE TABLE pagg_tab_p3 PARTITION OF pagg_tab FOR VALUES IN ('0009', '0010', '0011');
INSERT INTO pagg_tab SELECT i % 20, i % 30, to_char(i % 12, 'FM0000'), i % 30 FROM generate_series(0, 2999) i;
ANALYZE pagg_tab;
-- When GROUP BY clause matches; full aggregation is performed for each partition.
EXPLAIN (COSTS OFF)
SELECT c, sum(a), avg(b), count(*), min(a), max(b) FROM pagg_tab GROUP BY c HAVING avg(d) < 15 ORDER BY 1, 2, 3;
                          QUERY PLAN                          
--------------------------------------------------------------
 Sort
   Sort Key: pagg_tab.c, (sum(pagg_tab.a)), (avg(pagg_tab.b))
   ->  Append
         ->  HashAggregate
               Group Key: pagg_tab.c
               Filter: (avg(pagg_tab.d) < '15'::numeric)
               ->  Seq Scan on pagg_tab_p1 pagg_tab
         ->  HashAggregate
               Group Key: pagg_tab_1.c
               Filter: (avg(pagg_tab_1.d) < '15'::numeric)
               ->  Seq Scan on pagg_tab_p2 pagg_tab_1
         ->  HashAggregate
               Group Key: pagg_tab_2.c
               Filter: (avg(pagg_tab_2.d) < '15'::numeric)
               ->  Seq Scan on pagg_tab_p3 pagg_tab_2
(15 rows)

SELECT c, sum(a), avg(b), count(*), min(a), max(b) FROM pagg_tab GROUP BY c HAVING avg(d) < 15 ORDER BY 1, 2, 3;
  c   | sum  |         avg         | count | min | max 
------+------+---------------------+-------+-----+-----
 0000 | 2000 | 12.0000000000000000 |   250 |   0 |  24
 0001 | 2250 | 13.0000000000000000 |   250 |   1 |  25
 0002 | 2500 | 14.0000000000000000 |   250 |   2 |  26
 0006 | 2500 | 12.0000000000000000 |   250 |   2 |  24
 0007 | 2750 | 13.0000000000000000 |   250 |   3 |  25
 0008 | 2000 | 14.0000000000000000 |   250 |   0 |  26
(6 rows)

-- When GROUP BY clause does not match; partial aggregation is performed for each partition.
EXPLAIN (COSTS OFF)
SELECT a, sum(b), avg(b), count(*), min(a), max(b) FROM pagg_tab GROUP BY a HAVING avg(d) < 15 ORDER BY 1, 2, 3;
                          QUERY PLAN                          
--------------------------------------------------------------
 Sort
   Sort Key: pagg_tab.a, (sum(pagg_tab.b)), (avg(pagg_tab.b))
   ->  Finalize HashAggregate
         Group Key: pagg_tab.a
         Filter: (avg(pagg_tab.d) < '15'::numeric)
         ->  Append
               ->  Partial HashAggregate
                     Group Key: pagg_tab.a
                     ->  Seq Scan on pagg_tab_p1 pagg_tab
               ->  Partial HashAggregate
                     Group Key: pagg_tab_1.a
                     ->  Seq Scan on pagg_tab_p2 pagg_tab_1
               ->  Partial HashAggregate
                     Group Key: pagg_tab_2.a
                     ->  Seq Scan on pagg_tab_p3 pagg_tab_2
(15 rows)

SELECT a, sum(b), avg(b), count(*), min(a), max(b) FROM pagg_tab GROUP BY a HAVING avg(d) < 15 ORDER BY 1, 2, 3;
 a  | sum  |         avg         | count | min | max 
----+------+---------------------+-------+-----+-----
  0 | 1500 | 10.0000000000000000 |   150 |   0 |  20
  1 | 1650 | 11.0000000000000000 |   150 |   1 |  21
  2 | 1800 | 12.0000000000000000 |   150 |   2 |  22
  3 | 1950 | 13.0000000000000000 |   150 |   3 |  23
  4 | 2100 | 14.0000000000000000 |   150 |   4 |  24
 10 | 1500 | 10.0000000000000000 |   150 |  10 |  20
 11 | 1650 | 11.0000000000000000 |   150 |  11 |  21
 12 | 1800 | 12.0000000000000000 |   150 |  12 |  22
 13 | 1950 | 13.0000000000000000 |   150 |  13 |  23
 14 | 2100 | 14.0000000000000000 |   150 |  14 |  24
(10 rows)

-- Check with multiple columns in GROUP BY
EXPLAIN (COSTS OFF)
SELECT a, c, count(*) FROM pagg_tab GROUP BY a, c;
                   QUERY PLAN                   
------------------------------------------------
 Append
   ->  HashAggregate
         Group Key: pagg_tab.a, pagg_tab.c
         ->  Seq Scan on pagg_tab_p1 pagg_tab
   ->  HashAggregate
         Group Key: pagg_tab_1.a, pagg_tab_1.c
         ->  Seq Scan on pagg_tab_p2 pagg_tab_1
   ->  HashAggregate
         Group Key: pagg_tab_2.a, pagg_tab_2.c
         ->  Seq Scan on pagg_tab_p3 pagg_tab_2
(10 rows)

-- Check with multiple columns in GROUP BY, order in GROUP BY is reversed
EXPLAIN (COSTS OFF)
SELECT a, c, count(*) FROM pagg_tab GROUP BY c, a;
                   QUERY PLAN                   
------------------------------------------------
 Append
   ->  HashAggregate
         Group Key: pagg_tab.c, pagg_tab.a
         ->  Seq Scan on pagg_tab_p1 pagg_tab
   ->  HashAggregate
         Group Key: pagg_tab_1.c, pagg_tab_1.a
         ->  Seq Scan on pagg_tab_p2 pagg_tab_1
   ->  HashAggregate
         Group Key: pagg_tab_2.c, pagg_tab_2.a
         ->  Seq Scan on pagg_tab_p3 pagg_tab_2
(10 rows)

-- Check with multiple columns in GROUP BY, order in target-list is reversed
EXPLAIN (COSTS OFF)
SELECT c, a, count(*) FROM pagg_tab GROUP BY a, c;
                   QUERY PLAN                   
------------------------------------------------
 Append
   ->  HashAggregate
         Group Key: pagg_tab.a, pagg_tab.c
         ->  Seq Scan on pagg_tab_p1 pagg_tab
   ->  HashAggregate
         Group Key: pagg_tab_1.a, pagg_tab_1.c
         ->  Seq Scan on pagg_tab_p2 pagg_tab_1
   ->  HashAggregate
         Group Key: pagg_tab_2.a, pagg_tab_2.c
         ->  Seq Scan on pagg_tab_p3 pagg_tab_2
(10 rows)

-- Test when input relation for grouping is dummy
EXPLAIN (COSTS OFF)
SELECT c, sum(a) FROM pagg_tab WHERE 1 = 2 GROUP BY c;
           QUERY PLAN           
--------------------------------
 HashAggregate
   Group Key: c
   ->  Result
         One-Time Filter: false
(4 rows)

SELECT c, sum(a) FROM pagg_tab WHERE 1 = 2 GROUP BY c;
 c | sum 
---+-----
(0 rows)

EXPLAIN (COSTS OFF)
SELECT c, sum(a) FROM pagg_tab WHERE c = 'x' GROUP BY c;
           QUERY PLAN           
--------------------------------
 GroupAggregate
   ->  Result
         One-Time Filter: false
(3 rows)

SELECT c, sum(a) FROM pagg_tab WHERE c = 'x' GROUP BY c;
 c | sum 
---+-----
(0 rows)

-- Test GroupAggregate paths by disabling hash aggregates.
SET enable_hashagg TO false;
-- When GROUP BY clause matches full aggregation is performed for each partition.
EXPLAIN (COSTS OFF)
SELECT c, sum(a), avg(b), count(*) FROM pagg_tab GROUP BY 1 HAVING avg(d) < 15 ORDER BY 1, 2, 3;
                          QUERY PLAN                          
--------------------------------------------------------------
 Sort
   Sort Key: pagg_tab.c, (sum(pagg_tab.a)), (avg(pagg_tab.b))
   ->  Append
         ->  GroupAggregate
               Group Key: pagg_tab.c
               Filter: (avg(pagg_tab.d) < '15'::numeric)
               ->  Sort
                     Sort Key: pagg_tab.c
                     ->  Seq Scan on pagg_tab_p1 pagg_tab
         ->  GroupAggregate
               Group Key: pagg_tab_1.c
               Filter: (avg(pagg_tab_1.d) < '15'::numeric)
               ->  Sort
                     Sort Key: pagg_tab_1.c
                     ->  Seq Scan on pagg_tab_p2 pagg_tab_1
         ->  GroupAggregate
               Group Key: pagg_tab_2.c
               Filter: (avg(pagg_tab_2.d) < '15'::numeric)
               ->  Sort
                     Sort Key: pagg_tab_2.c
                     ->  Seq Scan on pagg_tab_p3 pagg_tab_2
(21 rows)

SELECT c, sum(a), avg(b), count(*) FROM pagg_tab GROUP BY 1 HAVING avg(d) < 15 ORDER BY 1, 2, 3;
  c   | sum  |         avg         | count 
------+------+---------------------+-------
 0000 | 2000 | 12.0000000000000000 |   250
 0001 | 2250 | 13.0000000000000000 |   250
 0002 | 2500 | 14.0000000000000000 |   250
 0006 | 2500 | 12.0000000000000000 |   250
 0007 | 2750 | 13.0000000000000000 |   250
 0008 | 2000 | 14.0000000000000000 |   250
(6 rows)

-- When GROUP BY clause does not match; partial aggregation is performed for each partition.
EXPLAIN (COSTS OFF)
SELECT a, sum(b), avg(b), count(*) FROM pagg_tab GROUP BY 1 HAVING avg(d) < 15 ORDER BY 1, 2, 3;
                            QUERY PLAN                            
------------------------------------------------------------------
 Sort
   Sort Key: pagg_tab.a, (sum(pagg_tab.b)), (avg(pagg_tab.b))
   ->  Finalize GroupAggregate
         Group Key: pagg_tab.a
         Filter: (avg(pagg_tab.d) < '15'::numeric)
         ->  Merge Append
               Sort Key: pagg_tab.a
               ->  Partial GroupAggregate
                     Group Key: pagg_tab.a
                     ->  Sort
                           Sort Key: pagg_tab.a
                           ->  Seq Scan on pagg_tab_p1 pagg_tab
               ->  Partial GroupAggregate
                     Group Key: pagg_tab_1.a
                     ->  Sort
                           Sort Key: pagg_tab_1.a
                           ->  Seq Scan on pagg_tab_p2 pagg_tab_1
               ->  Partial GroupAggregate
                     Group Key: pagg_tab_2.a
                     ->  Sort
                           Sort Key: pagg_tab_2.a
                           ->  Seq Scan on pagg_tab_p3 pagg_tab_2
(22 rows)

SELECT a, sum(b), avg(b), count(*) FROM pagg_tab GROUP BY 1 HAVING avg(d) < 15 ORDER BY 1, 2, 3;
 a  | sum  |         avg         | count 
----+------+---------------------+-------
  0 | 1500 | 10.0000000000000000 |   150
  1 | 1650 | 11.0000000000000000 |   150
  2 | 1800 | 12.0000000000000000 |   150
  3 | 1950 | 13.0000000000000000 |   150
  4 | 2100 | 14.0000000000000000 |   150
 10 | 1500 | 10.0000000000000000 |   150
 11 | 1650 | 11.0000000000000000 |   150
 12 | 1800 | 12.0000000000000000 |   150
 13 | 1950 | 13.0000000000000000 |   150
 14 | 2100 | 14.0000000000000000 |   150
(10 rows)

-- Test partitionwise grouping without any aggregates
EXPLAIN (COSTS OFF)
SELECT c FROM pagg_tab GROUP BY c ORDER BY 1;
                      QUERY PLAN                      
------------------------------------------------------
 Merge Append
   Sort Key: pagg_tab.c
   ->  Group
         Group Key: pagg_tab.c
         ->  Sort
               Sort Key: pagg_tab.c
               ->  Seq Scan on pagg_tab_p1 pagg_tab
   ->  Group
         Group Key: pagg_tab_1.c
         ->  Sort
               Sort Key: pagg_tab_1.c
               ->  Seq Scan on pagg_tab_p2 pagg_tab_1
   ->  Group
         Group Key: pagg_tab_2.c
         ->  Sort
               Sort Key: pagg_tab_2.c
               ->  Seq Scan on pagg_tab_p3 pagg_tab_2
(17 rows)

SELECT c FROM pagg_tab GROUP BY c ORDER BY 1;
  c   
------
 0000
 0001
 0002
 0003
 0004
 0005
 0006
 0007
 0008
 0009
 0010
 0011
(12 rows)

EXPLAIN (COSTS OFF)
SELECT a FROM pagg_tab WHERE a < 3 GROUP BY a ORDER BY 1;
                         QUERY PLAN                         
------------------------------------------------------------
 Group
   Group Key: pagg_tab.a
   ->  Merge Append
         Sort Key: pagg_tab.a
         ->  Group
               Group Key: pagg_tab.a
               ->  Sort
                     Sort Key: pagg_tab.a
                     ->  Seq Scan on pagg_tab_p1 pagg_tab
                           Filter: (a < 3)
         ->  Group
               Group Key: pagg_tab_1.a
               ->  Sort
                     Sort Key: pagg_tab_1.a
                     ->  Seq Scan on pagg_tab_p2 pagg_tab_1
                           Filter: (a < 3)
         ->  Group
               Group Key: pagg_tab_2.a
               ->  Sort
                     Sort Key: pagg_tab_2.a
                     ->  Seq Scan on pagg_tab_p3 pagg_tab_2
                           Filter: (a < 3)
(22 rows)

SELECT a FROM pagg_tab WHERE a < 3 GROUP BY a ORDER BY 1;
 a 
---
 0
 1
 2
(3 rows)

RESET enable_hashagg;
-- ROLLUP, partitionwise aggregation does not apply
EXPLAIN (COSTS OFF)
SELECT c, sum(a) FROM pagg_tab GROUP BY rollup(c) ORDER BY 1, 2;
                      QUERY PLAN                      
------------------------------------------------------
 Sort
   Sort Key: pagg_tab.c, (sum(pagg_tab.a))
   ->  MixedAggregate
         Hash Key: pagg_tab.c
         Group Key: ()
         ->  Append
               ->  Seq Scan on pagg_tab_p1 pagg_tab_1
               ->  Seq Scan on pagg_tab_p2 pagg_tab_2
               ->  Seq Scan on pagg_tab_p3 pagg_tab_3
(9 rows)

-- ORDERED SET within the aggregate.
-- Full aggregation; since all the rows that belong to the same group come
-- from the same partition, having an ORDER BY within the aggregate doesn't
-- make any difference.
EXPLAIN (COSTS OFF)
SELECT c, sum(b order by a) FROM pagg_tab GROUP BY c ORDER BY 1, 2;
                          QUERY PLAN                           
---------------------------------------------------------------
 Sort
   Sort Key: pagg_tab.c, (sum(pagg_tab.b ORDER BY pagg_tab.a))
   ->  Append
         ->  GroupAggregate
               Group Key: pagg_tab.c
               ->  Sort
                     Sort Key: pagg_tab.c, pagg_tab.a
                     ->  Seq Scan on pagg_tab_p1 pagg_tab
         ->  GroupAggregate
               Group Key: pagg_tab_1.c
               ->  Sort
                     Sort Key: pagg_tab_1.c, pagg_tab_1.a
                     ->  Seq Scan on pagg_tab_p2 pagg_tab_1
         ->  GroupAggregate
               Group Key: pagg_tab_2.c
               ->  Sort
                     Sort Key: pagg_tab_2.c, pagg_tab_2.a
                     ->  Seq Scan on pagg_tab_p3 pagg_tab_2
(18 rows)

-- Since GROUP BY clause does not match with PARTITION KEY; we need to do
-- partial aggregation. However, ORDERED SET are not partial safe and thus
-- partitionwise aggregation plan is not generated.
EXPLAIN (COSTS OFF)
SELECT a, sum(b order by a) FROM pagg_tab GROUP BY a ORDER BY 1, 2;
                          QUERY PLAN                           
---------------------------------------------------------------
 Sort
   Sort Key: pagg_tab.a, (sum(pagg_tab.b ORDER BY pagg_tab.a))
   ->  GroupAggregate
         Group Key: pagg_tab.a
         ->  Sort
               Sort Key: pagg_tab.a
               ->  Append
                     ->  Seq Scan on pagg_tab_p1 pagg_tab_1
                     ->  Seq Scan on pagg_tab_p2 pagg_tab_2
                     ->  Seq Scan on pagg_tab_p3 pagg_tab_3
(10 rows)

-- JOIN query
CREATE TABLE pagg_tab1(x int, y int) PARTITION BY RANGE(x);
CREATE TABLE pagg_tab1_p1 PARTITION OF pagg_tab1 FOR VALUES FROM (0) TO (10);
CREATE TABLE pagg_tab1_p2 PARTITION OF pagg_tab1 FOR VALUES FROM (10) TO (20);
CREATE TABLE pagg_tab1_p3 PARTITION OF pagg_tab1 FOR VALUES FROM (20) TO (30);
CREATE TABLE pagg_tab2(x int, y int) PARTITION BY RANGE(y);
CREATE TABLE pagg_tab2_p1 PARTITION OF pagg_tab2 FOR VALUES FROM (0) TO (10);
CREATE TABLE pagg_tab2_p2 PARTITION OF pagg_tab2 FOR VALUES FROM (10) TO (20);
CREATE TABLE pagg_tab2_p3 PARTITION OF pagg_tab2 FOR VALUES FROM (20) TO (30);
INSERT INTO pagg_tab1 SELECT i % 30, i % 20 FROM generate_series(0, 299, 2) i;
INSERT INTO pagg_tab2 SELECT i % 20, i % 30 FROM generate_series(0, 299, 3) i;
ANALYZE pagg_tab1;
ANALYZE pagg_tab2;
-- When GROUP BY clause matches; full aggregation is performed for each partition.
EXPLAIN (COSTS OFF)
SELECT t1.x, sum(t1.y), count(*) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t1.x ORDER BY 1, 2, 3;
                         QUERY PLAN                          
-------------------------------------------------------------
 Sort
   Sort Key: t1.x, (sum(t1.y)), (count(*))
   ->  Append
         ->  HashAggregate
               Group Key: t1.x
               ->  Hash Join
                     Hash Cond: (t1.x = t2.y)
                     ->  Seq Scan on pagg_tab1_p1 t1
                     ->  Hash
                           ->  Seq Scan on pagg_tab2_p1 t2
         ->  HashAggregate
               Group Key: t1_1.x
               ->  Hash Join
                     Hash Cond: (t1_1.x = t2_1.y)
                     ->  Seq Scan on pagg_tab1_p2 t1_1
                     ->  Hash
                           ->  Seq Scan on pagg_tab2_p2 t2_1
         ->  HashAggregate
               Group Key: t1_2.x
               ->  Hash Join
                     Hash Cond: (t2_2.y = t1_2.x)
                     ->  Seq Scan on pagg_tab2_p3 t2_2
                     ->  Hash
                           ->  Seq Scan on pagg_tab1_p3 t1_2
(24 rows)

SELECT t1.x, sum(t1.y), count(*) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t1.x ORDER BY 1, 2, 3;
 x  | sum  | count 
----+------+-------
  0 |  500 |   100
  6 | 1100 |   100
 12 |  700 |   100
 18 | 1300 |   100
 24 |  900 |   100
(5 rows)

-- Check with whole-row reference; partitionwise aggregation does not apply
EXPLAIN (COSTS OFF)
SELECT t1.x, sum(t1.y), count(t1) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t1.x ORDER BY 1, 2, 3;
                         QUERY PLAN                          
-------------------------------------------------------------
 Sort
   Sort Key: t1.x, (sum(t1.y)), (count(((t1.*)::pagg_tab1)))
   ->  HashAggregate
         Group Key: t1.x
         ->  Hash Join
               Hash Cond: (t1.x = t2.y)
               ->  Append
                     ->  Seq Scan on pagg_tab1_p1 t1_1
                     ->  Seq Scan on pagg_tab1_p2 t1_2
                     ->  Seq Scan on pagg_tab1_p3 t1_3
               ->  Hash
                     ->  Append
                           ->  Seq Scan on pagg_tab2_p1 t2_1
                           ->  Seq Scan on pagg_tab2_p2 t2_2
                           ->  Seq Scan on pagg_tab2_p3 t2_3
(15 rows)

SELECT t1.x, sum(t1.y), count(t1) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t1.x ORDER BY 1, 2, 3;
 x  | sum  | count 
----+------+-------
  0 |  500 |   100
  6 | 1100 |   100
 12 |  700 |   100
 18 | 1300 |   100
 24 |  900 |   100
(5 rows)

-- GROUP BY having other matching key
EXPLAIN (COSTS OFF)
SELECT t2.y, sum(t1.y), count(*) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t2.y ORDER BY 1, 2, 3;
                         QUERY PLAN                          
-------------------------------------------------------------
 Sort
   Sort Key: t2.y, (sum(t1.y)), (count(*))
   ->  Append
         ->  HashAggregate
               Group Key: t2.y
               ->  Hash Join
                     Hash Cond: (t1.x = t2.y)
                     ->  Seq Scan on pagg_tab1_p1 t1
                     ->  Hash
                           ->  Seq Scan on pagg_tab2_p1 t2
         ->  HashAggregate
               Group Key: t2_1.y
               ->  Hash Join
                     Hash Cond: (t1_1.x = t2_1.y)
                     ->  Seq Scan on pagg_tab1_p2 t1_1
                     ->  Hash
                           ->  Seq Scan on pagg_tab2_p2 t2_1
         ->  HashAggregate
               Group Key: t2_2.y
               ->  Hash Join
                     Hash Cond: (t2_2.y = t1_2.x)
                     ->  Seq Scan on pagg_tab2_p3 t2_2
                     ->  Hash
                           ->  Seq Scan on pagg_tab1_p3 t1_2
(24 rows)

-- When GROUP BY clause does not match; partial aggregation is performed for each partition.
-- Also test GroupAggregate paths by disabling hash aggregates.
SET enable_hashagg TO false;
EXPLAIN (COSTS OFF)
SELECT t1.y, sum(t1.x), count(*) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t1.y HAVING avg(t1.x) > 10 ORDER BY 1, 2, 3;
                               QUERY PLAN                                
-------------------------------------------------------------------------
 Sort
   Sort Key: t1.y, (sum(t1.x)), (count(*))
   ->  Finalize GroupAggregate
         Group Key: t1.y
         Filter: (avg(t1.x) > '10'::numeric)
         ->  Merge Append
               Sort Key: t1.y
               ->  Partial GroupAggregate
                     Group Key: t1.y
                     ->  Sort
                           Sort Key: t1.y
                           ->  Hash Join
                                 Hash Cond: (t1.x = t2.y)
                                 ->  Seq Scan on pagg_tab1_p1 t1
                                 ->  Hash
                                       ->  Seq Scan on pagg_tab2_p1 t2
               ->  Partial GroupAggregate
                     Group Key: t1_1.y
                     ->  Sort
                           Sort Key: t1_1.y
                           ->  Hash Join
                                 Hash Cond: (t1_1.x = t2_1.y)
                                 ->  Seq Scan on pagg_tab1_p2 t1_1
                                 ->  Hash
                                       ->  Seq Scan on pagg_tab2_p2 t2_1
               ->  Partial GroupAggregate
                     Group Key: t1_2.y
                     ->  Sort
                           Sort Key: t1_2.y
                           ->  Hash Join
                                 Hash Cond: (t2_2.y = t1_2.x)
                                 ->  Seq Scan on pagg_tab2_p3 t2_2
                                 ->  Hash
                                       ->  Seq Scan on pagg_tab1_p3 t1_2
(34 rows)

SELECT t1.y, sum(t1.x), count(*) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t1.y HAVING avg(t1.x) > 10 ORDER BY 1, 2, 3;
 y  | sum  | count 
----+------+-------
  2 |  600 |    50
  4 | 1200 |    50
  8 |  900 |    50
 12 |  600 |    50
 14 | 1200 |    50
 18 |  900 |    50
(6 rows)

RESET enable_hashagg;
-- Check with LEFT/RIGHT/FULL OUTER JOINs which produces NULL values for
-- aggregation
-- LEFT JOIN, should produce partial partitionwise aggregation plan as
-- GROUP BY is on nullable column
EXPLAIN (COSTS OFF)
SELECT b.y, sum(a.y) FROM pagg_tab1 a LEFT JOIN pagg_tab2 b ON a.x = b.y GROUP BY b.y ORDER BY 1 NULLS LAST;
                            QUERY PLAN                            
------------------------------------------------------------------
 Finalize GroupAggregate
   Group Key: b.y
   ->  Sort
         Sort Key: b.y
         ->  Append
               ->  Partial HashAggregate
                     Group Key: b.y
                     ->  Hash Left Join
                           Hash Cond: (a.x = b.y)
                           ->  Seq Scan on pagg_tab1_p1 a
                           ->  Hash
                                 ->  Seq Scan on pagg_tab2_p1 b
               ->  Partial HashAggregate
                     Group Key: b_1.y
                     ->  Hash Left Join
                           Hash Cond: (a_1.x = b_1.y)
                           ->  Seq Scan on pagg_tab1_p2 a_1
                           ->  Hash
                                 ->  Seq Scan on pagg_tab2_p2 b_1
               ->  Partial HashAggregate
                     Group Key: b_2.y
                     ->  Hash Right Join
                           Hash Cond: (b_2.y = a_2.x)
                           ->  Seq Scan on pagg_tab2_p3 b_2
                           ->  Hash
                                 ->  Seq Scan on pagg_tab1_p3 a_2
(26 rows)

SELECT b.y, sum(a.y) FROM pagg_tab1 a LEFT JOIN pagg_tab2 b ON a.x = b.y GROUP BY b.y ORDER BY 1 NULLS LAST;
 y  | sum  
----+------
  0 |  500
  6 | 1100
 12 |  700
 18 | 1300
 24 |  900
    |  900
(6 rows)

-- RIGHT JOIN, should produce full partitionwise aggregation plan as
-- GROUP BY is on non-nullable column
EXPLAIN (COSTS OFF)
SELECT b.y, sum(a.y) FROM pagg_tab1 a RIGHT JOIN pagg_tab2 b ON a.x = b.y GROUP BY b.y ORDER BY 1 NULLS LAST;
                         QUERY PLAN                         
------------------------------------------------------------
 Sort
   Sort Key: b.y
   ->  Append
         ->  HashAggregate
               Group Key: b.y
               ->  Hash Right Join
                     Hash Cond: (a.x = b.y)
                     ->  Seq Scan on pagg_tab1_p1 a
                     ->  Hash
                           ->  Seq Scan on pagg_tab2_p1 b
         ->  HashAggregate
               Group Key: b_1.y
               ->  Hash Right Join
                     Hash Cond: (a_1.x = b_1.y)
                     ->  Seq Scan on pagg_tab1_p2 a_1
                     ->  Hash
                           ->  Seq Scan on pagg_tab2_p2 b_1
         ->  HashAggregate
               Group Key: b_2.y
               ->  Hash Left Join
                     Hash Cond: (b_2.y = a_2.x)
                     ->  Seq Scan on pagg_tab2_p3 b_2
                     ->  Hash
                           ->  Seq Scan on pagg_tab1_p3 a_2
(24 rows)

SELECT b.y, sum(a.y) FROM pagg_tab1 a RIGHT JOIN pagg_tab2 b ON a.x = b.y GROUP BY b.y ORDER BY 1 NULLS LAST;
 y  | sum  
----+------
  0 |  500
  3 |     
  6 | 1100
  9 |     
 12 |  700
 15 |     
 18 | 1300
 21 |     
 24 |  900
 27 |     
(10 rows)

-- FULL JOIN, should produce partial partitionwise aggregation plan as
-- GROUP BY is on nullable column
EXPLAIN (COSTS OFF)
SELECT a.x, sum(b.x) FROM pagg_tab1 a FULL OUTER JOIN pagg_tab2 b ON a.x = b.y GROUP BY a.x ORDER BY 1 NULLS LAST;
                            QUERY PLAN                            
------------------------------------------------------------------
 Finalize GroupAggregate
   Group Key: a.x
   ->  Sort
         Sort Key: a.x
         ->  Append
               ->  Partial HashAggregate
                     Group Key: a.x
                     ->  Hash Full Join
                           Hash Cond: (a.x = b.y)
                           ->  Seq Scan on pagg_tab1_p1 a
                           ->  Hash
                                 ->  Seq Scan on pagg_tab2_p1 b
               ->  Partial HashAggregate
                     Group Key: a_1.x
                     ->  Hash Full Join
                           Hash Cond: (a_1.x = b_1.y)
                           ->  Seq Scan on pagg_tab1_p2 a_1
                           ->  Hash
                                 ->  Seq Scan on pagg_tab2_p2 b_1
               ->  Partial HashAggregate
                     Group Key: a_2.x
                     ->  Hash Full Join
                           Hash Cond: (b_2.y = a_2.x)
                           ->  Seq Scan on pagg_tab2_p3 b_2
                           ->  Hash
                                 ->  Seq Scan on pagg_tab1_p3 a_2
(26 rows)

SELECT a.x, sum(b.x) FROM pagg_tab1 a FULL OUTER JOIN pagg_tab2 b ON a.x = b.y GROUP BY a.x ORDER BY 1 NULLS LAST;
 x  | sum  
----+------
  0 |  500
  2 |     
  4 |     
  6 | 1100
  8 |     
 10 |     
 12 |  700
 14 |     
 16 |     
 18 | 1300
 20 |     
 22 |     
 24 |  900
 26 |     
 28 |     
    |  500
(16 rows)

-- LEFT JOIN, with dummy relation on right side, ideally
-- should produce full partitionwise aggregation plan as GROUP BY is on
-- non-nullable columns.
-- But right now we are unable to do partitionwise join in this case.
EXPLAIN (COSTS OFF)
SELECT a.x, b.y, count(*) FROM (SELECT * FROM pagg_tab1 WHERE x < 20) a LEFT JOIN (SELECT * FROM pagg_tab2 WHERE y > 10) b ON a.x = b.y WHERE a.x > 5 or b.y < 20  GROUP BY a.x, b.y ORDER BY 1, 2;
                             QUERY PLAN                             
--------------------------------------------------------------------
 Sort
   Sort Key: pagg_tab1.x, pagg_tab2.y
   ->  HashAggregate
         Group Key: pagg_tab1.x, pagg_tab2.y
         ->  Hash Left Join
               Hash Cond: (pagg_tab1.x = pagg_tab2.y)
               Filter: ((pagg_tab1.x > 5) OR (pagg_tab2.y < 20))
               ->  Append
                     ->  Seq Scan on pagg_tab1_p1 pagg_tab1_1
                           Filter: (x < 20)
                     ->  Seq Scan on pagg_tab1_p2 pagg_tab1_2
                           Filter: (x < 20)
               ->  Hash
                     ->  Append
                           ->  Seq Scan on pagg_tab2_p2 pagg_tab2_1
                                 Filter: (y > 10)
                           ->  Seq Scan on pagg_tab2_p3 pagg_tab2_2
                                 Filter: (y > 10)
(18 rows)

SELECT a.x, b.y, count(*) FROM (SELECT * FROM pagg_tab1 WHERE x < 20) a LEFT JOIN (SELECT * FROM pagg_tab2 WHERE y > 10) b ON a.x = b.y WHERE a.x > 5 or b.y < 20  GROUP BY a.x, b.y ORDER BY 1, 2;
 x  | y  | count 
----+----+-------
  6 |    |    10
  8 |    |    10
 10 |    |    10
 12 | 12 |   100
 14 |    |    10
 16 |    |    10
 18 | 18 |   100
(7 rows)

-- FULL JOIN, with dummy relations on both sides, ideally
-- should produce partial partitionwise aggregation plan as GROUP BY is on
-- nullable columns.
-- But right now we are unable to do partitionwise join in this case.
EXPLAIN (COSTS OFF)
SELECT a.x, b.y, count(*) FROM (SELECT * FROM pagg_tab1 WHERE x < 20) a FULL JOIN (SELECT * FROM pagg_tab2 WHERE y > 10) b ON a.x = b.y WHERE a.x > 5 or b.y < 20  GROUP BY a.x, b.y ORDER BY 1, 2;
                             QUERY PLAN                             
--------------------------------------------------------------------
 Sort
   Sort Key: pagg_tab1.x, pagg_tab2.y
   ->  HashAggregate
         Group Key: pagg_tab1.x, pagg_tab2.y
         ->  Hash Full Join
               Hash Cond: (pagg_tab1.x = pagg_tab2.y)
               Filter: ((pagg_tab1.x > 5) OR (pagg_tab2.y < 20))
               ->  Append
                     ->  Seq Scan on pagg_tab1_p1 pagg_tab1_1
                           Filter: (x < 20)
                     ->  Seq Scan on pagg_tab1_p2 pagg_tab1_2
                           Filter: (x < 20)
               ->  Hash
                     ->  Append
                           ->  Seq Scan on pagg_tab2_p2 pagg_tab2_1
                                 Filter: (y > 10)
                           ->  Seq Scan on pagg_tab2_p3 pagg_tab2_2
                                 Filter: (y > 10)
(18 rows)

SELECT a.x, b.y, count(*) FROM (SELECT * FROM pagg_tab1 WHERE x < 20) a FULL JOIN (SELECT * FROM pagg_tab2 WHERE y > 10) b ON a.x = b.y WHERE a.x > 5 or b.y < 20 GROUP BY a.x, b.y ORDER BY 1, 2;
 x  | y  | count 
----+----+-------
  6 |    |    10
  8 |    |    10
 10 |    |    10
 12 | 12 |   100
 14 |    |    10
 16 |    |    10
 18 | 18 |   100
    | 15 |    10
(8 rows)

-- Empty join relation because of empty outer side, no partitionwise agg plan
EXPLAIN (COSTS OFF)
SELECT a.x, a.y, count(*) FROM (SELECT * FROM pagg_tab1 WHERE x = 1 AND x = 2) a LEFT JOIN pagg_tab2 b ON a.x = b.y GROUP BY a.x, a.y ORDER BY 1, 2;
              QUERY PLAN              
--------------------------------------
 GroupAggregate
   Group Key: pagg_tab1.y
   ->  Sort
         Sort Key: pagg_tab1.y
         ->  Result
               One-Time Filter: false
(6 rows)

SELECT a.x, a.y, count(*) FROM (SELECT * FROM pagg_tab1 WHERE x = 1 AND x = 2) a LEFT JOIN pagg_tab2 b ON a.x = b.y GROUP BY a.x, a.y ORDER BY 1, 2;
 x | y | count 
---+---+-------
(0 rows)

-- Partition by multiple columns
CREATE TABLE pagg_tab_m (a int, b int, c int) PARTITION BY RANGE(a, ((a+b)/2));
CREATE TABLE pagg_tab_m_p1 PARTITION OF pagg_tab_m FOR VALUES FROM (0, 0) TO (12, 12);
CREATE TABLE pagg_tab_m_p2 PARTITION OF pagg_tab_m FOR VALUES FROM (12, 12) TO (22, 22);
CREATE TABLE pagg_tab_m_p3 PARTITION OF pagg_tab_m FOR VALUES FROM (22, 22) TO (30, 30);
INSERT INTO pagg_tab_m SELECT i % 30, i % 40, i % 50 FROM generate_series(0, 2999) i;
ANALYZE pagg_tab_m;
-- Partial aggregation as GROUP BY clause does not match with PARTITION KEY
EXPLAIN (COSTS OFF)
SELECT a, sum(b), avg(c), count(*) FROM pagg_tab_m GROUP BY a HAVING avg(c) < 22 ORDER BY 1, 2, 3;
                             QUERY PLAN                             
--------------------------------------------------------------------
 Sort
   Sort Key: pagg_tab_m.a, (sum(pagg_tab_m.b)), (avg(pagg_tab_m.c))
   ->  Finalize HashAggregate
         Group Key: pagg_tab_m.a
         Filter: (avg(pagg_tab_m.c) < '22'::numeric)
         ->  Append
               ->  Partial HashAggregate
                     Group Key: pagg_tab_m.a
                     ->  Seq Scan on pagg_tab_m_p1 pagg_tab_m
               ->  Partial HashAggregate
                     Group Key: pagg_tab_m_1.a
                     ->  Seq Scan on pagg_tab_m_p2 pagg_tab_m_1
               ->  Partial HashAggregate
                     Group Key: pagg_tab_m_2.a
                     ->  Seq Scan on pagg_tab_m_p3 pagg_tab_m_2
(15 rows)

SELECT a, sum(b), avg(c), count(*) FROM pagg_tab_m GROUP BY a HAVING avg(c) < 22 ORDER BY 1, 2, 3;
 a  | sum  |         avg         | count 
----+------+---------------------+-------
  0 | 1500 | 20.0000000000000000 |   100
  1 | 1600 | 21.0000000000000000 |   100
 10 | 1500 | 20.0000000000000000 |   100
 11 | 1600 | 21.0000000000000000 |   100
 20 | 1500 | 20.0000000000000000 |   100
 21 | 1600 | 21.0000000000000000 |   100
(6 rows)

-- Full aggregation as GROUP BY clause matches with PARTITION KEY
EXPLAIN (COSTS OFF)
SELECT a, sum(b), avg(c), count(*) FROM pagg_tab_m GROUP BY a, (a+b)/2 HAVING sum(b) < 50 ORDER BY 1, 2, 3;
                                    QUERY PLAN                                    
----------------------------------------------------------------------------------
 Sort
   Sort Key: pagg_tab_m.a, (sum(pagg_tab_m.b)), (avg(pagg_tab_m.c))
   ->  Append
         ->  HashAggregate
               Group Key: pagg_tab_m.a, ((pagg_tab_m.a + pagg_tab_m.b) / 2)
               Filter: (sum(pagg_tab_m.b) < 50)
               ->  Seq Scan on pagg_tab_m_p1 pagg_tab_m
         ->  HashAggregate
               Group Key: pagg_tab_m_1.a, ((pagg_tab_m_1.a + pagg_tab_m_1.b) / 2)
               Filter: (sum(pagg_tab_m_1.b) < 50)
               ->  Seq Scan on pagg_tab_m_p2 pagg_tab_m_1
         ->  HashAggregate
               Group Key: pagg_tab_m_2.a, ((pagg_tab_m_2.a + pagg_tab_m_2.b) / 2)
               Filter: (sum(pagg_tab_m_2.b) < 50)
               ->  Seq Scan on pagg_tab_m_p3 pagg_tab_m_2
(15 rows)

SELECT a, sum(b), avg(c), count(*) FROM pagg_tab_m GROUP BY a, (a+b)/2 HAVING sum(b) < 50 ORDER BY 1, 2, 3;
 a  | sum |         avg         | count 
----+-----+---------------------+-------
  0 |   0 | 20.0000000000000000 |    25
  1 |  25 | 21.0000000000000000 |    25
 10 |   0 | 20.0000000000000000 |    25
 11 |  25 | 21.0000000000000000 |    25
 20 |   0 | 20.0000000000000000 |    25
 21 |  25 | 21.0000000000000000 |    25
(6 rows)

-- Full aggregation as PARTITION KEY is part of GROUP BY clause
EXPLAIN (COSTS OFF)
SELECT a, c, sum(b), avg(c), count(*) FROM pagg_tab_m GROUP BY (a+b)/2, 2, 1 HAVING sum(b) = 50 AND avg(c) > 25 ORDER BY 1, 2, 3;
                                            QUERY PLAN                                            
--------------------------------------------------------------------------------------------------
 Sort
   Sort Key: pagg_tab_m.a, pagg_tab_m.c, (sum(pagg_tab_m.b))
   ->  Append
         ->  HashAggregate
               Group Key: ((pagg_tab_m.a + pagg_tab_m.b) / 2), pagg_tab_m.c, pagg_tab_m.a
               Filter: ((sum(pagg_tab_m.b) = 50) AND (avg(pagg_tab_m.c) > '25'::numeric))
               ->  Seq Scan on pagg_tab_m_p1 pagg_tab_m
         ->  HashAggregate
               Group Key: ((pagg_tab_m_1.a + pagg_tab_m_1.b) / 2), pagg_tab_m_1.c, pagg_tab_m_1.a
               Filter: ((sum(pagg_tab_m_1.b) = 50) AND (avg(pagg_tab_m_1.c) > '25'::numeric))
               ->  Seq Scan on pagg_tab_m_p2 pagg_tab_m_1
         ->  HashAggregate
               Group Key: ((pagg_tab_m_2.a + pagg_tab_m_2.b) / 2), pagg_tab_m_2.c, pagg_tab_m_2.a
               Filter: ((sum(pagg_tab_m_2.b) = 50) AND (avg(pagg_tab_m_2.c) > '25'::numeric))
               ->  Seq Scan on pagg_tab_m_p3 pagg_tab_m_2
(15 rows)

SELECT a, c, sum(b), avg(c), count(*) FROM pagg_tab_m GROUP BY (a+b)/2, 2, 1 HAVING sum(b) = 50 AND avg(c) > 25 ORDER BY 1, 2, 3;
 a  | c  | sum |         avg         | count 
----+----+-----+---------------------+-------
  0 | 30 |  50 | 30.0000000000000000 |     5
  0 | 40 |  50 | 40.0000000000000000 |     5
 10 | 30 |  50 | 30.0000000000000000 |     5
 10 | 40 |  50 | 40.0000000000000000 |     5
 20 | 30 |  50 | 30.0000000000000000 |     5
 20 | 40 |  50 | 40.0000000000000000 |     5
(6 rows)

-- Test with multi-level partitioning scheme
CREATE TABLE pagg_tab_ml (a int, b int, c text) PARTITION BY RANGE(a);
CREATE TABLE pagg_tab_ml_p1 PARTITION OF pagg_tab_ml FOR VALUES FROM (0) TO (12);
CREATE TABLE pagg_tab_ml_p2 PARTITION OF pagg_tab_ml FOR VALUES FROM (12) TO (20) PARTITION BY LIST (c);
CREATE TABLE pagg_tab_ml_p2_s1 PARTITION OF pagg_tab_ml_p2 FOR VALUES IN ('0000', '0001', '0002');
CREATE TABLE pagg_tab_ml_p2_s2 PARTITION OF pagg_tab_ml_p2 FOR VALUES IN ('0003');
-- This level of partitioning has different column positions than the parent
CREATE TABLE pagg_tab_ml_p3(b int, c text, a int) PARTITION BY RANGE (b);
CREATE TABLE pagg_tab_ml_p3_s1(c text, a int, b int);
CREATE TABLE pagg_tab_ml_p3_s2 PARTITION OF pagg_tab_ml_p3 FOR VALUES FROM (7) TO (10);
ALTER TABLE pagg_tab_ml_p3 ATTACH PARTITION pagg_tab_ml_p3_s1 FOR VALUES FROM (0) TO (7);
ALTER TABLE pagg_tab_ml ATTACH PARTITION pagg_tab_ml_p3 FOR VALUES FROM (20) TO (30);
INSERT INTO pagg_tab_ml SELECT i % 30, i % 10, to_char(i % 4, 'FM0000') FROM generate_series(0, 29999) i;
ANALYZE pagg_tab_ml;
-- For Parallel Append
SET max_parallel_workers_per_gather TO 2;
SET parallel_setup_cost = 0;
-- Full aggregation at level 1 as GROUP BY clause matches with PARTITION KEY
-- for level 1 only. For subpartitions, GROUP BY clause does not match with
-- PARTITION KEY, but still we do not see a partial aggregation as array_agg()
-- is not partial agg safe.
EXPLAIN (COSTS OFF)
SELECT a, sum(b), array_agg(distinct c), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
                                      QUERY PLAN                                      
--------------------------------------------------------------------------------------
 Sort
   Sort Key: pagg_tab_ml.a, (sum(pagg_tab_ml.b)), (array_agg(DISTINCT pagg_tab_ml.c))
   ->  Gather
         Workers Planned: 2
         ->  Parallel Append
               ->  GroupAggregate
                     Group Key: pagg_tab_ml.a
                     Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
                     ->  Sort
                           Sort Key: pagg_tab_ml.a, pagg_tab_ml.c
                           ->  Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
               ->  GroupAggregate
                     Group Key: pagg_tab_ml_5.a
                     Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
                     ->  Sort
                           Sort Key: pagg_tab_ml_5.a, pagg_tab_ml_5.c
                           ->  Append
                                 ->  Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
                                 ->  Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
               ->  GroupAggregate
                     Group Key: pagg_tab_ml_2.a
                     Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
                     ->  Sort
                           Sort Key: pagg_tab_ml_2.a, pagg_tab_ml_2.c
                           ->  Append
                                 ->  Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
                                 ->  Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
(27 rows)

SELECT a, sum(b), array_agg(distinct c), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
 a  | sum  |  array_agg  | count 
----+------+-------------+-------
  0 |    0 | {0000,0002} |  1000
  1 | 1000 | {0001,0003} |  1000
  2 | 2000 | {0000,0002} |  1000
 10 |    0 | {0000,0002} |  1000
 11 | 1000 | {0001,0003} |  1000
 12 | 2000 | {0000,0002} |  1000
 20 |    0 | {0000,0002} |  1000
 21 | 1000 | {0001,0003} |  1000
 22 | 2000 | {0000,0002} |  1000
(9 rows)

-- Without ORDER BY clause, to test Gather at top-most path
EXPLAIN (COSTS OFF)
SELECT a, sum(b), array_agg(distinct c), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3;
                                QUERY PLAN                                 
---------------------------------------------------------------------------
 Gather
   Workers Planned: 2
   ->  Parallel Append
         ->  GroupAggregate
               Group Key: pagg_tab_ml.a
               Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
               ->  Sort
                     Sort Key: pagg_tab_ml.a, pagg_tab_ml.c
                     ->  Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
         ->  GroupAggregate
               Group Key: pagg_tab_ml_5.a
               Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
               ->  Sort
                     Sort Key: pagg_tab_ml_5.a, pagg_tab_ml_5.c
                     ->  Append
                           ->  Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
                           ->  Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
         ->  GroupAggregate
               Group Key: pagg_tab_ml_2.a
               Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
               ->  Sort
                     Sort Key: pagg_tab_ml_2.a, pagg_tab_ml_2.c
                     ->  Append
                           ->  Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
                           ->  Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
(25 rows)

RESET parallel_setup_cost;
-- Full aggregation at level 1 as GROUP BY clause matches with PARTITION KEY
-- for level 1 only. For subpartitions, GROUP BY clause does not match with
-- PARTITION KEY, thus we will have a partial aggregation for them.
EXPLAIN (COSTS OFF)
SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
                                   QUERY PLAN                                    
---------------------------------------------------------------------------------
 Sort
   Sort Key: pagg_tab_ml.a, (sum(pagg_tab_ml.b)), (count(*))
   ->  Append
         ->  HashAggregate
               Group Key: pagg_tab_ml.a
               Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
               ->  Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
         ->  Finalize GroupAggregate
               Group Key: pagg_tab_ml_2.a
               Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
               ->  Sort
                     Sort Key: pagg_tab_ml_2.a
                     ->  Append
                           ->  Partial HashAggregate
                                 Group Key: pagg_tab_ml_2.a
                                 ->  Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
                           ->  Partial HashAggregate
                                 Group Key: pagg_tab_ml_3.a
                                 ->  Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
         ->  Finalize GroupAggregate
               Group Key: pagg_tab_ml_5.a
               Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
               ->  Sort
                     Sort Key: pagg_tab_ml_5.a
                     ->  Append
                           ->  Partial HashAggregate
                                 Group Key: pagg_tab_ml_5.a
                                 ->  Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
                           ->  Partial HashAggregate
                                 Group Key: pagg_tab_ml_6.a
                                 ->  Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
(31 rows)

SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
 a  | sum  | count 
----+------+-------
  0 |    0 |  1000
  1 | 1000 |  1000
  2 | 2000 |  1000
 10 |    0 |  1000
 11 | 1000 |  1000
 12 | 2000 |  1000
 20 |    0 |  1000
 21 | 1000 |  1000
 22 | 2000 |  1000
(9 rows)

-- Partial aggregation at all levels as GROUP BY clause does not match with
-- PARTITION KEY
EXPLAIN (COSTS OFF)
SELECT b, sum(a), count(*) FROM pagg_tab_ml GROUP BY b ORDER BY 1, 2, 3;
                                QUERY PLAN                                 
---------------------------------------------------------------------------
 Sort
   Sort Key: pagg_tab_ml.b, (sum(pagg_tab_ml.a)), (count(*))
   ->  Finalize GroupAggregate
         Group Key: pagg_tab_ml.b
         ->  Sort
               Sort Key: pagg_tab_ml.b
               ->  Append
                     ->  Partial HashAggregate
                           Group Key: pagg_tab_ml.b
                           ->  Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
                     ->  Partial HashAggregate
                           Group Key: pagg_tab_ml_1.b
                           ->  Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_1
                     ->  Partial HashAggregate
                           Group Key: pagg_tab_ml_2.b
                           ->  Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_2
                     ->  Partial HashAggregate
                           Group Key: pagg_tab_ml_3.b
                           ->  Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_3
                     ->  Partial HashAggregate
                           Group Key: pagg_tab_ml_4.b
                           ->  Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_4
(22 rows)

SELECT b, sum(a), count(*) FROM pagg_tab_ml GROUP BY b HAVING avg(a) < 15 ORDER BY 1, 2, 3;
 b |  sum  | count 
---+-------+-------
 0 | 30000 |  3000
 1 | 33000 |  3000
 2 | 36000 |  3000
 3 | 39000 |  3000
 4 | 42000 |  3000
(5 rows)

-- Full aggregation at all levels as GROUP BY clause matches with PARTITION KEY
EXPLAIN (COSTS OFF)
SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a, b, c HAVING avg(b) > 7 ORDER BY 1, 2, 3;
                                 QUERY PLAN                                 
----------------------------------------------------------------------------
 Sort
   Sort Key: pagg_tab_ml.a, (sum(pagg_tab_ml.b)), (count(*))
   ->  Append
         ->  HashAggregate
               Group Key: pagg_tab_ml.a, pagg_tab_ml.b, pagg_tab_ml.c
               Filter: (avg(pagg_tab_ml.b) > '7'::numeric)
               ->  Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
         ->  HashAggregate
               Group Key: pagg_tab_ml_1.a, pagg_tab_ml_1.b, pagg_tab_ml_1.c
               Filter: (avg(pagg_tab_ml_1.b) > '7'::numeric)
               ->  Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_1
         ->  HashAggregate
               Group Key: pagg_tab_ml_2.a, pagg_tab_ml_2.b, pagg_tab_ml_2.c
               Filter: (avg(pagg_tab_ml_2.b) > '7'::numeric)
               ->  Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_2
         ->  HashAggregate
               Group Key: pagg_tab_ml_3.a, pagg_tab_ml_3.b, pagg_tab_ml_3.c
               Filter: (avg(pagg_tab_ml_3.b) > '7'::numeric)
               ->  Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_3
         ->  HashAggregate
               Group Key: pagg_tab_ml_4.a, pagg_tab_ml_4.b, pagg_tab_ml_4.c
               Filter: (avg(pagg_tab_ml_4.b) > '7'::numeric)
               ->  Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_4
(23 rows)

SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a, b, c HAVING avg(b) > 7 ORDER BY 1, 2, 3;
 a  | sum  | count 
----+------+-------
  8 | 4000 |   500
  8 | 4000 |   500
  9 | 4500 |   500
  9 | 4500 |   500
 18 | 4000 |   500
 18 | 4000 |   500
 19 | 4500 |   500
 19 | 4500 |   500
 28 | 4000 |   500
 28 | 4000 |   500
 29 | 4500 |   500
 29 | 4500 |   500
(12 rows)

-- Parallelism within partitionwise aggregates
SET min_parallel_table_scan_size TO '8kB';
SET parallel_setup_cost TO 0;
-- Full aggregation at level 1 as GROUP BY clause matches with PARTITION KEY
-- for level 1 only. For subpartitions, GROUP BY clause does not match with
-- PARTITION KEY, thus we will have a partial aggregation for them.
EXPLAIN (COSTS OFF)
SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
                                           QUERY PLAN                                           
------------------------------------------------------------------------------------------------
 Sort
   Sort Key: pagg_tab_ml.a, (sum(pagg_tab_ml.b)), (count(*))
   ->  Append
         ->  Finalize GroupAggregate
               Group Key: pagg_tab_ml.a
               Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
               ->  Gather Merge
                     Workers Planned: 2
                     ->  Sort
                           Sort Key: pagg_tab_ml.a
                           ->  Partial HashAggregate
                                 Group Key: pagg_tab_ml.a
                                 ->  Parallel Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
         ->  Finalize GroupAggregate
               Group Key: pagg_tab_ml_2.a
               Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
               ->  Gather Merge
                     Workers Planned: 2
                     ->  Sort
                           Sort Key: pagg_tab_ml_2.a
                           ->  Parallel Append
                                 ->  Partial HashAggregate
                                       Group Key: pagg_tab_ml_2.a
                                       ->  Parallel Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
                                 ->  Partial HashAggregate
                                       Group Key: pagg_tab_ml_3.a
                                       ->  Parallel Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
         ->  Finalize GroupAggregate
               Group Key: pagg_tab_ml_5.a
               Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
               ->  Gather Merge
                     Workers Planned: 2
                     ->  Sort
                           Sort Key: pagg_tab_ml_5.a
                           ->  Parallel Append
                                 ->  Partial HashAggregate
                                       Group Key: pagg_tab_ml_5.a
                                       ->  Parallel Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
                                 ->  Partial HashAggregate
                                       Group Key: pagg_tab_ml_6.a
                                       ->  Parallel Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
(41 rows)

SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
 a  | sum  | count 
----+------+-------
  0 |    0 |  1000
  1 | 1000 |  1000
  2 | 2000 |  1000
 10 |    0 |  1000
 11 | 1000 |  1000
 12 | 2000 |  1000
 20 |    0 |  1000
 21 | 1000 |  1000
 22 | 2000 |  1000
(9 rows)

-- Partial aggregation at all levels as GROUP BY clause does not match with
-- PARTITION KEY
EXPLAIN (COSTS OFF)
SELECT b, sum(a), count(*) FROM pagg_tab_ml GROUP BY b ORDER BY 1, 2, 3;
                                        QUERY PLAN                                        
------------------------------------------------------------------------------------------
 Sort
   Sort Key: pagg_tab_ml.b, (sum(pagg_tab_ml.a)), (count(*))
   ->  Finalize GroupAggregate
         Group Key: pagg_tab_ml.b
         ->  Gather Merge
               Workers Planned: 2
               ->  Sort
                     Sort Key: pagg_tab_ml.b
                     ->  Parallel Append
                           ->  Partial HashAggregate
                                 Group Key: pagg_tab_ml.b
                                 ->  Parallel Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
                           ->  Partial HashAggregate
                                 Group Key: pagg_tab_ml_3.b
                                 ->  Parallel Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_3
                           ->  Partial HashAggregate
                                 Group Key: pagg_tab_ml_1.b
                                 ->  Parallel Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_1
                           ->  Partial HashAggregate
                                 Group Key: pagg_tab_ml_4.b
                                 ->  Parallel Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_4
                           ->  Partial HashAggregate
                                 Group Key: pagg_tab_ml_2.b
                                 ->  Parallel Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_2
(24 rows)

SELECT b, sum(a), count(*) FROM pagg_tab_ml GROUP BY b HAVING avg(a) < 15 ORDER BY 1, 2, 3;
 b |  sum  | count 
---+-------+-------
 0 | 30000 |  3000
 1 | 33000 |  3000
 2 | 36000 |  3000
 3 | 39000 |  3000
 4 | 42000 |  3000
(5 rows)

-- Full aggregation at all levels as GROUP BY clause matches with PARTITION KEY
EXPLAIN (COSTS OFF)
SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a, b, c HAVING avg(b) > 7 ORDER BY 1, 2, 3;
                                    QUERY PLAN                                    
----------------------------------------------------------------------------------
 Gather Merge
   Workers Planned: 2
   ->  Sort
         Sort Key: pagg_tab_ml.a, (sum(pagg_tab_ml.b)), (count(*))
         ->  Parallel Append
               ->  HashAggregate
                     Group Key: pagg_tab_ml.a, pagg_tab_ml.b, pagg_tab_ml.c
                     Filter: (avg(pagg_tab_ml.b) > '7'::numeric)
                     ->  Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
               ->  HashAggregate
                     Group Key: pagg_tab_ml_3.a, pagg_tab_ml_3.b, pagg_tab_ml_3.c
                     Filter: (avg(pagg_tab_ml_3.b) > '7'::numeric)
                     ->  Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_3
               ->  HashAggregate
                     Group Key: pagg_tab_ml_1.a, pagg_tab_ml_1.b, pagg_tab_ml_1.c
                     Filter: (avg(pagg_tab_ml_1.b) > '7'::numeric)
                     ->  Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_1
               ->  HashAggregate
                     Group Key: pagg_tab_ml_4.a, pagg_tab_ml_4.b, pagg_tab_ml_4.c
                     Filter: (avg(pagg_tab_ml_4.b) > '7'::numeric)
                     ->  Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_4
               ->  HashAggregate
                     Group Key: pagg_tab_ml_2.a, pagg_tab_ml_2.b, pagg_tab_ml_2.c
                     Filter: (avg(pagg_tab_ml_2.b) > '7'::numeric)
                     ->  Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_2
(25 rows)

SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a, b, c HAVING avg(b) > 7 ORDER BY 1, 2, 3;
 a  | sum  | count 
----+------+-------
  8 | 4000 |   500
  8 | 4000 |   500
  9 | 4500 |   500
  9 | 4500 |   500
 18 | 4000 |   500
 18 | 4000 |   500
 19 | 4500 |   500
 19 | 4500 |   500
 28 | 4000 |   500
 28 | 4000 |   500
 29 | 4500 |   500
 29 | 4500 |   500
(12 rows)

-- Parallelism within partitionwise aggregates (single level)
-- Add few parallel setup cost, so that we will see a plan which gathers
-- partially created paths even for full aggregation and sticks a single Gather
-- followed by finalization step.
-- Without this, the cost of doing partial aggregation + Gather + finalization
-- for each partition and then Append over it turns out to be same and this
-- wins as we add it first. This parallel_setup_cost plays a vital role in
-- costing such plans.
SET parallel_setup_cost TO 10;
CREATE TABLE pagg_tab_para(x int, y int) PARTITION BY RANGE(x);
CREATE TABLE pagg_tab_para_p1 PARTITION OF pagg_tab_para FOR VALUES FROM (0) TO (12);
CREATE TABLE pagg_tab_para_p2 PARTITION OF pagg_tab_para FOR VALUES FROM (12) TO (22);
CREATE TABLE pagg_tab_para_p3 PARTITION OF pagg_tab_para FOR VALUES FROM (22) TO (30);
INSERT INTO pagg_tab_para SELECT i % 30, i % 20 FROM generate_series(0, 29999) i;
ANALYZE pagg_tab_para;
-- When GROUP BY clause matches; full aggregation is performed for each partition.
EXPLAIN (COSTS OFF)
SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
                                        QUERY PLAN                                         
-------------------------------------------------------------------------------------------
 Sort
   Sort Key: pagg_tab_para.x, (sum(pagg_tab_para.y)), (avg(pagg_tab_para.y))
   ->  Finalize GroupAggregate
         Group Key: pagg_tab_para.x
         Filter: (avg(pagg_tab_para.y) < '7'::numeric)
         ->  Gather Merge
               Workers Planned: 2
               ->  Sort
                     Sort Key: pagg_tab_para.x
                     ->  Parallel Append
                           ->  Partial HashAggregate
                                 Group Key: pagg_tab_para.x
                                 ->  Parallel Seq Scan on pagg_tab_para_p1 pagg_tab_para
                           ->  Partial HashAggregate
                                 Group Key: pagg_tab_para_1.x
                                 ->  Parallel Seq Scan on pagg_tab_para_p2 pagg_tab_para_1
                           ->  Partial HashAggregate
                                 Group Key: pagg_tab_para_2.x
                                 ->  Parallel Seq Scan on pagg_tab_para_p3 pagg_tab_para_2
(19 rows)

SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
 x  | sum  |        avg         | count 
----+------+--------------------+-------
  0 | 5000 | 5.0000000000000000 |  1000
  1 | 6000 | 6.0000000000000000 |  1000
 10 | 5000 | 5.0000000000000000 |  1000
 11 | 6000 | 6.0000000000000000 |  1000
 20 | 5000 | 5.0000000000000000 |  1000
 21 | 6000 | 6.0000000000000000 |  1000
(6 rows)

-- When GROUP BY clause does not match; partial aggregation is performed for each partition.
EXPLAIN (COSTS OFF)
SELECT y, sum(x), avg(x), count(*) FROM pagg_tab_para GROUP BY y HAVING avg(x) < 12 ORDER BY 1, 2, 3;
                                        QUERY PLAN                                         
-------------------------------------------------------------------------------------------
 Sort
   Sort Key: pagg_tab_para.y, (sum(pagg_tab_para.x)), (avg(pagg_tab_para.x))
   ->  Finalize GroupAggregate
         Group Key: pagg_tab_para.y
         Filter: (avg(pagg_tab_para.x) < '12'::numeric)
         ->  Gather Merge
               Workers Planned: 2
               ->  Sort
                     Sort Key: pagg_tab_para.y
                     ->  Parallel Append
                           ->  Partial HashAggregate
                                 Group Key: pagg_tab_para.y
                                 ->  Parallel Seq Scan on pagg_tab_para_p1 pagg_tab_para
                           ->  Partial HashAggregate
                                 Group Key: pagg_tab_para_1.y
                                 ->  Parallel Seq Scan on pagg_tab_para_p2 pagg_tab_para_1
                           ->  Partial HashAggregate
                                 Group Key: pagg_tab_para_2.y
                                 ->  Parallel Seq Scan on pagg_tab_para_p3 pagg_tab_para_2
(19 rows)

SELECT y, sum(x), avg(x), count(*) FROM pagg_tab_para GROUP BY y HAVING avg(x) < 12 ORDER BY 1, 2, 3;
 y  |  sum  |         avg         | count 
----+-------+---------------------+-------
  0 | 15000 | 10.0000000000000000 |  1500
  1 | 16500 | 11.0000000000000000 |  1500
 10 | 15000 | 10.0000000000000000 |  1500
 11 | 16500 | 11.0000000000000000 |  1500
(4 rows)

-- Test when parent can produce parallel paths but not any (or some) of its children
-- (Use one more aggregate to tilt the cost estimates for the plan we want)
ALTER TABLE pagg_tab_para_p1 SET (parallel_workers = 0);
ALTER TABLE pagg_tab_para_p3 SET (parallel_workers = 0);
ANALYZE pagg_tab_para;
EXPLAIN (COSTS OFF)
SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
                                        QUERY PLAN                                         
-------------------------------------------------------------------------------------------
 Sort
   Sort Key: pagg_tab_para.x, (sum(pagg_tab_para.y)), (avg(pagg_tab_para.y))
   ->  Finalize GroupAggregate
         Group Key: pagg_tab_para.x
         Filter: (avg(pagg_tab_para.y) < '7'::numeric)
         ->  Gather Merge
               Workers Planned: 2
               ->  Sort
                     Sort Key: pagg_tab_para.x
                     ->  Partial HashAggregate
                           Group Key: pagg_tab_para.x
                           ->  Parallel Append
                                 ->  Seq Scan on pagg_tab_para_p1 pagg_tab_para_1
                                 ->  Seq Scan on pagg_tab_para_p3 pagg_tab_para_3
                                 ->  Parallel Seq Scan on pagg_tab_para_p2 pagg_tab_para_2
(15 rows)

SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
 x  | sum  |        avg         |  sum  | count 
----+------+--------------------+-------+-------
  0 | 5000 | 5.0000000000000000 |  5000 |  1000
  1 | 6000 | 6.0000000000000000 |  7000 |  1000
 10 | 5000 | 5.0000000000000000 | 15000 |  1000
 11 | 6000 | 6.0000000000000000 | 17000 |  1000
 20 | 5000 | 5.0000000000000000 | 25000 |  1000
 21 | 6000 | 6.0000000000000000 | 27000 |  1000
(6 rows)

ALTER TABLE pagg_tab_para_p2 SET (parallel_workers = 0);
ANALYZE pagg_tab_para;
EXPLAIN (COSTS OFF)
SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
                                    QUERY PLAN                                    
----------------------------------------------------------------------------------
 Sort
   Sort Key: pagg_tab_para.x, (sum(pagg_tab_para.y)), (avg(pagg_tab_para.y))
   ->  Finalize GroupAggregate
         Group Key: pagg_tab_para.x
         Filter: (avg(pagg_tab_para.y) < '7'::numeric)
         ->  Gather Merge
               Workers Planned: 2
               ->  Sort
                     Sort Key: pagg_tab_para.x
                     ->  Partial HashAggregate
                           Group Key: pagg_tab_para.x
                           ->  Parallel Append
                                 ->  Seq Scan on pagg_tab_para_p1 pagg_tab_para_1
                                 ->  Seq Scan on pagg_tab_para_p2 pagg_tab_para_2
                                 ->  Seq Scan on pagg_tab_para_p3 pagg_tab_para_3
(15 rows)

SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
 x  | sum  |        avg         |  sum  | count 
----+------+--------------------+-------+-------
  0 | 5000 | 5.0000000000000000 |  5000 |  1000
  1 | 6000 | 6.0000000000000000 |  7000 |  1000
 10 | 5000 | 5.0000000000000000 | 15000 |  1000
 11 | 6000 | 6.0000000000000000 | 17000 |  1000
 20 | 5000 | 5.0000000000000000 | 25000 |  1000
 21 | 6000 | 6.0000000000000000 | 27000 |  1000
(6 rows)

-- Reset parallelism parameters to get partitionwise aggregation plan.
RESET min_parallel_table_scan_size;
RESET parallel_setup_cost;
EXPLAIN (COSTS OFF)
SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
                                 QUERY PLAN                                  
-----------------------------------------------------------------------------
 Sort
   Sort Key: pagg_tab_para.x, (sum(pagg_tab_para.y)), (avg(pagg_tab_para.y))
   ->  Append
         ->  HashAggregate
               Group Key: pagg_tab_para.x
               Filter: (avg(pagg_tab_para.y) < '7'::numeric)
               ->  Seq Scan on pagg_tab_para_p1 pagg_tab_para
         ->  HashAggregate
               Group Key: pagg_tab_para_1.x
               Filter: (avg(pagg_tab_para_1.y) < '7'::numeric)
               ->  Seq Scan on pagg_tab_para_p2 pagg_tab_para_1
         ->  HashAggregate
               Group Key: pagg_tab_para_2.x
               Filter: (avg(pagg_tab_para_2.y) < '7'::numeric)
               ->  Seq Scan on pagg_tab_para_p3 pagg_tab_para_2
(15 rows)

SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
 x  | sum  |        avg         | count 
----+------+--------------------+-------
  0 | 5000 | 5.0000000000000000 |  1000
  1 | 6000 | 6.0000000000000000 |  1000
 10 | 5000 | 5.0000000000000000 |  1000
 11 | 6000 | 6.0000000000000000 |  1000
 20 | 5000 | 5.0000000000000000 |  1000
 21 | 6000 | 6.0000000000000000 |  1000
(6 rows)