diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-17 12:02:58 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-17 12:02:58 +0000 |
commit | 698f8c2f01ea549d77d7dc3338a12e04c11057b9 (patch) | |
tree | 173a775858bd501c378080a10dca74132f05bc50 /vendor/libm/src/math/log1p.rs | |
parent | Initial commit. (diff) | |
download | rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.tar.xz rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.zip |
Adding upstream version 1.64.0+dfsg1.upstream/1.64.0+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/libm/src/math/log1p.rs')
-rw-r--r-- | vendor/libm/src/math/log1p.rs | 144 |
1 files changed, 144 insertions, 0 deletions
diff --git a/vendor/libm/src/math/log1p.rs b/vendor/libm/src/math/log1p.rs new file mode 100644 index 000000000..cd7045ac9 --- /dev/null +++ b/vendor/libm/src/math/log1p.rs @@ -0,0 +1,144 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* double log1p(double x) + * Return the natural logarithm of 1+x. + * + * Method : + * 1. Argument Reduction: find k and f such that + * 1+x = 2^k * (1+f), + * where sqrt(2)/2 < 1+f < sqrt(2) . + * + * Note. If k=0, then f=x is exact. However, if k!=0, then f + * may not be representable exactly. In that case, a correction + * term is need. Let u=1+x rounded. Let c = (1+x)-u, then + * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), + * and add back the correction term c/u. + * (Note: when x > 2**53, one can simply return log(x)) + * + * 2. Approximation of log(1+f): See log.c + * + * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c + * + * Special cases: + * log1p(x) is NaN with signal if x < -1 (including -INF) ; + * log1p(+INF) is +INF; log1p(-1) is -INF with signal; + * log1p(NaN) is that NaN with no signal. + * + * Accuracy: + * according to an error analysis, the error is always less than + * 1 ulp (unit in the last place). + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + * + * Note: Assuming log() return accurate answer, the following + * algorithm can be used to compute log1p(x) to within a few ULP: + * + * u = 1+x; + * if(u==1.0) return x ; else + * return log(u)*(x/(u-1.0)); + * + * See HP-15C Advanced Functions Handbook, p.193. + */ + +use core::f64; + +const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */ +const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */ +const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */ +const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */ +const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */ +const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */ +const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */ +const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */ +const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ + +#[inline] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn log1p(x: f64) -> f64 { + let mut ui: u64 = x.to_bits(); + let hfsq: f64; + let mut f: f64 = 0.; + let mut c: f64 = 0.; + let s: f64; + let z: f64; + let r: f64; + let w: f64; + let t1: f64; + let t2: f64; + let dk: f64; + let hx: u32; + let mut hu: u32; + let mut k: i32; + + hx = (ui >> 32) as u32; + k = 1; + if hx < 0x3fda827a || (hx >> 31) > 0 { + /* 1+x < sqrt(2)+ */ + if hx >= 0xbff00000 { + /* x <= -1.0 */ + if x == -1. { + return x / 0.0; /* log1p(-1) = -inf */ + } + return (x - x) / 0.0; /* log1p(x<-1) = NaN */ + } + if hx << 1 < 0x3ca00000 << 1 { + /* |x| < 2**-53 */ + /* underflow if subnormal */ + if (hx & 0x7ff00000) == 0 { + force_eval!(x as f32); + } + return x; + } + if hx <= 0xbfd2bec4 { + /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ + k = 0; + c = 0.; + f = x; + } + } else if hx >= 0x7ff00000 { + return x; + } + if k > 0 { + ui = (1. + x).to_bits(); + hu = (ui >> 32) as u32; + hu += 0x3ff00000 - 0x3fe6a09e; + k = (hu >> 20) as i32 - 0x3ff; + /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */ + if k < 54 { + c = if k >= 2 { + 1. - (f64::from_bits(ui) - x) + } else { + x - (f64::from_bits(ui) - 1.) + }; + c /= f64::from_bits(ui); + } else { + c = 0.; + } + /* reduce u into [sqrt(2)/2, sqrt(2)] */ + hu = (hu & 0x000fffff) + 0x3fe6a09e; + ui = (hu as u64) << 32 | (ui & 0xffffffff); + f = f64::from_bits(ui) - 1.; + } + hfsq = 0.5 * f * f; + s = f / (2.0 + f); + z = s * s; + w = z * z; + t1 = w * (LG2 + w * (LG4 + w * LG6)); + t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7))); + r = t2 + t1; + dk = k as f64; + s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI +} |